
Solving High-Dimensional Nonlinear
Equations with Infinite Solutions
by the SVM Visualization Method

Yu-Yuan Lin and Jeng-Nan Tzeng(B)

National Chengchi University, No. 64, Sec. 2, ZhiNan Road, Wenshan District,

Taipei City 16302, Taiwan R.O.C.

Abstract. There are many standard mathematical methods for solv-
ing nonlinear equations. But when it comes to equations with infinite
solutions in high dimension, the results from current methods are quite
limited. Usually these methods apply to differentiable functions only and
have to satisfy some conditions to converge during the iteration. Even if
they converge, only one single root is found at a time. However, using the
features of SVM, we present a simple fast method which could tell the
distribution of these infinite solutions and is capable of finding approxi-
mation of the roots with accuracy up to at least 10−12. In the same time,
we could also have a visual understanding about these solutions.

Keywords: High-dimensional nonlinear equations · Infinite solutions ·
SVM

1 Introduction

In physics, chemistry and engineering, many problems appear in the form of
nonlinear equations. Using numerical methods, the solutions can be computed
to a desired degree of accuracy.

For equations with one variable, we already have many tools to obtain the
approximation of roots. For example, two-point bracketing method like bisection
method [1] and false position method (or Regula falsi) [2]. Also we have Fixed-
point iteration [1] and its improved version Wegstein’s method [3,4]. The most
famous is Newton’s method which can be seen as a special case of fixed-point
iteration. Newton’s method has many extensions and variations. Secant method
[5] and Steffensen’s method [6,7] both replace the derivative in Newton’s method
by the slope of secant line. And Halley’s method [8,9] uses second order of Taylor
series instead of first order linear approximation in Newton’s method.

For nonlinear equations involve several variables, we don’t have much refer-
ence. In [10], Yuri Levin and Adi BenIsrael introduce directional Newton method
for differentiable f : Rn → R with conditions for direction vectors, gradient of
f , and second derivative (Hessian matrix) of f to reach quadratic convergence.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
K. Arai (Ed.): Intelligent Computing, LNNS 283, pp. 218–231, 2022.
https://doi.org/10.1007/978-3-030-80119-9_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-80119-9_11&domain=pdf
https://doi.org/10.1007/978-3-030-80119-9_11


Solving Nonlinear Equations 219

In [11], HengBin An and ZhongZhi Bai present directional secant method, a
variant of directional Newton method, which also reaches quadratic convergence
under suitable assumptions and has better numerical performance.

In [12], HengBin An and ZhongZhi Bai give Broyden method for nonlinear
equation in several variables, a modification of the classical Broyden method: for
f(x) = 0 where f : Rn → R

n is differentiable, the classical Broyden method can
be described as follows: given initial value x0 ∈ R

n, initial matrix A0 ∈ R
n×n,

and tolerance ε. Set k = 0. If ‖ f(xk) ‖> ε, then

1. sk = −A−1
k f(xk)

2. xk+1 = xk + sk

3. yk = f(xk+1) − f(xk)
4. Ak+1 = Ak + (yk−Aks

k)(sk)T

(sk)T sk
= Ak + f(xk+1)(sk)T

(sk)T sk

5. k := k + 1

where Ak is an approximation of the Jacobi matrix of f at xk. In one dimen-
sion, it is simply secant method since Ak+1s

k = yk. Now apply the above to
f(x) = 0 where f : Rn → R. Given initial value x0 ∈ R

n, initial matrix AT
0 ∈ R

n,
and tolerance ε. Set k = 0. If |f(xk)| > ε, then we have

1. sk = −A†
kf(xk)

2. xk+1 = xk + sk

3. yk = f(xk+1) − f(xk)
4. Ak+1 = Ak + (yk−Aks

k)(sk)T

(sk)T sk
= Ak + f(xk+1)(sk)T

(sk)T sk

5. k := k + 1

where A†
k is the Moore-Penrose inverse of Ak. By A†

k = AT
k

‖Ak‖2 and AkA
†
k = 1,

through some simplifications of the recursive process, [12] rewrites the above in
a more concise way: given initial value x0 ∈ R

n, initial matrix AT
0 ∈ R

n, and
tolerance ε. Set Δ0 = −f(x0) and k = 0. If |f(xk)| > ε, then

1. xk+1 = xk + ΔkA
†
0

2. yk = f(xk+1) − f(xk)
3. Δk+1 = f(xk+1)

yk Δk

4. k := k + 1

which is the final form of Broyden method. Under suitable assumptions,
Broyden method is locally super-linearly convergent and semi-locally conver-
gent. Compared to directional Newton method and directional secant method,
numerical experiments show that Broyden method is more efficient and the dif-
ference is significant especially in high dimension or the initial point is not ideal.
This shows the superiority of Broyden method.

Later in Sect. 2, we will give an overview of Monte Carlo method and Support
Vector Machine (SVM), after that illustrate our new method. And then in Sect. 3,
we will apply the new method to some examples to see its performance and
limitations. Finally in Sect. 4, we will summarize the results in Sect. 3 and draw
a conclusion about the pros and cons of the new method.



220 Y.-Y. Lin and J.-N. Tzeng

2 Methodology

The above methods for solving nonlinear equations usually need the assumption
that f is differentiable. Hence they can’t be applied to functions which don’t
satisfy the condition. Moreover, during the iterative process, when we need to
compute gradient or difference quotient, it could be complicated, time consuming
or even unable to calculate. Sometimes it is also tricky to find a suitable initial
point and direction vector. For example, consider this quite simple equation:
f(x, y) = x2 + y2 − 1 = 0. First we randomly choose an initial value x0 = [1, 1]
and initial matrix AT

0 = [2, 2]. Then apply the Broyden method with tolerance
10−3 as showed in Table 1:

Table 1. The broyden method.

x0 = [1, 1] and AT
0 = [2, 2]

xk Function value

x1 = [0.750.75] 0.125

x2 = [0.785714290.78571429] 0.23469387755102034

x3 = [0.862126250.86212625] 0.48652332755709105

...

x20 = [2106.503718872106.50371887] 8874714.835218174

We can see that this combination fails, so does x0 = [1, 1] and AT
0 = [−2,−2].

A successful try is x0 = [1, 1] and AT
0 = [1, 0]. But even we succeed, every time

we apply those methods to our target, only one single root is found. It is not
efficient to deal with infinite solutions. And we don’t have a whole picture of
our solutions. To avoid the above disadvantages, we try a new method which
combines Monte Carlo method and Support Vector Machine(SVM) to find roots.

The basic concept of Monte Carlo method is using repeated random sam-
pling and statistical analysis to obtain numerical results. It is often used in
the fields of physics and mathematics. One main usage is simulating systems
with randomness or modeling phenomena with significant uncertainty. Another
usage is transforming the solution of unsolved problem to a parameter (such
as expectation) of some kind of random distribution. In mathematics, the most
common application of Monte Carlo method is in integration and optimization.
Especially when the number of function evaluations grows exponentially in high
dimensions. It is useful and powerful for obtaining numerical solutions to prob-
lems too complicated to solve analytically.

Support vector machine(SVM) is a supervised learning model for classifica-
tion and regression analysis in machine learning. Basically, it is a binary linear
classifier. First we give a set of training data to the model. These data are
already marked as belonging to one category or the other according to some
valued features. Then SVM model “learns” how to classify from these train-
ing data by creating a hyper plane in the feature space. With the hyper plane,



Solving Nonlinear Equations 221

the rules of classification it learned, SVM model can assign new data to one
of the two categories. In addition to linear classification, using the skill called
“kernel trick”, SVM is capable of performing nonlinear classification. The way
it works is mapping featured data into a higher dimension space to apply a
linear classification. We can also apply SVM to multiclass problems by distin-
guish between one category and the rest(one-versus-all) or between every pair
of categories(one-versus-one).

Now we introduce another method for solving nonlinear equations of several
variables. Suppose f : D ⊆ R

n → R is continuous. First we choose a desired
region in the domain and randomly select sample points in the region. As to
region we refer to a rectangle in two dimensional space, a cuboid in three dimen-
sional space, etc. Compute the function values of these sample points. If we get
only positive or negative values, then chances are high that there is no root in
this region unless the number of sample points is too small. Now consider the
case that we’ve got both positive and negative function values. Here these sample
points are like training data with n features, and SVM model classifies them into
two classes according to the sign of their function values. Now with the trained
SVM model, the hyper plane could be seen as a rough approximation of the roots.
Also we have a number of support vectors in each class. These support vectors are
supposed to be “close” to the roots in the region. Then we randomly select the
same number of sample support vectors in each class and make them into pairs.
From every pair we can obtain a “hyper cuboid” by letting each coordinate of
the 2n vertices to be the minimum or maximum in each dimension of the paired
support vectors. Take n = 2 for example, suppose (a, b) and (c, d) are paired
support vectors from different classes, then we can obtain a hyper cuboid (here
it is only a rectangle) with the following four vertices: (min{a, c},min{b, d}),
(max{a, c},min{b, d}), (max{a, c},max{b, d}) and (min{a, c},max{b, d}). Now,
to decide which hyper cuboid leads to a better opportunity for finding roots, we
consider the following factors:

– Let r1 be the volumetric ratio of the hyper cuboid to the region. We expect
small r1.

– Let n1 and n2 be the numbers of support vectors of the two classes in the
hyper cuboid respectively. Let r2 = max{n1,n2}

min{n1,n2} . We expect small r2.
– Let d = n1+n2

volumn of the hyper cuboid be the density of support vectors in the hyper
cuboid. We expect large d.

Consider the value r1 + r2 + 1
d of each hyper cuboid. The smaller it is, the

higher probability that we could find roots in this hyper cuboid. So we can choose
several candidates to continue. Or we could choose the hyper cuboid with the
smallest value to be the new region in the next iteration. And it’s center point
is an approximation of a root in this iteration. Continue the process, we can
shrink the hyper cuboid and improve our approximation of root until it satisfies
demanded accuracy.



222 Y.-Y. Lin and J.-N. Tzeng

3 Examples

Now we apply the method in Sect. 2 with Python programming codes to some
examples and see how it works. The equipment we use is a laptop with Intel(R)
Core(TM) i5-8265U CPU 1.60 GHz up to 1.80 GHz and RAM 8.00 GB.

Example 1. f(x, y) =
√

x2 + y2 − 1 + ln(4 − x2 − y2)

Fig. 1. Graph of Example 1.

The graph of f is presented in Fig. 1. The roots of f on xy plane is similar
to a circle with radius a little less than 2. Now we use Python code to find roots
in [1, 3]× [−1, 1] with 1000 sample points in each iteration and with tolerance of
diagonal of the rectangle 10−12. Test results are presented in the order of approx-
imation of a root, function value of the approximation, number of iterations, and
time of operations.

Table 2. Test results of Example 1 with python code.

Approximation Function value Number Time

(1.8393485316192288, 0.6556725842999632) −5.114131340633321e–12 27 0.484375

(1.8404225031688544, −0.6526519504314735) −4.672262576832509e–12 33 0.59375

(1.941254269782079, 0.21128515949820706) 2.9465319073551655e–13 41 0.71875

(1.7597515054678885, −0.8463948236929669) 3.2591707110896095e–12 32 0.453125

(1.8555758543841576, −0.6082333492989722) −7.824629832953178e–12 32 0.515625

(1.9291048578468786, −0.3027606414355924) 2.4069635173873394e–12 39 0.640625

(1.8859593483090873, −0.5062281057965792) −7.256639733554948e–12 37 0.625

(1.8806978984805065, 0.5254378871203835) 4.381828233590568e-12 37 0.703125

ValueError: The number of classes has to be greater than one; got 1 class

(1.8191277005208264, −0.7098478483235422) −1.8112178423734804e–12 38 0.546875



Solving Nonlinear Equations 223

Table 2 shows that out of 10 test results, we have found 9 roots (approxima-
tions). Each root takes less than 1 s. And we have one “ValueError: The number
of classes has to be greater than one; got 1 class”. That means during the pro-
cess of iteration, function values of sample points in the rectangle have the same
sign. If we draw these roots in Table 2 on xy plane, we may obtain a very rough
contour of the roots in [1, 3] × [−1, 1] as showed in Fig. 2.

Fig. 2. Roots founded by python code.

Example 2. f(x, y) = x2 − 2y2 + xy − 30 sin(x + y) + 20 cos xy

The graph and roots of f around the origin are presented in Fig. 3(a) and
Fig. 3(b) respectively. Similarly, in example 2 we also use Python code to find
roots in [−1, 1] × [−1, 1] with 1000 sample points in each iteration and with
tolerance of diagonal of the rectangle 10−12. Test results are as follows in Table 3.

(a) Graph of the Function (b) Roots on xy Plane

Fig. 3. Graph of Example 2.



224 Y.-Y. Lin and J.-N. Tzeng

Table 3. Test results of Example 2 with python code in [−1, 1] × [−1, 1].

Approximation Function value Number Time

(0.46993790636813626, 0.2622453677771487) −1.7763568394002505e–14 33 0.65625

(0.7684688297613869, −0.012505477809996928) 3.5136338283336954e–12 40 0.484375

(0.22176752901561408, 0.48857630079124126) −9.78772618509538e–12 30 0.46875

IndexError: index 0 is out of bounds for axis 0 with size 0

(−0.005547432373856567, 0.6929394537660047) −2.9096725029376103e–12 46 0.8125

(0.5621218361256275, 0.17890958192506992) 3.7196912217041245e–12 37 0.703125

(−0.25695433093787506, 0.8894629520497923) 7.059242079776595e–12 32 0.5

(0.8050933184240345, −0.04871131491812492) −7.226219622680219e–12 35 0.578125

(0.42833405733942814, 0.29992808858241676) 1.0043521569969016e–11 25 0.359375

(0.46601152390386, 0.265797865621633) 4.764189043271472e–12 32 0.65625

One of the test results in Table 3 is “IndexError: index 0 is out of bounds
for axis 0 with size 0”, that means the code can’t find the most recommended
rectangle during the iterations.

When we zoom out to see function f(x, y) = x2 − 2y2 + xy − 30 sin(x + y) +
20 cos(xy), its graph on xy plane behaves like a hyperbola, see Fig. 4 (a). If we
try to find roots in regions that contain no root, we will get “ValueError: The
number of classes has to be greater than one; got 1 class”. Now we try to find
roots in regions away from the origin, say [50, 51]× [50, 51], see Fig. 4 (b). Table 4
is the test results.

(a) Roots in [−60, 60]× [−60, 60] (b) Roots in [50, 51]× [50, 51]

Fig. 4. Roots of Example 2 in different scales.

Compare Table 4 with Table 3, the accuracy of function values apparently is
worse in Table 4 than in Table 3. If we raise the standard of tolerance, Python
code even fails in [50, 51]× [50, 51], see Table 5 where the tolerance of diagonal of
the rectangle is 10−15 and ii in the table represents the maximal value allowed
in number of iterations.



Solving Nonlinear Equations 225

Table 4. Test results of Example 2 with python code in [50, 51] × [50, 51].

Approximation Function value Number Time

(50.37108241597812, 50.30605405694342) 7.59312612785834e–11 36 0.734375

IndexError: index 0 is out of bounds for axis 0 with size 0

(50.216759062176685, 50.209210588582806) 4.789209029354424e–10 25 0.484375

(50.91835623563183, 50.67395719627402) 3.6215297427588666e–10 33 0.484375

(50.08210621719444, 50.15376290895588) 3.0322144795036365e–10 32 0.53125

(50.493655231184896, 50.352278685604674) 9.49995637711254e–11 32 0.5

(50.76882719293579, 50.64478487427914) 2.929940734475167e–10 29 0.5625

(50.060893746994225, 50.18334780684751) 1.6474643871333683e–10 32 0.53125

(50.56335822951033, 50.48002788886255) −9.930056776852325e–11 41 0.65625

(50.04464454039062, 50.12500465230691) 4.3338976851714506e–10 40 0.546875

Table 5. Raise the standard of tolerance.

Approximation Function value Number Time

Code 1: root(f, −1, 1, −1, 1, 1000, tol = 10**(−15)), ii=100

(0.7461596882606241, 0.009033344195159302) 3.552713678800501e–15 41 0.578125

(0.2376360543484806, 0.4740324090606552) 0.0 34 0.546875

(0.39138819644970957, 0.3334828756138792) 3.552713678800501e–15 42 0.671875

(0.8130843644528254, −0.056777966137313576) 7.105427357601002e–15 52 0.78125

ValueError: The number of classes has to be greater than one; got 1 class

Code 1: root (f, 50, 51, 50, 51, 1000,tol=10**(−15)), ii=100

(50.6987226809441, 50.52614710988952) 5.950795411990839e–14 101 2.078125

(50.3123398028162, 50.34944789599142) 7.105427357601002e–13 101 2.234375

(50.29289226163097, 50.258444639339814) −8.219203095904959e–12 101 1.953125

(50.25733872551366, 50.21940854261966) 2.327027459614328e–12 101 1.9375

(50.204504343031914, 50.29298780543669) −7.545963853772264e-12 101 2.03125

Code 1: root (f, 50, 51, 50, 51, 1000, tol =10**(−15)), ii=1000

(50.31353419225536, 50.295244027029945) 8.739675649849232e–13 1001 21.921875

ValueError: The number of classes has to be greater than one; got 1 class

(50.842699814232994, 50.628859347893254) 6.235012506294879e–13 1001 21.640625

(50.71581863271457, 50.680914087131555) −8.562039965909207e–13 1001 22.21875

(50.89625216670158, 50.76244021179818) −6.986411449361185e–12 1001 21.90625

Code 1: root (f, 50, 51, 50, 51, 1000, tol = 10**(−15)), ii=5000

(50.735470991990084, 50.62593175023604) 3.984368390774762e–12 5001 126.84375

IndexError: index 0 is out of bounds for axis 0 with size 0

(50.297804446513624, 50.254821899553995) 4.4364512064021255e–12 5001 127.078125

(50.30503027546648, 50.30686591842504) 8.107736704232593e–12 5001 128.3125

(50.762567213039844, 50.589032786249454) 5.153211191100127e–12 5001 129.90625

From Table 5, we can see that in region [50, 51] × [50, 51], even if we allow
number of iterations up to 5000 times, Python code still failed to obtain an
approximation of root that satisfies the required tolerance and the accuracy of



226 Y.-Y. Lin and J.-N. Tzeng

function value doesn’t improve along with the increase in number of iterations.
The reason is that sine and cosine function in Python are approximated by
series of polynomials and rounding errors will accumulate when independent
variables are away from the origin. To avoid this, we can translate the graph so
that the independent variables are near the origin. For example, let g(x, y) =
f(x + 50, y + 50) and use the periodic property of sine and cosine function,
we have g(x, y) = x2 + xy − 2y2 + 150x − 150y − 30 sin(x + y + 100 − 32π) +
20 cos((x+50)(y+50)−796π). Then apply Python code to g in [0, 1]× [0, 1] with
tolerance of diagonal of the rectangle 10−15, see Table 6. After that we move our
approximations of roots back to [50, 51] × [50, 51] and compute their function
values, see Table 7.

Table 6. Test results of g with python code in [0, 1] × [0, 1].

Approximation Function value Number Time

(0.46818599428272567, 0.38802043952474363) 3.952393967665557e–14 45 1.0625

(0.4462804306335044, 0.41798056459405625) −2.9309887850104133e–13 37 0.8125

(0.4691852199445329, 0.38665487925191777) 2.7533531010703882e–14 41 0.859375

(0.5605807588099267, 0.48208915471610153) −5.380584866543359e–12 55 1.046875

(0.2017860554505237, 0.2971099319591042) −5.5209170568559784e–12 42 0.6875

(0.37514876948450493, 0.3632664037200196) −4.413358567489922e–12 45 1.078125

(0.6542098954593933, 0.5872723444048912) 2.76578759894619e–12 44 0.8125

(0.12206118061828386, 0.09784852619758204) 5.53157519789238e–12 44 0.71875

ValueError: The number of classes has to be greater than one; got 1 class

(0.7855399066982386, 0.7079424206421457) −5.346834086594754e–12 47 0.875

Table 7. Approximations of roots of f in [50, 51] × [50, 51].

Approximation of root Function value

(50.46818599428272567, 50.38802043952474363) 1.354028000832841e–12

(50.4462804306335044, 50.41798056459405625) 1.91491267287347e–12

(50.4691852199445329, 50.38665487925191777) 1.0031975250512914e–11

(50.5605807588099267, 50.48208915471610153) 2.831068712794149e–12

(50.2017860554505237, 50.2971099319591042) 1.950439809661475e–12

(50.37514876948450493, 50.3632664037200196) −2.568611989772762e–12

(50.6542098954593933, 50.5872723444048912) 3.382183422218077e–12

(50.12206118061828386, 50.09784852619758204) −1.6697754290362354e–13

ValueError: The number of classes has to be greater than one; got 1 class

(50.7855399066982386, 50.7079424206421457) 2.8919089345436078e–12



Solving Nonlinear Equations 227

Example 3. f(x, y) = cos y+1
y−sinx

By function formula, we know the roots are points on xy plane with y-
coordinate equals to (2k + 1)π where k ∈ Z. However, points around the roots
belong to the same side of xy plane, see Fig. 5(b). Therefore, when we apply
Python code to this function, it fails and we’ll get “ValueError: The number
of classes has to be greater than one; got 1 class”. Moreover, for this function,
on regions that contain discontinuous points, Python code may still return an
answer, but it’s not a root. For example, one test result of Python code is the
approximation of root (0.5584914658730595, 0.5299074807530488), but it’s func-
tion value is 17034614928732.754, obviously not a root of f(x) = 0.

(a) Graph of the Function (b) Projection on yz Plane

Fig. 5. Graph of example 3.

Example 4. f : Rm → R defined by f(x) =
∑m

i=1 xi exp(1 − x2
i ) where x =

(x1, x2, ..., xm)

Apparently, the origin

m
︷ ︸︸ ︷
(0, 0, ..., 0) is a root of f(x) = 0. First, we apply Python

code to find roots in

10
︷ ︸︸ ︷
[−0.9, 1] × [−0.9, 1] × · · · × [0.9, 1] with 250 samples points

in each iteration and with tolerance of diagonal of the hyper cuboid 10−12. Here
is the first test result:

– The approximation of root :
( 1.2844263924027142e–15, 7.711984581422935e–14, 9.976145297340012e–14,
−1.0961014831765263e–14, −1.120713405053965e–14, 3.436442229894976e–14,
−8.308598458235813e–14, −9.737252214208976e–14, −1.9765518862372757e–
14, −3.7386907986968744e–14 )

– Function value of the approximation: −1.2843592136232755e–13
– Number of iterations: 310
– Time of operations: 3.328125 s.

In Table 8, we only list the last three items of outputs since all approximations
of roots suggest the origin.



228 Y.-Y. Lin and J.-N. Tzeng

Table 8. Test results of example 4 with python code.

Function value Number Time

1.3779698843748291e–14 292 3.15625

−1.332515734999162e–14 317 3.40625

1.1987897774143587e–13 322 3.4375

−8.386255861714453e–14 310 3.34375

−1.0989147744968376e–13 332 3.515625

−2.0372613787811113e–13 318 3.40625

4.910130259939433e–14 305 3.359375

2.8895734888874934e–13 305 3.265625

−1.2903165704502644e–13 300 3.265625

Next, we apply Python code in

m
︷ ︸︸ ︷
[−0.9, 1] × [−0.9, 1] × · · · × [0.9, 1] with

dimension m = 15, 20, 25, 30, 35, 40. Table 9 list one test result of each dimension.
Since all test results indicate the same root: the origin, we still only present the
last three items of the outputs.

Table 9. One test result in different dimensions.

Dimension Function value Number Time

15 −1.1705003069935705e–13 471 7.65625

20 −2.1807932674276025e–13 618 13.109375

25 −8.214164474230035e–14 767 19.71875

30 1.7075573329547067e–13 899 28.546875

35 −4.4167018237416875e–14 1063 38.828125

40 −1.7446726440345464e–14 1184 51.265625

In Table 9, time of operations increases to over 50 s when dimension comes to
40. If we want to decrease operation time, we may shrink the region and adjust
number of sample points. Now for each dimension m = 10, 15, 20, 25, 30, 35, 40,
we take 10 consecutive test results and compute the average and standard devi-
ation of operation time, see Table 10. Also we can find a quadratic function to
fit these data points as in Fig. 6.



Solving Nonlinear Equations 229

Table 10. The statistics of operation time of 10 consecutive test results in different
dimensions.

Dimension Average of operation time SD of operation time

10 3.35 0.10

15 7.52 0.22

20 13.08 0.41

25 19.72 0.38

30 28.41 0.61

35 38.66 1.58

40 50.82 1.71

Fig. 6. Dimension and operation time.

4 Conclusion

We propose a new method which combines Monte Carlo method and Support
Vector Machine(SVM) to solve nonlinear equations of several variables. The new
method has the following advantages:

– It only requires function to be continuous, not necessarily differentiable.
– It needs neither to compute gradient or difference quotient nor to find a proper

initial value and direction vector.



230 Y.-Y. Lin and J.-N. Tzeng

– For designated region in the domain, it can tell if there are roots in this
region as long as we throw enough sample points. And it can give several
recommended smaller regions that contain roots and continue to improve the
accuracy of roots.

– We can cut the region into partition and work in parallel. This could raise
efficiency and save time.

– Even if it doesn’t achieve the desired accuracy in regions away from the origin
because it takes too many iterations or too much operation time, we still have
pretty good approximations of roots.

– Operation time is not exponentially increasing along with the increase of
dimension.

However, the method also has some disadvantages:

– It can’t deal with multiple roots of even multiplicity.
– For regions contain infinitely many roots, it can’t find all roots since it ran-

domly takes sample points in the region.
– In high dimensions, it’ll take time to determine suitable number of sample

points to have better performance in operation time.

There are still some aspects that can be improved. For example, when we
select the next smaller region to continue the iteration, we may change the weigh
of each factor to raise the efficiency, or maybe there are better filters to decide
the next smaller region. Moreover, the Python code we use now in dimension m

(greater than 2) is designed to find roots in hyper cubic

m
︷ ︸︸ ︷
[a, b] × [a, b] × · · · × [a, b].

The following step could be applying the method to more high-dimensional
examples in arbitrary region to see its performance.

References

1. Radi, B., El Hami, A.: Advanced Numerical Methods with Matlab 2 Resolution
of Nonlinear. Differential and Partial Differential Equations. John Wiley & Sons,
Incorporated (2018)

2. Wall, D.D.: The order of an iteration formula. Math. Comput. 10(55), 167–168
(1956). https://doi.org/10.1090/s0025-5718-1956-0080981-0

3. Wegstein, J.H.: Accelerating convergence of iterative processes. Comm. ACM 1(6),
9–13 (1958). https://doi.org/10.1145/368861.368871

4. Gutzler, C.H.: An iterative method of Wegstein for solving simultaneous nonlinear
equations. (1959)

5. Ezquerro, J.A., Grau, A., Grau-Sánchez, M., Hernández, M.A., Noguera, M.:
Analysing the efficiency of some modifications of the secant method. Comput.
Math. Appl. 64(6), 2066–2073 (2012). https://doi.org/10.1016/j.camwa.2012.03.
105

6. Liu, G., Nie, C., Lei, J.: A novel iterative method for nonlinear equations. IAENG
Int. J. Appl. Math. 48, 44–448 (2018)

7. Kumar, M., Singh, A.K., Srivastava, A.: Various newtontype iterative methods for
solving nonlinear equations. J. Egypt. Math. Soc. 21(3), 334–339 (2013). https://
doi.org/10.1016/j.joems.2013.03.001

https://doi.org/10.1090/s0025-5718-1956-0080981-0
https://doi.org/10.1145/368861.368871
https://doi.org/10.1016/j.camwa.2012.03.105
https://doi.org/10.1016/j.camwa.2012.03.105
https://doi.org/10.1016/j.joems.2013.03.001
https://doi.org/10.1016/j.joems.2013.03.001


Solving Nonlinear Equations 231

8. Alefeld, G.: On the convergence of Halley’s method. Am. Math. Mon. 88(7), 530
(1981). https://doi.org/10.2307/2321760

9. George, H.: Brown: on Halley’s variation of newton’s method. Am. Math. Mon.
84(9), 726 (1977). https://doi.org/10.2307/2321256

10. Levin, Y., Ben-Israel, A.: Directional Newton methods in n variables. Math. Com-
put. 71(237), 251–263 (2001). https://doi.org/10.1090/s0025-5718-01-01332-1

11. An, H.-B., Bai, Z.-Z.: Directional secant method for nonlinear equations. J. Com-
put. Appl. Math. 175(2), 291–304 (2005). https://doi.org/10.1016/j.cam.2004.05.
013

12. An, H.-B., Bai, Z.-Z.: Math. Num. Sin. 26(4), 385–400 (2004)

https://doi.org/10.2307/2321760
https://doi.org/10.2307/2321256
https://doi.org/10.1090/s0025-5718-01-01332-1
https://doi.org/10.1016/j.cam.2004.05.013
https://doi.org/10.1016/j.cam.2004.05.013

	Solving High-Dimensional Nonlinear Equations with Infinite Solutions by the SVM Visualization Method
	1 Introduction
	2 Methodology
	3 Examples
	4 Conclusion
	References




