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a b s t r a c t

In a recent paper, McDiarmid, Semple, and Welsh (2015) showed
that the number of tree-child networks with n leaves has the
factor n2n in its main asymptotic growth term. In this paper,
we improve this by completely identifying the main asymptotic
growth term up to a constant. More precisely, we show that the
number of tree-child networks with n leaves grows like

Θ

(
n−2/3ea1(3n)

1/3
(
12
e2

)n

n2n
)

,

where a1 = −2.338107410 · · · is the largest root of the Airy
function of the first kind. For the proof, we bijectively map
the underlying graph-theoretical problem onto a problem on
words. For the latter, we can find a recurrence to which a recent
powerful asymptotic method of Elvey Price, Fang, and Wallner
(2019) can be applied.

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

Over the last two decades, phylogenetic networks have become increasingly popular and have
een used more and more frequently in modeling horizontal genetic transfer events in evolutionary
enomics. Because of their now widespread usage, studying basic combinatorial properties such
s counting them has attracted some recent efforts; see, e.g., Bouvel et al. [1], Cardona and
hang [2], Fuchs et al. [4,5], Gunawan et al. [7], McDiarmid et al. [8], and Zhang [10]. While
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Fig. 1. (a) A phylogenetic network which is not a tree-child network because its two reticulations nodes (gray) are the
hildren of the same tree node; (b) A tree-child network.

he counting of phylogenetic trees goes back at least to Schröder [9] and we have a complete
ombinatorial understanding of it, still very little is known about combinatorial counting questions
or phylogenetic networks and their subclasses.

A (rooted, binary, leaf-labeled) phylogenetic network with n leaves is defined as a rooted directed
cyclic graph (or DAG for short) which is connected and has no parallel edges and whose vertices
all into one of the following four categories:

(i) a root ρ of indegree 0 and outdegree 1;
(ii) n leaves of indegree 1 and outdegree 0 which are bijectively labeled by elements from the set

{1, . . . , n};
(iii) nodes of indegree 1 and outdegree 2 which are called tree nodes;
(iv) nodes of indegree 2 and outdegree 1 which are called reticulation nodes.

Many subclasses of phylogenetic networks have been considered. An important one arising from
phylogenetic applications is the class containing tree-child networks which we will define next.

Definition 1. A phylogenetic network is called a tree-child network if every node which is not a
leaf has at least one child which is not a reticulation node.

See Fig. 1 for an example of a phylogenetic network which is not a tree-child network (a) and
an example which is a tree-child network (b).

We denote the set of tree-child networks with n leaves by T Cn and its cardinality by TCn
throughout this work. The first few terms of the latter sequence were computed, e.g., in [2]:

{TCn}n≥2 = {3, 66, 4059, 496710, 101833875, 31538916360, . . .}.

In order to understand the growth of this sequence, asymptotic counting results have been
proved. The first and in fact still best such result was obtained in [8], where the authors showed
that there exist constants 0 < c1 < c2 such that for all n:

(c1n)2n ≤ TCn ≤ (c2n)2n.

his result identifies n2n as the main term in the asymptotic growth of TCn. However, it does not
ield anything even for the exponential growth rate since no explicit values for c1, c2 were given

in [8].
It is the purpose of this paper to improve upon this result. More precisely, we will find all terms

in the main asymptotic growth term of the above counting sequence.

Theorem 1. The number of tree-child networks with n leaves satisfies

TCn = Θ

(
n−2/3ea1(3n)

1/3
(
12
2

)n

n2n
)

,
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where a1 is the largest root of the Airy function Ai(x) of the first kind which is the unique solution with
limx→∞ Ai(x) = 0 of the differential equation Ai′′(x) = xAi(x).

Similar asymptotic results but for different combinatorial counting problems were obtained by
Elvey Price et al. in [3], where the (unusual) term exp{cnα

} with c some constant and α ∈ (0, 1)
as called a stretched exponential. In fact, the method from [3] will also play a crucial role in the
roof of our result.
As a consequence of our method of proof, we can also get an asymptotic result for the number

f tree-child networks where all nodes (except the root) are bijectively labeled. We denote this
umber by T̂CN with N the number of non-root nodes. Then, we have the following result which
e formulate as corollary.

orollary 1. The number of tree-child networks with N non-root nodes which are all labeled satisfies

T̂CN =

(
3
e5

+ o(1)
)N/4

N5N/4,

here N runs through all odd positive integers.

Recall that if N is even, then a tree-child network with N non-root nodes does not exist; see [8]
nd (2).

emark 1. In [8], the number of tree-child networks with all non-root nodes labeled was also
onsidered and the authors showed that N5N/4 is the dominating term in the main asymptotic
rowth term. Our above result shows that (3/e5)1/4 is the base of the exponential growth rate.

We next give a short sketch of the proof of Theorem 1. First, let T Cn,k denote the set of tree-child
etworks with n leaves and k reticulation nodes and denote its cardinality by TCn,k. It is easy to see
hat 0 ≤ k ≤ n − 1. For fixed values of k, the asymptotics of TCn,k were derived in [5]:

TCn,k ∼ ck

(
2
e

)n

nn+2k−1,

where ck > 0 is a computable constant.
However, in order to understand the asymptotics of TCn, it turns out that TCn,n−1 plays the most

rucial role. More precisely, we will first show that

TCn = Θ(TCn,n−1). (1)

ext, we will observe that TCn,n−1/n! is actually contained in the OEIS1 as entry A213863 (with
shift). The latter sequence, say an, is defined as the number of words with letters {ω1, . . . , ωn}

here each letter can be used exactly three times and in each prefix of the words, the number of
ccurrences of letter ωi is either zero or if it is non-zero, then the letter ωi must occur at least as
ften as the letter ωj for all j > i. We give a bijective proof that TCn,n−1/n! is indeed equal to an−1.

Finally, for an we will be able to find a recurrence to which the method from [3] can be applied.
The above will be done in the next three sections of the paper. Then, in Section 5, we will give the

proof of Corollary 1. In Section 6, we will derive the asymptotics of the number of 1-component tree-
child networks for which explicit formulas were recently given in [2]. Again, stretched exponentials
will occur in both the leaf-labeled and node-labeled case (even three of them in the latter). We will
conclude the paper in Section 7 with a summary and some open problems.

2. Tree-child networks with a maximal number of reticulation nodes

In this section, we prove (1). First, recall the following relation between n, k, and t of a
phylogenetic network with n leaves, k reticulation nodes, and t tree nodes:

n + k = t + 1. (2)

1 http://www.oeis.org/.
3
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Fig. 2. The injective map f from Lemma 2. (The two free nodes are marked by an x and the picked free edge is in green.)

his follows from the fact that the sum of the out-degrees of nodes is equal to the sum of in-degrees;
ee [8] for details.
Next, we say that a tree node is free if each of its children is either a tree node or a leaf. Moreover,

e call an outgoing edge of a free tree node a free edge. Then, we have the following lemma.

emma 1. Every tree-child network in T Cn,k has n − k − 1 free tree nodes and thus 2(n − k − 1) free
dges.

roof. From (2), we have that a tree-child network from T Cn,k has n + k − 1 tree nodes. The
wo parents of every reticulation node are not free and due to the tree-child property, different
eticulation nodes have different parents. Thus, the number of tree nodes which are not free is 2k
rom which the result follows. ■

Using the previous lemma, we can show the following result.

emma 2. For any 0 ≤ k ≤ n − 2, we have 2(n − k − 1)TCn,k ≤ TCn,k+1.

roof. Define a map f from a pair of a network from T Cn,k and a free edge of that network into
Cn,k+1 as follows: insert a tree node between the root of the network and its child and add an
dge from this node to a reticulation node which is inserted into the free edge; see Fig. 2. Note
hat each image of f is indeed a tree-child network from T Cn,k+1 and that f is injective. Moreover,
because of the previous lemma, the range of f has cardinality 2(n− k−1)TCn,k. From this the claim
ollows. ■

We also need the following lemma.

emma 3. For n ≥ 3, we have TCn,n−3 ≥
1
8 × TCn,n−2.

Proof. First note that each network in T Cn,n−3 contains 4 free edges and 3n − 4 edges ending
ither in a tree node or leaf. (Such edges are subsequently called tree edges.) By picking a free edge
nd a (different) tree edge, then inserting a tree node u into the picked tree edge and connecting
t to a reticulation node v which is inserted into the picked free edge, we obtain a network of
Cn,n−2 if u is not below v (see Fig. 3). In this way, we get at most 4((3n − 4) − 1)TCn,n−3

networks with n− 2 reticulation nodes, as we discard those that are not DAGs. On the other hand,
each tree-child network of T Cn,n−2 is obtained by this construction exactly 2(n − 2) times. Thus,
4(3n − 5)TCn,n−3 ≥ 2(n − 2)TCn,n−2. From this, since for n ≥ 3,

n − 2
3n − 5

=
1
3

(
1 −

1
3n − 5

)
≥

1
4
,

he inequality of the lemma follows. ■
4
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Fig. 3. Illustration of the proof of Lemma 3 with n = 4. In the top row, the leftmost tree-child network has n − 3 (= 1)
reticulation nodes and hence contains 4 free edges, one of which is colored green, and 7 other tree edges (black). Since
the tree edges entering leaves 1 and 3 are below the green edge, we could not add an edge from either to form a DAG.
Thus, we obtain 5 tree-child networks with n − 2 reticulation nodes by adding an edge from each of the other 5 tree
edges to the green free edge. (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

Now, we can prove the following quantitative version of (1).

Proposition 1. For any n ≥ 3, we have 25
16 × TCn,n−1 ≤ TCn ≤

√
e × TCn,n−1.

roof. The lower bound follows from

TCn =

n−1∑
k=0

TCn,k, (3)

he fact that TCn,n−1 = 2TCn,n−2 which was proved in [2], and Lemma 3.
For the upper bound, by Lemma 2 and iteration, we get

TCn,k ≤
1

2n−1−k(n − k − 1)!
TCn,n−1, (0 ≤ k ≤ n − 1). (4)

Thus, from (3),

TCn ≤

(
n−1∑
k=0

1
2n−1−k(n − k − 1)!

)
TCn,n−1 ≤

√
eTCn,n−1.

This proves the claim. ■

The above proposition reduces the problem of finding the main term of the asymptotics of TCn
to that of TCn,n−1 which is the number of tree-child networks with n leaves and a maximal number
f n − 1 reticulation nodes.
These networks have a special structure which we discuss next. Recall that by Definition 1,

or every node in the network there exists a path starting with that node and ending with a leaf
5
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Fig. 4. A tree-child network with maximal number of reticulation nodes. (The path-components are highlighted and labels
of leaves are removed; note that different labelings of the leaves lead to different tree-child networks.)

whose intermediate nodes are all tree nodes. For tree-child networks with a maximal number of
reticulation nodes, we have the following characterization.

Lemma 4. A tree-child network from T Cn has n − 1 reticulation nodes if and only if the path from
every node to a leaf whose intermediate nodes are all tree nodes is unique.

Proof. First, assume that we have a tree-child network with n leaves and n− 1 reticulation nodes.
Then, for different reticulation nodes, the paths from these nodes to leaves with all intermediate
nodes being tree nodes end with different leaves. Moreover, the child of the root (which is a tree
node) also has a path with all intermediate nodes being tree nodes which ends with a yet another
leaf. Thus, we have already at least n leaves and consequently, no node can have two paths with
the claimed property because then the number of leaves would exceed n.

Next, assume that for every node there is a unique path to a leaf with all intermediate nodes
being tree nodes. Consider first this path for the child of the root. Clearly, all intermediate nodes
must be parents of reticulation nodes for otherwise an intermediate node would have two different
paths to leaves with all intermediate nodes being tree nodes. Moreover, any reticulation node which
is the child of an intermediate node on the path is followed by a tree node which again has a path
to a leaf with all intermediate nodes being parents of reticulation nodes, etc. Clearly, this gives a
network with n leaves and exactly n − 1 reticulation nodes. ■

The second part of the proof of the above lemma explains the structure of tree-child networks
with n leaves and n − 1 reticulation nodes: they consist of path-components starting with either a
reticulation node or the child of the root. All other edges are between these components; see Fig. 4.
In particular, note that these networks have no symmetry and thus, if we remove the labels of the
leaves, the number of all resulting (now unlabeled) networks is TCn,n−1/n!.

3. A class of words and recurrences for their counting sequence

We start with entry A213863 in the OEIS which is a counting sequence of certain words.
6
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Definition 2. Let An denote the class of words on the n letters {ω1, . . . , ωn} such that in each word
very letter occurs exactly 3 times and in every prefix, the letter ωi either has not yet occurred or
f it has occurred, then the number of occurrences is at least as large as the number of occurrences
f ωj for all j > i. Moreover, denote by an the cardinality of An.

In the OEIS, the first 16 terms of an were given together with a brute-force Maple program to
compute further terms (which becomes very slow beyond the 20-th term). We recall the first 7
terms:

{an}n≥1 = {1, 7, 106, 2575, 87595, 3864040, 210455470, . . .}.

In fact, it turns out that an−1 also counts the number of tree-child networks with n leaves and n−1
reticulation nodes with the labels of leaves removed.

Proposition 2. There is a bijection from the set of tree-child networks T Cn,n−1 with labels removed to
An−1. Consequently, an−1 = TCn,n−1/n!.

Proof. We directly give the bijection. Therefore, start with an element from T Cn,n−1 with labels
removed; see Fig. 4 for an example. Recall that these objects are counted by TCn,n−1/n! due to the
lack of symmetry of the networks from T Cn,n−1.

In the first step, we order the path-components of the chosen tree-child network. We do this
inductively. First, the path-component of the child of the root receives index 0. Assume that k
path-components have been indexed. Now, consider all un-indexed path-components whose first
node (which is a reticulation node) has its two parents already in indexed path-components. If
both parents are in the same path-component, then one is the descendant of the other; call that
one the second parent; if both parents are in different path-components, then the parent in the
path-component with the higher index is the second parent. Now order all the above chosen
un-indexed path-components according to the indices of the path-components where the second
parents are located and in case indices coincide, the ancestor relationship within the
path-component of their second parents. Continue this until all path-components are indexed which
will eventually happen because our networks are connected; see the first part of Fig. 5.

Now, we label the first node of every path-component of index k > 0 together with its two
parents by k; see the second part of Fig. 5.

Finally, we read the labels of each path-component starting with the 0-th one until we reach the
last one; see the third part of Fig. 5, where the separation line separates the strings from different
path-components.

The resulting word is a word with letters {1, . . . , n − 1} with each letter repeated exactly three
times. Moreover, if a letter of the resulting word occurs for the first timer when the word is read
from the left to right, then due to the above construction, no larger letter can have occurred already
(at least) twice. Likewise, if a letter occurs for the second time, again no larger letter can have
occurred already three times. Thus, the resulting words satisfy the property from Definition 2.

Finally, it is straightforward to see that the above construction can be reversed. Thus, the
resulting map is a bijection. ■

For the sequence an, we can give now a recurrence.

Proposition 3. Let (bn,m)n,m≥1 be defined recursively as

bn,m = (2n + m − 2)
m∑

k=1

bn−1,k, (n ≥ 2, 1 ≤ m ≤ n) (5)

with initial conditions bn,m = 0 for n < m and b1,1 = 1. Then,

an =

∑
m≥1

bn,m.
7
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Fig. 5. The bijection between unlabeled elements from T Cn,n−1 and words from An−1 from Proposition 2. (Here, n = 4.).

roof. First, note that any word in An must end with the letter ωn. Moreover, if one considers the
uffix of a word from the second occurrence of ωn to the last occurrence of ωn, then this suffix must
have the form ωnωn−i · · · ωn−1ωn for some 0 ≤ i ≤ n − 1 (where here and in the sequel, for i = 0
he suffix is understood to be ωnωn).

Define now An,i as the set of all words in An with suffix ωnωn−i · · · ωn−1ωn for some 0 ≤ i ≤ n−1.
hen,

An = An,0 ∪ · · · ∪ An,n−1

nd this union is disjoint. Let an,i be the cardinality of An,i.
First, consider An,0. Here, we can generate all words from words in An−1 by placing ωnωn at the

end and inserting a third ωn anywhere into the word. This gives,

an,0 = (3n − 2)an−1, (6)

since the third ωn has exactly 3n − 2 positions to choose from.
Next, consider An,i with 1 ≤ i ≤ n − 1. By definition, all words in this set have the suffix

ωnωn−i · · · ωn−1ωn. Moreover, if we remove the three ωn’s, then the resulting word ends with
ωn−i · · · ωn−1 and is thus contained in

An−1,i−1 ∪ · · · ∪ An−1,n−2.

Conversely, if we insert three ωn’s into a word of the above set by placing one at the beginning and
one at the end of the suffix ωn−i · · · ωn−1 and inserting the third ωn anywhere before this, then we
create all words from An,i. This shows that

an,i = (3n − 2 − i)
n−2∑

k=i−1

an−1,k (7)

because the third ωn has exactly 3n − 2 − i positions to choose from.
Finally, by setting

bn,i := an,n−i,

we obtain the claimed recurrence from (6) and (7) with the claimed initial conditions (which are
easily verified). ■
8
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Using this recurrence, the first, e.g., 1000 terms of an can be computed with Maple in a few
seconds.

The recurrence for bn,m can also be written in the following equivalent form.

Corollary 2. We have,

bn,m =
2n + m − 2
2n + m − 3

bn,m−1 + (2n + m − 2)bn−1,m, (n ≥ 2, 0 ≤ m ≤ n)

ith initial conditions bn,m = 0 for m > n, bn,−1 = 0 for n ≥ 1 and b1,m = 0 for m ≥ −1 except for
= 1 where b1,1 = 1.

roof. We have,

bn,m
2n + m − 2

=

m∑
k=1

bn−1,k.

Thus,
bn,m

2n + m − 2
−

bn,m−1

2n + m − 3
= bn−1,m

which can be re-arranged to the claimed recurrence. Finally, the initial conditions are easily adjusted
to the current recurrence. ■

4. Asymptotic analysis and proof of Theorem 1

In this section, we will do the asymptotic analysis of an. As a warm-up, we first start with an
upper bound which follows from (5).

Lemma 5. We have,

an = O
(
n−1

(
12
e

)n

nn
)

.

roof. Define a sequence gn,m recursively by

gn,m =

m∑
k=1

gn−1,k, (n ≥ 2, 1 ≤ m ≤ n)

ith initial conditions gn,m = 0 for n < m and g1,1 = 1. Then, by induction and using (5), we get
hat

3nn!gn,m ≥ bn,m, (n,m ≥ 1). (8)

Next, note that gn,m are the ballot numbers which are found in the OEIS as entry A009766 and
dmit the closed form expression

gn,m =
n − m + 1

n

(
n + m − 2

n − 1

)
.

hus, ∑
m≥1

gn,m = gn+1,n+1 =
1

n + 1

(
2n
n

)
= Cn,

here Cn denotes the nth Catalan number, which by Stirling’s formula has the asymptotics

Cn ∼
4n

√ .

πn3

9
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Finally, from (8), we obtain that

an =

∑
m≥1

bn,m ≤ 3nn!
∑
m≥1

gn,m = 3nn!Cn ∼

√
2
n

(
12
e

)n

nn.

his gives the claimed result. ■

Note that by using (1) and Proposition 2, this upper bound implies that

TCn = O
(
n−3/2

(
12
e2

)n

n2n
)

.

This already captures the right exponential growth order; compare with Theorem 1. However, we
are still missing the stretched exponential (and the polynomial term) which requires a much more
subtle method. We will explain this method next.

The method we are going to use was introduced in [3], where it was first applied (amongst
other things) to another problem on DAGs, namely, the counting of relaxed binary trees. (Despite
our problem being also a counting problem on DAGs, it came as a surprise to us that the same
method applies to both problems.) The heuristic for the method from [3] comes from lattice path
theory and is well-explained in Section 3 in [3].

The main reason why the method from [3] applies in our context is that our recurrence from
Corollary 2 has the same shape as the one for relaxed binary trees which was given in Proposition 2.6
in [3]. The only difference is that the coefficients on the right-hand side are slightly different: in the
recurrence for relaxed binary trees in [3], the coefficients are 1 and m+ 1, whereas our coefficients
are (2n+m−2)/(2n+m−3) and 2n+m−2. However, note that we are interested in the asymptotics
of bn,n since by (5) and initial conditions:

bn,n = (3n − 2)an−1. (9)

Now, form ≈ n, our coefficients become (2n+m−2)/(2n+m−3) ≈ 1 and 2n+m−2 ≈ 3n compared
to the above coefficients for the recurrence of relaxed binary trees which become 1 and m+ 1 ≈ n.
hus, we have good reason to believe that the method from [3] will apply to our sequence when
ivided by 3n. This will turn out to be indeed the case.
We will now use the steps from [3]. The first step was to define

dn,m :=
1

3(n+m)/2
( n+m

2

)
!
b(n+m)/2,(n−m)/2, (n ≥ 4, 0 ≤ m ≤ n, n − m even)

nd dn,m := 0 if n − m is odd. Note that bn,n = 3nn!d2n,0. Moreover, from Corollary 2,

dn,m =
3n + m − 4
3n + m − 6

dn−1,m+1 +
3n + m − 4
3n + 3m

dn−1,m−1, (n ≥ 3,m ≥ 0) (10)

ith initial conditions dn,−1 = 0 for n ≥ 2, d2,m = 0 for m ≥ 1 and d2,0 = 1/3.
The next step is to assume that

dn,m ≈ h(n)f
(
(m + 1)n−1/3) ,

where h(n) ≈ 2nµn1/3 with a (so far unknown) constant µ. We repeat some of the heuristic
arguments from Section 3 in [3] which show how to choose µ and f (·). The reason why we do this
(instead of just referring to [3]) is because these arguments (i) show how the Airy function shows
up and (ii) make it easier to understand the two propositions below. First, set s(n) = h(n)/h(n − 1)
hich satisfies

s(n) = 2 +
2 logµ

3
n−2/3

+ O(n−1). (11)

Now, plugging everything into (10), we obtain that

s(n)f
(
(m + 1)n−1/3)

=
3n + m − 4
3n + m − 6

f
(
(m + 2)(n − 1)−1/3)

+
3n + m − 4
3n + 3m

f
(
m(n − 1)−1/3) .
(12)
10
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Pick m = κn1/3
− 1. Then, 3n+m−4

3n+m−6 = 1 + O(n−1) and 3n+m−4
3n+3m = 1 −

2
3κn

−2/3
+ O(n−1). Since

f
(
(m + 2)(n − 1)−1/3)

= f (κ) + f ′(κ)n−1/3
+ f ′′(κ)

n−2/3

2
+ O(n−1)

nd

f
(
m(n − 1)−1/3)

= f (κ) − f ′(κ)n−1/3
+ f ′′(κ)

n−2/3

2
+ O(n−1),

e obtain by plugging the above into (12) and rearranging(
f ′′(κ) −

2
3
(logµ + κ)f (κ)

)
n−2/3

+ O(n−1) = 0.

Thus,

f ′′(κ) =
2
3
(logµ + κ)f (κ)

hich under some regularity conditions on f (·) has the solution

f (κ) = bAi (c(logµ + κ)) ,

here b is a suitable constant and c = (2/3)1/3. If we further impose f (0) = 0, then c logµ = a1
nd thus our function f (·) should be chosen as

f (κ) ≈ Ai (a1 + cκ) . (13)

Now, the main idea of the approach in [3] is to choose f (·) of the form (13) with suitable
ultiplicative factors and suitable versions of (11) such that (12) holds as an inequality with both
and ≥. Then, this gives lower and upper bounds for dn,m and thus d2n,0 which then yields the

esired upper and lower bound for bn,n and thus an via (9).
We give the two results containing these inequalities next; compare with Lemma 4.2 and

Lemma 4.4 in [3] for the corresponding results for relaxed binary trees.

Proposition 4. Define

X̃n,m :=

(
1 −

m2

3n
−

25m
18n

)
Ai
(
a1 + c(m + 1)n−1/3) ,

here c = (2/3)1/3 and

s̃(n) := 2 +
22/3a1
32/3n2/3 −

2
3n

−
1

n7/6 .

hen, for fixed ϵ > 0 and n large enough, we have

s̃(n)X̃n,m ≤
3n + m − 4
3n + m − 6

X̃n−1,m+1 +
3n + m − 4
3n + 3m

X̃n−1,m−1 (14)

for all 0 ≤ m < n2/3−ϵ .

Proposition 5. Let η > 1/18 and define

X̂n,m :=

(
1 −

m2

3n
−

25m
18n

+ η
m4

n2

)
Ai
(
a1 + c(m + 1)n−1/3) ,

here c = (2/3)1/3 and

ŝ(n) := 2 +
22/3a1

−
2

+
1

.

32/3n2/3 3n n7/6

11
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Then, for fixed ϵ > 0 and n large enough, we have

ŝ(n)X̂n,m ≥
3n + m − 4
3n + m − 6

X̂n−1,m+1 +
3n + m − 4
3n + 3m

X̂n−1,m−1 (15)

for all 0 ≤ m < n1−ϵ .

Proof of Propositions 4 and 5. For the proof, we use the Maple worksheet which was cited in [3]
(item [26] in the list of references) and which the authors made available online. We only have to
modify it to our situation; see the first author’s personal webpage for the modified version.2

First, for the claim in Proposition 4, we set

Pn,m := −s̃(n)X̃n,m +
3n + m − 4
3n + m − 6

X̃n−1,m+1 +
3n + m − 4
3n + 3m

X̃n−1,m−1.

Using the above mentioned Maple worksheet, by series expansion and the differential equation of
the Airy function, this double-sequence can be written as

Pn,m =Ai(α)
(

1
n7/6 −

25/3a1m
38/3n5/3 −

23m2

27n2 −
25/3

· 5a1m3

311/3n8/3 −
37m4

81n3 +
449m5

3645n4 + · · ·

)
+ Ai′(α)

(
21/3

31/3n3/2 −
2813m

22/3 · 310/3 · 5n7/3 −
53 · 24/3m2

310/3n7/3

−
27/3m3

37/3n7/3 −
21/3m4

37/3n10/3 −
163 · 21/3m5

316/3 · 5n13/3 + · · ·

)
,

here α := a1 + c(m + 1)n−1/3. This has exactly the same shape as the expansion in the proof of
emma 4.2 in [3] with the sole exception that the second term in the bracket behind Ai′ is different
ut since this term is (i) now slightly smaller and (ii) was shown to be asymptotically not relevant in
he proof of Lemma 4.2 in [3], this does not matter. Thus, we can use the arguments from Lemma 4.2
n [3] to show that Pn,m ≥ 0 for all large enough n and 0 ≤ m < n2/3−ϵ .

Similarly, Proposition 5 is proved with the Maple worksheet and the arguments from the proof
f Lemma 4.4 in [3]. ■

Now, equipped with the above two propositions, we can prove Theorem 1, where the first part
f the proof again heavily borrows from Section 4 in [3].

roof of Theorem 1. First, define h̃(n) = s̃(n)h̃(n − 1) with h̃(1) := 1. Then, (14) becomes

h̃(n)X̃n,m ≤
3n + m − 4
3n + m − 6

h̃(n − 1)X̃n−1,m+1 +
3n + m − 4
3n + 3m

h̃(n − 1)X̃n−1,m−1

or n large and 0 ≤ m < n2/3−ϵ . Note also that for n large, X̃n,m is negative for n2/3−ϵ
≤ m ≤ n.

sing this and induction, we obtain that

dn,m = Ω

(
h̃(n)max{X̃n,m, 0}

)
or n large and 0 ≤ m ≤ n. Thus,

bn,n = 3nn!d2n,0 = Ω

(
3nn!h̃(2n)Ai

(
a1 + c2−1/3n−1/3))

= Ω

(
3nn!

(
2n∏

ℓ=2

s̃(ℓ)

)
Ai
(
a1 + c2−1/3n−1/3)) ,

2 http://web.math.nctu.edu.tw/mfuchs.
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where the last step follows by iteration. Now, straightforward asymptotic expansion yields
2n∏

ℓ=2

s̃(ℓ) =

2n∏
ℓ=2

(
2 +

22/3a1
32/3ℓ2/3

−
2
3ℓ

−
1

ℓ7/6

)

= 4n exp

{
a1

21/3 · 32/3

2n∑
ℓ=2

ℓ−2/3
− 3−1

2n∑
ℓ=2

ℓ−1
+ O(1)

}
= Ω

(
n−1/3ea1(3n)

1/3
4n
)

nd

Ai
(
a1 + c2−1/3n−1/3)

= c2−1/3Ai′(a1)n−1/3
+ O

(
n−2/3) .

onsequently,

bn,n = Ω

(
n!n−2/3ea1(3n)

1/3
12n

)
. (16)

Next, we use Proposition 5 to show a matching upper bound. Therefore, we again define ĥ(n) =

ˆ(n)ĥ(n − 1) with ĥ(1) = 1. Then, from (15),

ĥ(n)X̂n,m ≥
3n + m − 4
3n + m − 6

ĥ(n − 1)X̂n−1,m+1 +
3n + m − 4
3n + 3m

ĥ(n − 1)X̂n−1,m−1,

or n large enough and 0 ≤ m < n1−ϵ . Now, define a new sequence d̂n,m which satisfies (10) for
≤ m < n1−ϵ and d̂n,m := 0 otherwise. Then, by induction

d̂n,m = O
(
ĥ(n)X̂n,m

)
or n large and 0 ≤ m ≤ n. Thus, with the same arguments as above, we obtain that

d̂2n,0 = O
(
n−2/3ea1(3n)

1/3
4n
)

.

ext, using similar arguments as in [3] (which were based on lattice paths theory), one can show
hat for large n, we have d2n,0 ≤ 2d̂2n,0; see the Appendix for details. Thus,

bn,n = n!3nd2n,0 = O
(
n!n−2/3ea1(3n)

1/3
12n

)
. (17)

Combining (16) and (17) now yields

bn,n = Θ

(
n!n−2/3ea1(3n)

1/3
12n

)
.

Next, from (9),

an−1 = Θ

(
n!n−5/3ea1(3n)

1/3
12n

)
(18)

and finally by Proposition 1 and Proposition 2,

TCn = Θ

(
n!2n−5/3ea1(3n)

1/3
12n

)
from which the claimed result follows by Stirling’s formula. ■

5. Proof of Corollary 1

In this section, we consider tree-child networks with N non-root nodes which are bijectively
labeled, where N is odd (see the remark below Corollary 1).

We start with the following relationship between their number T̂CN and TCn,k.
13



M. Fuchs, G.-R. Yu and L. Zhang European Journal of Combinatorics 93 (2021) 103278

P

N

Lemma 6. We have,

T̂CN =

(N+1)/2∑
n=⌈(N+3)/4⌉

N!

n!
× TCn,(N+1)/2−n. (19)

Proof. This is proved with the following two results from [8].

(i) The number n of leaves, the number k of reticulation nodes, and the number N of non-root
nodes satisfy:

n + k =
N + 1

2
;

see equation (5) in [8] and (2).
(ii) The descendant sets of any two non-root nodes in a tree-child network are distinct; see Lemma

5.1 in [8]. (Here, the descendant set of a node is the set of leaves which are descendant from
the node.)

More precisely, it follows from (ii) that in order to generate all tree-child networks with N labeled
non-root nodes, we can take a tree-child network with n labeled leaves and N non-root nodes,
choose n of the N labels and use them to relabel the leaves such that the order between labels is
preserved, and finally distribute the remaining N −n labels arbitrarily to the non-leaf and non-root
nodes. Here, because of (i), n ranges from ⌈(N+3)/4⌉ to (N+1)/2. Moreover, again by (i), the number
of tree-child networks with n labeled leaves and N non-root nodes is given by TCn,(N+1)/2−n.

This shows the claimed result. ■

Corollary 1 is now a consequence of the following two propositions.

Proposition 6. We have,

T̂CN = Ω

(
N1/12ea1(3N/4)1/3

(
3
e5

)N/4

N5N/4

)
.

roof. Set

ñ =

⌈
N + 3

4

⌉
.

Clearly, we have

T̂CN ≥
N!

ñ!
TCñ,(N+1)/2−ñ.

ote that

TCñ,(N+1)/2−ñ =

{
TCñ,ñ−1, if N ≡ 1 mod 4;
TCñ,ñ−1/2, if N ≡ 3 mod 4,

where the second case follows from 2TCn,n−2 = TCn,n−1 which was proved in [2]. Thus, by
Proposition 2,

T̂CN = Ω (N!añ−1) .

Now using (18), Stirling’s formula and straightforward computation gives the claim. ■

Proposition 7. We have,

T̂CN = O

(
N2e

√
3N/2

(
3
e5

)N/4

N5N/4

)
.

14
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Proof. By plugging (4) into (19), we have

T̂CN ≤ N!

(N+1)/2∑
n=⌈(N+3)/4⌉

TCn,n−1

n!22n−1−(N+1)/2(2n − 1 − (N + 1)/2)!

= N!2(N+3)/2
(N+1)/2∑

n=⌈(N+3)/4⌉

an−1

4n(2n − 1 − (N + 1)/2)!
,

here the last step follows from Proposition 2. Now, from Lemma 5, we have

an−1 = O(n!n−5/212n) (20)

and plugging this into the estimate for T̂CN above, we get

T̂CN = O

⎛⎝N!2N/2N−5/2
(N+1)/2∑

n=⌈(N+3)/4⌉

n!3n

(2n − 1 − (N + 1)/2)!

⎞⎠ .

he terms inside the sum are maximal at

ñ =

⌊
N
4

+
11
8

+

√
12N + 61

8

⌋
.

Thus,

T̂CN = O
(
N!2N/2N−3/2 ñ!3ñ

(2ñ − 1 − (N + 1)/2)!

)
rom which the claim follows by straightforward computation. ■

emark 2. When using (18) instead of (20) and applying the Laplace method (see the next section),
he upper bound in the last lemma can be improved. However, the subexponential large gap
etween the bounds in the last two propositions still remains even with such an improved upper
ound.

. Asymptotic count of 1-component tree-child networks

In this section, we consider 1-component tree-child networks which were defined in [2] as
ollows.

efinition 3. A tree-child network is called 1-component tree-child network if every reticulation
ode is directly followed by a leaf.

Denote by 1-TCn,k the number of 1-component tree-child networks with n leaves and k reticu-
ation nodes and by 1-TCn the number of all 1-component tree-child networks with n leaves. These
umbers have easy, explicit formulas as was shown in Section 4.1 in [2].

heorem 2 ([2]). The number of 1-component tree-child networks with n leaves and k reticulation nodes
s given by

1-TCn,k =

(
n
k

)
(2n − 2)!

2n−1(n − k − 1)!
, (0 ≤ k ≤ n − 1). (21)

onsequently,

1-TCn =

n−1∑
k=0

(
n
k

)
(2n − 2)!

2n−1(n − k − 1)!
.

15
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From the above formula for 1-TCn, we can get the first order asymptotics for this number with
he Laplace method (which is the real-analytic version of the saddle point method); see, e.g., Chapter
in Graham et al. [6].

heorem 3. The number of 1-component tree-child networks with n leaves satisfies

1-TCn ∼
1

2
√
e
n−5/4e2

√
n
(

2
e2

)n

n2n.

emark 3. Comparing with the result for the total number of tree-child networks with n leaves
rom Theorem 1, we see that the main term n2n is the same but the above exponential growth term
s much smaller. Moreover, note that there is again a stretched exponential in the asymptotics.

roof. By Theorem 2,

1-TCn =
n!(2n − 2)!

2n−1

n−1∑
k=0

1
k!(n − k)!(n − k − 1)!

.

tirling’s formula gives

n!(2n − 2)!
2n−1 ∼

√
2πn−1

(
2
e3

)n

n3n. (22)

Thus, we only need the asymptotics of

S :=

n−1∑
k=0

1
k!(n − k)!(n − k − 1)!

hich follows by a standard application of the Laplace method.
First observe that 1/(k!(n − k)!(n − k − 1)!) is increasing for k ≤ n −

√
n + 1 and decreasing for

> n −
√
n + 1. Moreover, by straightforward expansion,

1
k!(n − k)!(n − k − 1)!

=
1

2π
√
2eπ

n−1/2e2
√
n
( e
n

)n
e−x2/

√
n
(
1 + O

(
1 + |x|

√
n

))
,

niformly for |x| ≤ n3/8 where k = n −
√
n + x. Thus,

S ∼
1

2π
√
2eπ

n−1/2e2
√
n
( e
n

)n ∑
−n3/8≤x≤n3/8

e−x2/
√
n
(
1 + O

(
1 + |x|

√
n

))

∼
1

2π
√
2eπ

n−1/2e2
√
n
( e
n

)n ∫ ∞

−∞

e−x2/
√
n
(
1 + O

(
1 + |x|

√
n

))
dx

∼
1

2π
√
2e

n−1/4e2
√
n
( e
n

)n (
1 + O

(
1

√
n

))
,

here we used here standard arguments to justify tail-pruning and attachment; see [6].
Combining this with (22) gives the claimed result. ■

Next, we consider 1-component tree-child networks with all non-root nodes bijectively labeled.
enote by 1-T̂CN their number, where N is the number of non-root nodes. Then, with the same
roof method as in Lemma 6, we have

1-T̂CN =

(N+1)/2∑
n=⌈(N+3)/4⌉

N!

n!
×
(
1-TCn,(N+1)/2−n

)
. (23)

From this, by another application of the Laplace method, we obtain the following result.
16
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Theorem 4. The number of 1-component tree-child networks with all non-root nodes labeled satisfies

1-T̂CN ∼ 29/8e−1/(32)N−7/8e(2N)3/4/2+
√
2N/(16)−3(2N)1/4/(64)

(
1
2e5

)N/4

N5N/4.

Remark 4. Again the main term N5N/4 is the same as in Corollary 1 but the exponential growth
term is different. Also, note that now there are three stretched exponentials in the asymptotics.

Proof. Plugging (21) into (23), we obtain that

1-T̂CN = 2N!

(N+1)/2∑
n=⌈(N+3)/4⌉

(2n − 2)!
((N + 1)/2 − n)!(2n − (N + 1)/2)!(2n − (N + 3)/2)!2n .

hus, the asymptotics will follow from that of

S :=

(N+1)/2∑
n=⌈(N+3)/4⌉

(2n − 2)!
((N + 1)/2 − n)!(2n − (N + 1)/2)!(2n − (N + 3)/2)!2n

hich will be deduced by another application of the Laplace method.
First, observe that the terms of S become maximal at ñ + 1 where ñ is the largest integer such

hat
8(N + 1 − 2ñ)(2ñ − 1)ñ

(N − 4ñ + 1)(N − 4ñ − 1)2(N − 4ñ − 3)
≤ 1.

rom this, by bootstrapping,

ñ =
N
4

+
(2N)3/4

8
+

√
2N
32

−
9(2N)1/4

256
+ O(1).

ow, by a long computation (which is best done with the help of, e.g., Maple):

(2n − 2)!
((N + 1)/2 − n)!(2n − (N + 1)/2)!(2n − (N + 3)/2)!2n

= 2−3/8π−1e−1/(32)N−7/4q(N)
(

1
2e

)N/4

NN/4e−x2N−3/4
(
1 + O

(
1

N1/4 +
x2

N

))
niformly for |x| ≤ n2/5, where

k =
N
4

+
(2N)3/4

8
+

√
2N
32

−
9(2N)1/4

256
+ x

nd

q(N) := e(2N)3/4/2+
√
2N/(16)−3(2N)1/4/(64).

Thus,

S ∼
q(N)

23/8πe1/(32)
N−7/4

(
1
2e

)N/4

NN/4
∫

∞

−∞

e−x2N−3/4
(
1 + O

(
1

N1/4 +
x2

N

))
dx

∼
q(N)

23/8
√

πe1/(32)
N−11/8

(
1
2e

)N/4

NN/4,

here we again used standard arguments.
The claimed result follows now from the above asymptotic of S multiplied with the asymptotic

f 2N!. ■
17
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7. Conclusion

In [8], the authors proved that n2n resp. N5N/4 are the dominating terms in the main asymptotic
rowth term of the number of tree-child networks with n labeled leaves resp. N labeled non-root
odes. Moreover, they asked to find in both cases the exponential growth terms.
In this paper, we answered these questions. Moreover, in the leaf-labeled case, our answer

ives all terms of the main asymptotic growth term up to a constant. Interestingly, this growth
erm contains a stretched exponential. Furthermore, we showed that stretched exponentials are
lso present in the asymptotics of the number of 1-component tree-child networks for both the
eaf-labeled and node-labeled case. These numbers were considerably easier to analyze due to
xplicit formulas from [2]. Using these formulas, we even obtained the first-order asymptotics (and
he method used in this paper would be capable of giving further terms in the asymptotic expansion,
oo).

Several interesting questions remain open. First, can Theorem 1 be improved to a first-order
symptotic result, e.g., is there a constant γ such that

TCn ∼ γ n−2/3ea1(3n)
1/3
(
12
e2

)n

n2n? (24)

In fact, this was also discussed by the authors from [3] for the combinatorial counting problems
in their paper. However, as pointed out in Section 3.4 in [3], the approach from that paper (which
played also a crucial role in the proof of Theorem 1) is incapable of providing such a refinement.
Thus, one needs to come up with a new approach to be able to prove such results. However, note
that such an improved approach, in our situation would ‘‘only’’ give the first-order asymptotics of
an, which is still not enough for a proof of (24) because one in addition would also need to improve
Proposition 1 to a first-order asymptotic result. (Note that the bound in Proposition 1 is already
quite tight since the constant in the upper bound is

√
e = 1.64872 . . . compared to the constant

25/16 = 1.5625 in the lower bound.)
A second interesting question is whether the statement from Corollary 1 for tree-child networks

with all non-root nodes labeled can be improved? Is it possible to find further terms of the main
asymptotic growth term? Are again stretched exponential(s) present?

A final interesting question is whether similar asymptotic results as those from Theorem 1 and
Corollary 1 can also be proved for other classes of phylogenetic networks, in particular for normal
networks? Here, a tree-child network is normal if for each reticulation node neither of its parents
is a child of the other. In fact, in [8], the authors showed that the number of normal networks in
the leaf-labeled resp. node-labeled case has also the terms n2n resp. N5n/4 in their main asymptotic
rowth terms. Moreover, they also showed that the number of normal networks in both cases is a
mall-o of the number of tree-child networks. Again, they asked for the exponential growth rates
in particular whether or not they coincide with the ones for tree-child networks) and we can now
o one step further and ask whether there are also stretched exponentials in the main asymptotic
rowth term of the number of normal networks in the leaf-labeled and node-labeled case? Note
hat our method, rather surprisingly, does not work for the number of normal networks since a
tatement similar to Proposition 1 does not seem to hold. In fact, the data from [10] suggests that
or fixed n, the number of normal networks with n leaves and k reticulation nodes is unimodal in
ontrast to tree-child networks where this sequence grows at least exponentially; compare with
emma 2.
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ppendix

The goal of this appendix is to prove the claimed inequality d2n,0 ≤ 2d̂2n,0 which was stated at
the end of Section 4. As mentioned there, the proof will use lattice paths theory and proceeds as in
Section 4.2 in [3]. In order to avoid repetition, we will only point out differences.

First, from (10), we see that dn,m is the number of weighted lattice paths starting at (0, 0) and
ending at (n,m) with up-steps of the form (1, 1) which when they start at (a, b) have weight
(3a + b)/(3a + 3b + 6) and down-steps of the form (1, −1) which when they start at (a, b) have
weight (3a+ b− 2)/(3a+ b− 4). Each lattice path is counted with its weight which is the product
of all weights of its up-steps and down-steps.

Define pℓ,m,2n to be the number of lattice paths of the above type which start at (ℓ,m) and end
at (2n, 0). Note that this number satisfies the recurrence

pℓ,m,2n =
3ℓ + m

3ℓ + 3m + 6
pℓ+1,m+1,2n +

3ℓ + m − 2
3ℓ + m − 4

pℓ+1,m−1,2n (ℓ,m ≥ 0) (25)

with initial conditions pℓ,−1,2n = 0 and p2n,m,2n = 0 for m ≥ 1 and p2n,0,2n = 1.
A crucial step in the proof of the corresponding inequality to the one above in Section 4.2 of [3]

was Lemma 4.5 which in our situation reads as follows.

Lemma 7. We have,
pℓ,j,2n

(j + 1)2
≥

pℓ,k,2n

(k + 1)2
,

here 0 ≤ j < k ≤ ℓ ≤ 2n and 2|k − j.

Proof. First note that it is sufficient to prove that
pℓ,m−1,2n

m2 −
pℓ,m+1,2n

(m + 2)2
≥ 0 (26)

for all 1 ≤ m ≤ ℓ − 1 ≤ 2n − 1. We do this by reverse induction on ℓ and using (25).
For ℓ = 2n the claim is trivial. So, assume that it holds for ℓ+1 and all m. We are going to prove

t for ℓ and all m.
In order to do so, we plug (25) into (26) which gives

L :=
(3ℓ + m − 1)pℓ+1,m,2n

(3ℓ + 3m + 3)m2 +
(3ℓ + m − 3)pℓ+1,m−2,2n

(3ℓ + m − 5)m2

−
(3ℓ + m + 1)pℓ+1,m+2,2n

(3ℓ + 3m + 9)(m + 2)2
−

(3ℓ + m − 1)pℓ+1,m,2n

(3ℓ + m − 3)(m + 2)2
.

ow, from the induction hypothesis, we have

pℓ+1,m−2,2n ≥
(m − 1)2pℓ+1,m,2n

(m + 1)2
and pℓ+1,m+2,2n ≤

(m + 3)2pℓ+1,m,2n

(m + 1)2
.

lugging this into L and re-arranging the obtained expression gives

L ≥
4(p1(m)ℓ4 + p2(m)ℓ3 + p3(m)ℓ2 + p4(m)ℓ + p5(m))pℓ+1,m,2n

3(ℓ + m + 3)(ℓ + m + 1)(3ℓ + m − 3)(3ℓ + m − 5)(m + 2)2(m + 1)2m2 ,

here

p1(m) = 54m + 54;

p (m) = 9m4
+ 36m3

+ 117m2
+ 72m + 54;
2
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f
c

p3(m) = 6m5
− 24m4

− 204m3
− 474m2

− 414m − 282;

p4(m) = m6
− 16m5

− 36m4
+ 180m3

+ 537m2
+ 380m + 138;

p5(m) = 20m5
+ 84m4

+ 24m3
− 184m2

− 108m + 36.

By computing all roots of these five polynomials (for instance with Maple), we see that pi(m) ≥ 0
or 1 ≤ i ≤ 5 and all m ≥ 18 and consequently, L ≥ 0 for 18 ≤ m ≤ ℓ − 1. As for the remaining 17
ases of m, again it can be checked by Maple that

p1(m)ℓ4 + p2(m)ℓ3 + p3(m)ℓ2 + p4(m)ℓ + p5(m) ≥ 0

for m = 1, . . . , 17 and ℓ ≥ m + 1.
Overall, we have L ≥ 0 for 1 ≤ m ≤ ℓ − 1 which is the desired result. ■

The rest of the proof of the inequality dn,m ≤ 2d̂n,m proceeds now exactly as in Section 4.2 in [3]
with the only difference that the bound

d2n,2m ≤

(
2n

n + m

)
,

which was used in the proof in Section 4.2 of [3], where it followed from the fact that all weights are
≤ 1, holds here despite the weight of down-steps being slightly larger than 1. Indeed, by combining
corresponding up-steps and down-steps, it is easy to see that the multiplied weight of such pairs
of steps is ≤ 1. We leave the (easy) computation to the reader.
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