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A B S T R A C T   

This study integrates payment schemes and inventory decisions under sustainability issues. In view of legislation 
to reduce carbon emissions, the aim of the paper is to gain insights into how payment options affect inventory 
decisions for perishable products under the widely-used carbon tax regulation. Precisely, this paper establishes 
an inventory replenishment model from the buyer’s perspective in which: (a) the buyer is charged for each unit 
carbon emissions with a constant tax rate (i.e., carbon-tax regulation) (b) the seller offers one of three commonly- 
used payment schemes (i.e., advance payment, cash payment, and credit payment), and (c) the product gradually 
degrades with time and cannot be sold after its expiration date (or sell-by date). Then, the existence and 
uniqueness of the optimal solution under each payment term is proven, which simplifies the search for the global 
solution to a local minimum. Finally, numerical experiments are conducted and the results among those three 
payment schemes are compared in order to answer the following two major questions: How does the payment 
scheme affect carbon emissions? Which payment scheme is the least expensive for the buyer, when carbon taxes 
are charged? Computational results provide evidences that the advance payment in companion with price dis-
count is the least costly for the buyer but leads to highest carbon emissions per unit time among all three 
payment schemes. On the other hand, the credit payment is the best of all three payment schemes to curb carbon 
emissions and thus protect the climate and environment.   

1. Introduction 

Both sellers and buyers use a variety of payment terms to settle their 
business transactions of goods and services. In general, there are three 
commonly-used payment terms: (1) cash in advance in which the buyer 
pays the seller the total purchase cost prior to delivery (i.e., advance 
payment), (2) cash on delivery in which the buyer pays off the total 
purchase cost upon receiving goods or services (i.e., cash payment), and 
(3) permissible delay in payment in which the seller grants a short-term 
interest-free loan to the buyer (i.e., credit payment). 

In the Inventory literature, Harris (1913) adopted a cash payment to 

develop the traditional economic order quantity (EOQ) model. Feng 
et al. (2017) then explored this cash-on-delivery (COD) model for 
perishable goods when demand rate depends on selling price, displayed 
stocks, and expiration date. Currently, Chen (2018) discussed produc-
tion and inventory decisions with a cash payment for a 
single-manufacturer multi-retailer system of perishable products. Goyal 
(1985) established an EOQ model where the seller grants a credit pay-
ment. Wu et al. (2014b) further investigated the optimal ordering policy 
with price and stock sensitive demand under an upstream credit pay-
ment. Zhang (1996) built an optimal payment scheme to pay for 
small-amount bills in advance in order to save time and money. Teng 
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et al. (2016) expanded this advance payment to perishable products 
with expiration dates. Teng (2009) used a cash-credit payment (i.e., 
some in cash and the remainder in credit) to reduce default risks with 
credit-risk customers. Wu et al. (2016) further expanded this down-
stream partial trade credit to perishable items with maximum life time. 
Taleizadeh (2014) proposed an EOQ model with an advance-cash pay-
ment (i.e., some in advance and the remainder in cash) for evaporating 
items. Concurrently, Zhang et al. (2014) set up an EOQ model where the 
seller offers a price discount with an advance-credit payment (i.e., some 
in advance and the remainder in credit). Recently, Li et al. (2017), Wu 
et al. (2018a), as well as Chang et al. (2019) generalized all of the 
models mentioned above to explore an advance-cash-credit (ACC) pay-
ment (i.e., some in advance, some as cash-on-delivery, and the 
remainder in credit). 

It is evident that the degrading or deterioration rate of a perishable 
product gradually increases with time and reaches 100% at its expira-
tion date (or sell-by date). Conversely, the demand rate for a perishable 
item is gradually decreasing over time and near zero when the product 
reaches its expiration date because the product is no longer fresh and 
cannot be sold after its expiration date. Furthermore, health-conscious 
customers can easily identify the freshness of a perishable product by 
checking its expiration date. As a result, the expiration date of a 
perishable product is an important factor in a customer’s purchasing 
decision. However, relatively little attention has been paid to the 
importance of the expiration date until recently. Sarkar (2012) explored 
an EOQ model by incorporating the fact that the deterioration rate of a 
perishable product increases over time and reaches 100% at its sell-by 
date. Chen and Teng (2014) adopted the deterioration rate linked to 
expiration date to develop an EOQ model where the seller offers buyers 
an upstream credit payment to attract more sales. Wu et al. (2014a) 
further expanded the model into a supplier-retailer-buyer supply chain 
in which the supplier offers the retailer an upstream credit payment, 
while the retailer in turn provides a downstream credit payment to 
buyers. Teng et al. (2016) studied the case in which the supplier asks the 
retailer to pay the acquisition cost in an advance-cash payment. Wu et al. 
(2018a) expanded the case to which the supplier asks the retailer an ACC 
payment, while the retailer offered a credit payment to customers. Li 
et al. (2017) further explored the problem by adding a pricing strategy 
and using a discounted cash-flow analysis. Currently, Tiwari et al. 
(2018) developed joint pricing and lot-sizing model for deteriorating 
items with upstream and downstream cash-credit payments as well as 
allowable shortages. Li and Teng (2018) studied pricing and lot-sizing 
decisions for perishable goods when demand rate depends on selling 
price, reference price, product freshness, and displayed stocks. Feng and 
Chan (2019) derived optimal pricing and cycle time for new products 
under upstream and downstream credit payments. Recently, Li et al. 
(2019a) explored pricing, lot-sizing, and backordering decisions when a 
seller demands an advance-cash-credit payment scheme. 

There is growing consensus that carbon emissions generated from 
firms’ business activities can lead to major global climate change. In 
addition, the economic benefits from reducing carbon emissions, by far 
the largest of which, is the mitigation of air pollution which is now a 
major challenge for cities across the world. In China, for example, the 
economic cost of the 1.23 million air pollution-related deaths in 2010 
amounted to 9.7–13.2% of China’s GDP. In the US the cost of 103,027 air 
pollution-related deaths was equivalent to 3.2–4.6% US GDP. In the UK 
23,036 air pollution-related deaths cost the equivalent of 4.6–7.1% of 
GDP. As a result, to a society or country, the economic benefits of 
reducing carbon emissions outweigh the cost of mitigation carbon 

emissions. As a result, governments and factories are under growing 
pressure to curb the amount of carbon emissions. Factories can reduce 
their carbon footprint by replacing energy-inefficient equipment and 
facilities, redesigning products and packaging, modifying batch sizes, 
etc. However, most of the previous studies on inventory models focus on 
maximizing profit or minimizing cost. Only a few of them take envi-
ronmental issues, such as the reduction in carbon emissions, into 
consideration. 

Benjaafar et al. (2013) analyzed the effect of different emissions 
regulations and concluded that firms could effectively reduce their 
carbon emissions by making operational adjustments and by collabo-
rating with other members of their supply chain. He et al. (2015) derived 
optimal lot-size and emissions under the two most widely-used carbon 
regulations to curb the carbon emissions generated from firms: 
carbon-tax (i.e., firms are charged a dollar amount for every ton of 
emissions they produce) and cap-and-trade (i.e., governments issue a set 
number of emissions “allowances” to firms each year. These allowances 
can be auctioned to the highest bidder as well as traded on secondary 
markets to create a carbon price). Dye and Yang (2015) quantified the 
impact of credit period (i.e., the length of a credit payment) and the 
impact of environmental regulations on inventory management when 
demand rate depends on credit period. Xu et al. (2016) explored the 
joint production and pricing decisions for multiple products under both 
carbon-tax and cap-and-trade regulations. Tsao et al. (2017) further 
extended Dye and Yang (2015) by considering default risks (i.e., the risk 
that buyers will be unable to make the required credit payments on their 
debt obligations) from granting credit payments in newsvendor models. 
Recently, Aljazzar et al. (2018) studied the use of credit payments in a 
two-echelon coordinated supply chain, and found that using credit 
payments will reduce carbon emissions generated within the supply 
chain. 

No studies in the existing literature have considered the impacts of 
three commonly-used payment types (i.e. advance, cash, and credit 
payments) on both the total amount of carbon emissions per unit time 
and the total relevant cost per unit time. To fill the gap in the literature, 
we develop an EOQ model in which demand rate of a perishable product 
is linked to the expiration date, buyers are charged with a fixed carbon- 
tax, and the seller asks buyers to pay the purchase cost by one of the 
following three payment schemes: advance payment, cash payment, or 
credit payment. We then mathematically demonstrate that the optimal 
solution uniquely exists to the proposed problem under each of the three 
payment schemes, which simplifies the search for the global solution to a 
local minimum. Furthermore, we run several numerical examples, and 
try to answer the following two major questions: What is the impact of 
different payment schemes on the optimal total relevant cost per unit 
time? Which payment scheme produces the least total carbon emissions? 
Next, we perform a sensitivity analysis on the buyer’s total relevant cost, 
and then explore managerial insights. Finally, we believe that the 
findings in this study will be of interest to readers because they bring 
new and important light to the field of inventory control and carbon 
reduction with various payment types. 

The remainder of the paper is organized as follows. Section 2 pre-
sents notation used and assumptions made to build the model. The 
mathematical models for different payment schemes are formulated in 
Section 3. Theoretical results are established in Section 4. Section 5 
presents numerical examples to provide management insights. 
Concluding remarks and future research are presented in Section 6. To 
make the paper easy to understand, all proofs are presented in 
appendixes. 
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2. Notation and assumptions 

The following notation and assumptions are introduced to construct 
an EOQ inventory model for perishable products under cash, advance, 
and credit payments in which firms are charged carbon-tax. 

2.1. Notation 

The following parameters and variables are used in developing the 
problem.  

ch  The holding cost (excluding interest) per unit per unit time in dollars 
bch  The amount of carbon emissions per unit per unit time in inventory 
cp  The purchase cost per unit in dollars 
bcp  The amount of carbon emissions associated per unit purchased 
CE  The total amount of carbon emissions per replenishment cycle 
D  The market annual demand rate in units 
Ic  The interest charged per dollar per unit time 
Ie  The interest earned per dollar per unit time 
IðtÞ The inventory level at time t in units  
K  The ordering cost per order in dollars 
bK  The amount of carbon emissions per order 
L  The advance payment period in units of time 
m  The time to expiration date or the maximum shelf life in units of time, m > 0  
M  The credit period in units of time granted by the seller to the buyer, M > 0  
n  The number of equal installments in an advance payment 
Q  The buyer’s order quantity in units 
r2  The rate of price discount for an advance payment 
s  The buyer’s selling price per unit in dollars, s > cp > 0  
θðtÞ The degrading rate at time t; 0 � θðtÞ � 1  
τ  The tax paid on each carbon unit emitted (the carbon unit price) 
Decision variable 
T  The buyer’s replenishment cycle length in units of time, 0 � T � m   

For convenience, the asterisk symbol on a variable denotes the 
optimal solution of the variable. For example, T* is the optimal solution 
of T. 

2.2. Assumptions 

All perishable products continuously degrade over time and cannot 
be sold when time exceeds the expiration date m. Following Sarkar 
(2012), Wu et al. (2014a), Wang et al. (2014), Chen and Teng (2014), 
Teng et al. (2016), Wu et al. (2017, 2018b), and Li et al. (2019b), we 
assume the following degrading rate: 

θðtÞ ¼
1

1þ m � t
; 0 � t � m: (1) 

There is no replacement, repair, financing, or salvage value of peri-
shed items during the replenishment cycle ½0;T�. 

In general, the seller asks the buyer to pay the total purchase cost in 
one of the following three most commonly-used payment schemes: 
advance payment, cash payment, or credit payment. To avoid default 
risks or to forecast demand more accurately, the seller may ask the buyer 
to prepay the total purchase cost with n equal installments in L units of 
time prior to the time of delivery (i.e., an advance payment). On the 
other hand, to increase demand, the seller may grant the buyer an 
interest-free credit period M to settle the total purchase cost (i.e., a credit 
payment). 

Requesting the buyer to make an advance payment not only gives the 
seller interest earned, but also has no default risk (to the seller). How-
ever, it is evident that the longer the prepayment period, the lower the 
demand rate because the buyer prefers “buy now and pay later” to “pay 
now and get later”. As a result, the seller usually offers a price discount 
as an incentive to encourage the buyer to prepay the total purchase cost. 

In contrast to an advance payment, the longer the credit period, the 
higher the sales volume and the higher the default risk, as described in Li 
et al. (2017, 2018). Hence, granting buyers a credit payment has a 
positive impact on sales while having negative impacts on both interest 

loss and default risk. 
To curb the amount of carbon emissions, following Benjaafar et al. 

(2013) and Xiang and Lawley (2018), we assume that the buyer is 
charged a fixed dollar amount τ for every ton of emissions produced (i.e., 
a carbon tax regulation) by the local government. 

The perishable product cannot be sold after the expiration date m. 
Hence, we assume T � m: In addition, the longer the credit period, the 
higher the default risk. Therefore, there are no good reasons for the 
seller to grant a credit period M which is longer than m, so we assume 
that M � m. 

Furthermore, most perishable goods such as meat and seafood, fruits 
and vegetables, etc. have very short shelf life. Health conscious con-
sumers like to examine them personally prior to purchase. Hence, it is 
reasonable to assume that shortages are not allowed. 

Finally, it assumes that the replenishment rate is infinite, and lead 
time is negligible. 

3. Mathematical model 

Given the above notation and assumptions, IðtÞ, the inventory level 
at time t during the replenishment cycle ½0;T� is depleted by demand and 
deterioration, and hence governed by the following differential 
equation: 

dIðtÞ
dt
þ θðtÞIðtÞ ¼ � D; 0 � t � T � m; (2) 

Solving (2) with boundary condition IðTÞ ¼ 0 yields 

IðtÞ¼ e�
R t

0
θðvÞdv

Z T

t
De
R x

0
θðvÞdvdx ¼

Z T

t
De
R x

t
θðvÞdvdx: (3) 

Therefore, the order quantity per replenishment cycle time T is as 
follows: 

Q¼ Ið0Þ ¼
Z T

0
De
R x

0
θðvÞdvdx: (4) 

The ordering cost per cycle is OC ¼ K: The holding cost per cycle 
time T is given by: 

HC¼ ch

Z T

0
IðtÞdt ¼ ch

Z T

0

Z T

t
De
R x

t
θðvÞdvdxdt: (5) 

Following Benjaafar et al. (2013) and Xiang and Lawley (2018), the 
total amount of carbon emissions per replenishment cycle includes the 
fixed carbon emissions associated with placing an order (e.g., carbon 
emissions due to transportation and production) bK, the variable amount 
of carbon emissions associated with each unit (e.g., carbon emissions 
due to the handling of each unit) bcp multiplied by the order quantity Q, 
and the integration of the amount of carbon emissions associated with 
the storage of each unit held per unit of time bch (e.g., carbon emissions 
involved such as refrigeration in the storage of each unit) multiplied by 
inventory level I(t) throughout the replenishment cycle. Therefore, the 
total amount of carbon emissions per replenishment cycle is given by: 

CE¼ bK þ bcpQþ bch

Z T

0
IðtÞdt: (6) 

Next, the case of cash payment is discussed, then advance payment is 
studied, and finally credit payment is analyzed. 

3.1. The case of cash payment 

In this case, the buyer pays for the items upon receipt of them. Hence, 
the total acquisition (or purchase) cost AC1 and the interest charged IC1 
per cycle respectively are as follows: 

AC1¼ cpQ ¼ cp

Z T

0
De
R x

0
θðvÞdvdx; (7) 

Y. Shi et al.                                                                                                                                                                                                                                      
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and 

IC1¼ Iccp

Z T

0
IðtÞdt ¼ Iccp

Z T

0

Z T

t
De
R x

t
θðvÞdvdxdt: (8) 

Combining the results from (5)–(8), the total relevant cost per unit 
time including ordering cost, purchase cost, holding cost excluding in-
terest charged, interest charged for on-hand inventory, and the cost of 
carbon emissions is obtained as follows: 

TC1ðTÞ¼
1
T
ðOCþAC1þHCþ IC1þ τ ⋅ CEÞ

¼
1
T

�

ðKþ τbKÞþ
�
cpþ τbcp

�
Z T

0
De
R x

0
θðvÞdvdxþ

�
chþ τbchþ Iccp

�
Z T

0

�

Z T

t
De
R x

t
θðvÞdvdxdt

�

: (9)  

3.2. The case of advance payment 

In this case, the seller asks the buyer to prepay the acquisition cost 
AC2 with n equal installments during L units of time prior to the time of 
delivery. In general, the seller usually offers the buyer a price discount r2 
as an incentive to induce the buyer’s willing to pay in advance. 

Consequently, the buyer’s acquisition cost per cycle time T is 

AC2¼ð1 � r2ÞcpQ ¼ ð1 � r2Þcp

Z T

0
De
R x

0
θðvÞdvdx: (10) 

Similar to Teng et al. (2016), the capital cost per cycle prior to de-
livery for the advance payment as depicted in Fig. 1 is given by: 

CC2¼ Ic⋅
AC2

n
⋅
L
n

⋅ð1þ 2þ :::þ nÞ ¼
1þ n

2n
IcLð1 � r2Þcp

Z T

0
De
R x

0
θðvÞdvdx:

(11) 

Furthermore, the interest charged for on-hand inventory is as 
follows: 

IC2¼ Icð1 � r2Þcp

Z T

0
IðtÞdt ¼Icð1 � r2Þcp

Z T

0

Z T

t
De
R x

t
θðvÞdvdxdt: (12) 

Combining the results in (5), (6), and (11)–(13), the total relevant 
cost per unit time in advance payment is: 

TC2ðTÞ¼
1
T
ðOCþAC2þHCþCC2þ IC2þ τ ⋅ CEÞ ¼

1
T

�

ðKþ τbKÞ

þ

�

ð1 � r2Þcpþ τbcpþ
1þ n

2n
IcLð1 � r2Þcp

� Z T

0
De
R x

0
θðvÞdvdx

þ
�
chþ τbchþ Icð1 � r2Þcp

�
Z T

0

Z T

t
De
R x

t
θðvÞdvdxdt

�

(13)  

3.3. The case of credit payment 

In this case, the buyer receives a fixed credit period M from the seller. 
It is clear that the buyer’s acquisition cost per replenishment cycle time 
T is 

AC3¼ cpQ ¼ cp

Z T

0
De
R x

0
θðvÞdvdx: (14) 

As to the interest charged and interest earned in this case, based on 
the values of M and T; there are two potential cases: (1) M � T: and (2) 
M � T: The sub-case of M � T is discussed first, and then the other sub- 
case of M � T:

3.3.1. Sub-case 1 of M � T 
In this sub-case, since M � T the buyer needs to pay the interest for 

the items in stock after time M as depicted in Fig. 2. Hence, the interest 
charged per cycle is as follows: 

IC31¼ Iccp

Z T

M
IðtÞdx ¼ Iccp

Z T

M

Z T

t
De
R x

t
θðvÞdvdxdt: (15) 

On the other hand, the interest earned from time 0 to M is the interest 
rate Ie multiplied by the area of the green triangle as shown in Fig. 2. 

Fig. 1. Graphical representation for the inventory system with an advance payment.  

Fig. 2. Graphical representation of the case of M � T:

Y. Shi et al.                                                                                                                                                                                                                                      
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Since the cumulative revenue at time M is sDM, the interest earned per 
replenishment cycle is given by: 

IE31 ¼
1
2

IeðsDMÞM ¼
1
2
IesDM2: (16) 

Combining (5), (6) and (15)–(17), the total relevant cost per unit 
time in the credit payment with M � T is: 

TC31ðTÞ¼
1
T
ðOCþAC3þHCþIC31 � IE31þτ⋅CEÞ

¼
1
T

�

ðKþτbKÞþ
�
cpþτbcp

�
Z T

0
De
R x

0
θðvÞdvdxþðchþτbchÞ

Z T

0

Z T

t
De
R x

t
θðvÞdvdxdt

þIccp

Z T

M

Z T

t
De
R x

t
θðvÞdvdxdt �

1
2
IesDM2

�

(17)  

3.3.2. Sub-case 2 M � T 
In this sub-case, the replenishment cycle time T is shorter than or 

equal to the credit period M. Consequently, there is no interest charged, 
hence, IC32 ¼ 0: However, the interest earned in this sub-case is the 
interest rate Ie multiplied by the area of the green trapezoid on the in-
terval [0, M] as shown in Fig. 3. Since the cumulative revenue at time T 
is sDT, the interest earned per replenishment cycle is given by: 

IE32 ¼
1
2

IesDT2 þ IesðM � TÞDT ¼ IesDT
�

M �
1
2

T
�

: (18) 

Similarly, combining (5), (6), and (18), the total relevant cost per 
unit time in the credit payment with M � T is as follows: 

TC32ðTÞ¼
1
T
ðOCþAC3þHCþIC32 � IE32þτ⋅CEÞ

¼
1
T

�

ðKþτbKÞþ
�
cpþτbcp

�
Z T

0
De
R x

0
θðvÞdvdxþðchþτbchÞ

Z T

0

Z T

t
De
R x

t
θðvÞdvdxdt

� IesDT
�

M �
1
2

T
��

(19) 

Consequently, the buyer’s total cost per unit time under the case of 
credit payment is given by 

TC3ðTÞ¼
�

TC31ðTÞ; ​ T � M;
TC32ðTÞ; ​ T � M: (20) 

It is clear that TC31ðMÞ ¼ TC32ðMÞ; so TC3ðTÞ is well defined. In the 
following section, theoretical results, optimal solutions, and important 
propositions are derived. 

4. Theoretical results 

This section studies the property of the total relevant cost per unit 
time and derives the optimal replenishment cycle time under the three 
payment options above. Likewise, the case of cash payment is discussed 
first, then the case of advance payment is explored, and finally the case 
of credit payment is studied. 

4.1. The case of cash payment 

To obtain theoretical results, we define the following discrimination 
term 

Δ1¼� T2dTC1ðTÞ
dT

�
�
�
�
T¼m
¼� m2dTC1ðmÞ

dT 

¼KþτbK �
�
cpþτbcp

�
�

mDe
R m

0
θðvÞdv
�

Z m

0
De
R x

0
θðvÞdvdx

�

�
�
chþτbchþIccp

�
�

m
Z m

0
De
R m

t
θðvÞdvdt

�

Z m

0

Z m

t
De
R x

t
θðvÞdvdxdt

�

: (21)  

Theorem 1. .(a) TC1ðTÞ is a strictly pseudo-convex function of T, and 
hence there exists a unique minimum solution T*

1.  

(b) If Δ1 � 0, then TC1ðTÞ is minimized at T*
1 ¼ m:

(c) If Δ1 < 0; then there exists a unique T*
1 2 ð0;mÞ that minimizes 

TC1ðTÞ:

Proof. . See Appendix A. 

Theorem 1 simplifies the search for the global solution to a local 
minimum. A simple interpretation of Theorem 1 is as follows: It is clear 
from (21) that Δ1 has an opposite sign of the first-order derivative of 
TC1ðTÞ with respect to T at T ¼m. We know from Part (a) of Theorem 1 

that TC1ðTÞ is a strictly pseudo-convex function of T. Since dTC1ðTÞ
dT

�
�
�
�
T¼0

<

0; Δ1 � 0 implies dTC1ðTÞ
dT

�
�
�
�
T¼m
� 0: Consequently, TC1ðTÞ is decreasing in 

[0, m), so TC1ðTÞ is minimized at T*
1 ¼ m: On the other hand, if Δ1 < 0, 

then dTC1ðTÞ
dT

�
�
�
�
T¼m

> 0: Therefore, there exists a unique T*
1 2 ð0;mÞ such 

that dTC1ðTÞ
dT

�
�
�
�
T¼T*

1

¼ 0; which minimizes TC1ðTÞ:

The impact of carbon unit price on the optimal carbon emissions per 
unit time is derived by the following proposition. 

Proposition 1. (a) An increase in τ, ch; cp; Ic; or K increases TC1ðTÞ:

(b) d
dτ

�
CE
T

��
�
�
�
T¼T*

1

< 0:

Proof. . See Appendix B. 

Proposition 1 shows that the optimal total relevant cost per unit time 
increases as the carbon tax τ, the holding cost ch; the purchasing cost cp;

the interest charged Ic; or the ordering cost K increases, which is trivial. 
Proposition 1 also demonstrates that the higher the carbon unit price, 
the lower the total amount of c00arbon emissions per unit time, 
encouraging firms to reduce carbon emissions. 

Fig. 3. Graphical representation of the case of M � T:
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4.2. The case of advance payment 

Similarly, for convenience, we define another discrimination term 

Δ2¼ � T2dTC2ðTÞ
dT

�
�
�
�

T¼m
¼ � m2dTC2ðmÞ

dT

¼Kþ τbK �
�

ð1 � r2Þcpþ τbcpþ
1þn

2n
IcLð1 � r2Þcp

��

mDe
R m

0
θðvÞdv

�

Z m

0
De
R x

0
θðvÞdvdx

�

�
�
chþ τbchþ Icð1 � r2Þcp

�
�

m
Z m

0
De
R m

t
θðvÞdvdt �

Z m

0

Z m

t
De
R x

t
θðvÞdvdxdt

�

:

(22) 

Then one can obtain Theorem 2 below. 

Theorem 2. .(a) TC2ðTÞ is a strictly pseudo-convex function in T; and 
hence there exists a unique minimum solution T*

2:

(b) If Δ2 � 0; then TC2ðTÞ is minimized at T*
2 ¼ m:

(c) If Δ2 < 0; then there exists a unique T*
2 2 ð0;mÞ that minimizes 

TC2ðTÞ:

Proof. . See Appendix C. 

Similar to the interpretation of Theorem 1, it is obvious from (22) 
that Δ2 has an opposite sign of the first-order derivative of TC2ðTÞ with 
respect to T at T ¼m. From Part (a) of Theorem 2, we know that TC2ðTÞ
is a strictly pseudo-convex function in T. Since dTC2ðTÞ

dT jT¼0 < 0; if Δ2 � 0 
then dTC2ðTÞ

dT jT¼m � 0; which implies that TC2ðTÞ is decreasing in [0, m). 
Hence, TC2ðTÞ is minimized at T*

2 ¼ m:Otherwise, Δ2 < 0 implies 
dTC2ðTÞ

dT jT¼m > 0: As a result, there exists a unique T*
2 2 ð0;mÞ such that 

dTC2ðTÞ
dT jT¼T*

2
¼ 0; which minimizes TC2ðTÞ:

The effect of each important parameter on the objective function is 
analytically explored as described below. 

Proposition 2. (a) An increase in τ, ch; cp; Ic; K, or L increases TC2ðTÞ, 
while an increase in r2;or n decreases TC2ðTÞ. 

(b) For the advance payment, an increase in τ decreases the optimal 

carbon emissions per unit time, i.e., d
dτ

�
CE
T

�

jT¼T*
2
< 0:

Proof. . See Appendix D. 

Proposition 2 demonstrates that the optimal total relevant cost per 
unit time increases as the carbon tax τ, the holding cost ch; the pur-
chasing cost cp; the interest charged Ic; the ordering cost K, or the pre-
payment length L increases, which is obvious. By contrast, the optimal 
total relevant cost per unit time decreases as price discount rate r2, or 
number of installments n increases. A simple economic interpretation is 
as follows: An increase in price discount means a decrease in purchase 
cost, which results in lowering total relevant cost. Likewise, an increase 
in the number of installments reduces the interest charged for an 
advance payment, which in turn decreases total relevant cost. 

4.3. The case of credit payment 

There are two potential sub-cases: (1) M � T; and (2)M � T for the 
case of credit payment. We investigate them according to their order. 

4.3.1. Sub-case of M � T 
Again, for convenience, we set the following two discrimination 

terms. 

Δ311¼� M2dTC31ðMÞ
dT

¼KþτbK �
�
cpþτbcp

�
�

MDe
R M

0
θðvÞdv
�

Z M

0
De
R x

0
θðvÞdvdx

�

� ðchþτbchÞ

�

M
Z M

0
De
R M

t
θðvÞdvdt �

Z M

0

Z M

t
De
R x

t
θðvÞdvdxdt

�

�
1
2
IesDM2:

(23)  

and 

Δ312¼ � m2dTC31ðmÞ
dT

¼Kþ τbK �
�
cpþ τbcp

�
�

mDe
R m

0
θðvÞdv
�

Z m

0
De
R x

0
θðvÞdvdx

�

� ðchþ τbchÞ

�

m
Z m

0
De
R m

t
θðvÞdvdt �

Z m

0

Z m

t
De
R x

t
θðvÞdvdxdt

�

� Iccp

�

m
Z m

M
De
R m

t
θðvÞdvdt �

Z m

M

Z m

t
De
R x

t
θðvÞdvdxdt

�

�
1
2
IesDM2:

(24) 

Then we have the following results. 

Lemma 1. Δ311 > Δ312:

Proof. . See Appendix E. 

Theorem 3. (a) TC31ðTÞ is a strictly pseudo-convex function in T;
and hence there exists a unique solution T*

31 that 
minimizes TC31ðTÞ.  

(b) If Δ312 � 0; then TC31ðTÞ is minimized at T*
31 ¼ m:

(c) If Δ311 > 0; and Δ312 < 0; then there exists a unique T*
31 2 ðM;mÞ

that minimizes TC31ðTÞ.  
(d) If Δ311 < 0; then TC31ðTÞ is minimized at T*

31 ¼ M:

Proof. . See Appendix F. 

A simple interpretation of Theorem 3 is similar to that of Theorem 1. 

Proposition 3. (a) An increase in τ, cp; ch; Ic; or K increases TC3ðTÞ, 
while an increase in M, Ie; or s decreases TC3ðTÞ.  

(b) For the credit payment, an increase in τ decreases the optimal 

carbon emissions per unit time, i.e., d
dτ

�
CE
T

��
�
�
�
T¼T*

31

< 0:

Proof. See Appendix G. 

In the case of credit payment, the buyer gets interest earned from 
sales revenue during the credit period M and pays interest charged after 
the credit period ends at M. As a result, the longer the credit period M, 
the more the interest earned during [0, M] and the less the interest 
charged during [M, T]. Consequently, the higher the credit period M, the 
lower the total relevant cost TC31ðTÞ. 

4.3.2. Sub-case 2 of M � T 
Likewise, for simplicity, we set the following discrimination term. 

Δ32¼� M2dTC32ðMÞ
dt

¼KþτbK �
�

cpþτbcp

��

MDe
R M

0
θðvÞdv
�

Z M

0
De
R x

0
θðvÞdvdx

�

�

�

chþτbch

��

M
Z M

0
De
R M

t
θðvÞdvdt �

Z M

0

Z M

t
De
R x

t
θðvÞdvdxdt

�

�
1
2
IesDM2:

(25)  

Theorem 4. .(a) TC32ðTÞ is a strictly pseudo-convex function in T; and 
hence there exists a unique minimum solution T*

32:

(b) If Δ32 � 0; then TC32ðTÞ is minimized at T*
32 ¼ M:
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(c) If Δ32 < 0; then there exists a unique T*
32 2 ð0;MÞ such that 

TC32ðTÞ is minimized. 

Proof. . See Appendix H. 

By using an analogous argument of Theorem 1, one can interpret the 
discrimination term Δ32; and the results of Theorem 4. 

From (24) - (26) and Lemma 1, we know that Δ311 ¼ Δ32 > Δ312:

Applying Theorems 3 and 4, one can obtain the solution of TC3ðTÞ in 

Table 1 
The optimal solution with respect to r2 in Example 2.  

r2  T*
2  Q*

2  TC2ðT*
2Þ CE2ðT*

2Þ=T
*
2  

0.05 0.2485 978.25 37300 21875 
0.10 0.2534 999.14 35687 21917 
0.20 0.2640 1045.30 32451 22014 
0.30 0.2762 1098.80 29198 22130 
0.40 0.2903 1161.50 25926 22271  

Fig. 4. Cycle time and order quantity with respect to carbon unit price.  

Fig. 5. Total cost and total carbon emission with respect to carbon unit price.  
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(20) as shown in Theorem 5 below. 

Theorem 5. (a) If Δ311 ¼ Δ32 < 0; then TC3ðTÞ is minimized in the 
sub-case of M � T; and T*

3 ¼ T*
32:

(b) If Δ311 ¼ Δ32 > 0; and Δ312 < 0; then TC3ðTÞ is minimized in the 
sub-case of M � T; and T*

3 ¼ T*
31:

(c) If Δ312 > 0; then TC3ðTÞ is minimized in both sub-cases, and T*
3 ¼

M:

Proof. . See Appendix I. 

5. Numerical analysis 

To illustrate the proposed model under cash, advance, and credit 
payments, we adopt the data similar to those in Dye and Yang (2015), 
and study the problem under different payment types according to their 
order. 

Example 1. . For a cash payment, consider an inventory system where 
K ¼ 1000; cp ¼ 8; ch ¼ 1; bK ¼ 250; bcp ¼ 5; bch ¼ 2:5; τ ¼ 0:1; Ic ¼ 0:1;
D ¼ 3600; and m ¼ 0:5: Computing Δ1 ¼ � 4560:3 < 0; and applying 
Theorem 1, one can have the unique optimal solution as follows: 

Fig. 6. Cycle time and order quantity with respect to expiration date.  

Fig. 7. Total cost and total carbon emission with respect to expiration date.  
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T*
1 ¼ 0:2449 2 ð0;mÞ; Q*

1 ¼ 962:4244; TC1ðT*
1Þ ¼ 38553; and 

CE1ðT*
1Þ=T

*
1 ¼ 21843:

Example 2. . For an advance payment, in addition to those parameters 
in Example 1, we assume L ¼ 0:17; n ¼ 3; and r2 ¼ 0:5: Since Δ2 ¼ �

2298:3 < 0; by applying Theorem 2, one can obtain the unique optimal 
solution as follows: 

T*
2 ¼ 0:3070 2 ð0;mÞ; Q*

2 ¼ 1236:6; TC2ðT*
2Þ ¼ 22632; and CE2ðT*

2Þ=

T*
2 ¼ 22447:

Similarly, one can obtain the optimal solutions for different values of 
r2 as shown in Table 1. 

Example 3. . For a credit payment, let Ie ¼ 0:08;M ¼ 0:17; and s ¼ 50:
Computing Δ311 ¼ Δ32 ¼ 400:4875 > 0 and Δ312 ¼ � 4662:9 < 0; and 
then applying Theorem 5, one can get the unique optimal solution as 
follows: 

T*
3¼ 0:2270; Q*

3 ¼ 886:2806; TC3
�
T*

3

�
¼ 37339; and CE3

�
T*

3

��
T*

3 ¼ 21699:

Comparing the computational results in Examples 1–3, we know that 
the advance payment with a price discount (from 5% to 50%) is the least 
expensive for the buyer but creates the greatest damage to the envi-
ronment due to its highest carbon emissions per unit time among all 
three payment types: cash, advance, and credit payments. On the other 
hand, the credit payment is the best of all three payments to curb carbon 
emissions and protect the climate and environment. Due to the 
complexity of the problem, we are unable to prove these two main 
findings mathematically. However, if demand rate of advance payment 
with a price discount is not significantly different from that of credit 
payment, then the advance payment with a price discount (which has 
interest earned and no default risks) is the least expensive to operate for 
the buyer. 

We then investigate the impact of carbon unit price on the optimal 
solution under each of the three different payment terms. Figs. 4 and 5 
reveal that the higher the carbon unit price τ, the lower the cycle time T*

i 

(i ¼ 1; 2; and 3) as well as the order quantity Q*
i (i ¼ 1; 2; and 3). In 

addition, the computational results also reveal that T*
3 < T*

1 < T*
2 and 

Q*
3 < Q*

1 < Q*
2: A simple economic interpretation is that if the seller of-

fers a heavy price discount r2 for an advance payment, then the buyer 
orders more quantity but less frequently (i.e., Q*

1 < Q*
2 and T*

1 < T*
2) to 

take the advantage of price discount. On the other hand, if the seller 
grants a permissible delay in payment, then the buyer orders less 
quantity but more frequently (i.e., Q*

3 < Q*
1 and T*

3 < T*
1) to take the 

benefits of trade credit often. 
Furthermore, Fig. 5 shows that the total relevant cost per unit time 

TCiðT*
i Þ linearly increases as carbon unit price τ increases with 

TC2ðT*
2Þ < TC3ðT*

3Þ < TC1ðT*
1Þ: A simple economic interpretation of 

these results are as follows. If the seller offers a heavy price discount to 
encourage an advance payment, then the buyer reduces a significant 
amount of the purchase cost. On the other hand, when the seller grants a 
short-term interest-free loan for a credit payment, the buyer earns in-
terest during credit period. As a result, the total relevant cost of credit 
payment TC3ðT*

3Þ is less than that of cash payment TC1ðT*
1Þ, which has 

no interest earned. Combining the above two interpretations, it is 
obvious that TC2ðT*

2Þ < TC3ðT*
3Þ < TC1ðT*

1Þ:

In contrast to the optimal relevant cost, the total carbon emissions 
per unit time decreases as carbon unit price τ increases with CEðT*

3Þ=

T*
3 < CEðT*

1Þ=T
*
1 < CEðT*

2Þ=T
*
2: A simple economic interpretation is as 

follows. Since the quantities order is Q*
3 < Q*

1 < Q*
2 as shown in Fig. 4, it 

is obvious that total carbon emissions per unit time follows the same 
order as CEðT*

3Þ=T
*
3 < CEðT*

1Þ=T
*
1 < CEðT*

2Þ=T
*
2:

In summary, the buyer prefers an advance payment with a price 
discount, which results in the least total relevant cost to operate while 

Table 2 
Sensitivity analysis on cash, advance, and credit payments.  

Parameters Cash payment Advance payment Credit payment 

T*
1  Q*

1  TC1ðT*
1Þ T*

2  Q*
2  TC2ðT*

2Þ T*
3  Q*

3  TC3ðT*
3Þ

K ¼ 500  0.181 692 36208 0.228 890 20768 0.157 595 34709 
K ¼ 1000  0.245 962 38553 0.307 1237 22632 0.227 886 37339 
K ¼ 1500  0.292 1169 40414 0.364 1502 24120 0.279 1111 39313 
cp ¼ 5  0.288 1149 26520 0.349 1430 16377 0.265 1048 25538 
cp ¼ 8  0.245 962 38553 0.307 1237 22632 0.227 886 37339 
cp ¼ 11  0.217 845 50410 0.278 1106 28790 0.203 785 48998 
ch ¼ 0:5  0.252 992 38316 0.321 1300 22327 0.234 914 37119 
ch ¼ 1  0.245 962 38553 0.307 1237 22632 0.227 886 37339 
ch ¼ 1:5  0.239 935 38784 0.295 1181 22924 0.221 861 37552 
bK ¼ 100  0.243 955 38492 0.305 1228 22583 0.225 879 37272 

bK ¼ 250  0.245 962 38553 0.307 1237 22632 0.227 886 37339 

bK ¼ 400  0.247 969 38614 0.309 1245 22681 0.229 894 37405 

bcp ¼ 1  0.249 980 36980 0.315 1275 21019 0.231 902 35776 

bcp ¼ 5  0.245 962 38553 0.307 1237 22632 0.227 886 37339 

bcp ¼ 9  0.241 946 40124 0.299 1202 24241 0.223 871 38899 

bch ¼ 1:5  0.246 968 38506 0.310 1249 22572 0.228 892 37295 

bch ¼ 2:5  0.245 962 38553 0.307 1237 22632 0.227 886 37339 

bch ¼ 3:5  0.244 957 38600 0.304 1225 22692 0.226 881 37382 

Ic ¼ 0:05  0.250 986 38364 0.313 1263 22420 0.229 895 37328 
Ic ¼ 0:1  0.245 962 38553 0.307 1237 22632 0.227 886 37339 
Ic ¼ 0:15  0.240 941 38739 0.302 1212 22842 0.225 878 37349 
D ¼ 2600  0.283 815 28922 0.353 1047 17207 0.269 771 28114 
D ¼ 3600  0.245 962 38553 0.307 1237 22632 0.227 886 37339 
D ¼ 4600  0.219 1090 48036 0.276 1401 27942 0.198 976 46371  
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producing the highest total carbon emissions. Conversely, to reduce 
carbon emissions and protect the environment, the buyer should select a 
credit payment, which has the lowest total carbon emissions per unit 
time among all three payment types. 

Next, we study the impact of expiration date on the optimal solution 
among cash, advance, and credit payments. By assuming 0:3 � m � 1:3;
we obtain the computational results as stipulated in Figs. 6 and 7, which 
reveal that an increase in expiration date m elevates both cycle time and 
order quantity while reducing both total relevant cost and total carbon 
emissions. 

Fig. 6 depicts the computational results that T*
3 < T*

1 < T*
2 and Q*

3 <

Q*
1 < Q*

2; which are similar to the results in Fig. 4. Likewise, the 
computational result in Fig. 7 is similar to that in Fig. 5. Namely, 
CEðT*

3Þ=T
*
3 < CEðT*

1Þ=T
*
1 < CEðT*

2Þ=T
*
2:

Example 4. . In this example, we conduct a sensitivity analysis to 
study how the optimal decision changes with respect to the change in 
each parameter value due to uncertainty in any decision-making situa-
tion. The computational results with respect to cash, advance and credit 
payments are shown in Table 2. 

From Table 2, we obtain the following observations and then provide 
simple economic interpretations for managerial insights. For conve-
nience, the subscript i represents 1, 2, or 3. 

T*
3 < T*

1 < T*
2; Q*

3 < Q*
1 < Q*

2; and TC2
�
T*

2

�
< TC3

�
T*

3

�
< TC1

�
T*

1

�
:

(1) An increase in K, or bK elevates T*
i ; Q*

i ; and TCiðT*
i Þ: As a result, if 

the ordering cost per order K or the amount of carbon emissions 
per order bK increases, then the buyer should reduce the number 
of orders to lower expenses, which results in an increase in the 
order quantity Q*

i as well as the replenishment cycle T*
i .  

(2) An increase in cp; bcp; ch; bch; or Ic decreases T*
i ; and Q*

i ; while 
increasing TCiðT*

i Þ: In contrast to the previous observation, if the 
purchase cost cp; the amount of carbon emissions associated with 
each unit purchased bcp; the holding cost ch; the amount of carbon 
emissions associated with each inventory bch; or the interest 
charged Ic increases, then the buyer should order less quantity Q*

i 
in order to reduce the total purchase cost, the inventory holding 
cost, or the interest payable. The smaller the order quantity Q*

i ;

the shorter the replenishment cycle T*
i :

(3) An increase in D increases both Q*
i ; and TCiðT*

i Þ;while decreasing 
T*

i : It is obvious the higher the demand the higher the order 
quantity Q*

i ; as well as the total relevant cost TCiðT*
i Þ:However, to 

reduce the total inventory holding cost due to higher order 
quantity Q*

i ; the buyer should shorten the replenishment cycle 
time T*

i :

(4) Table 2 reveals that the optimal solutions with respect to cash, 
advance, and credit payments maintain the following relation-
ship regardless any change in the value of parameter K; cp; ch; bK;
bcp; bch; Ic; or D:

6. Concluding remarks and future research 

This paper has developed an EOQ inventory model in which: (1) The 
seller offers the buyer three payment schemes: cash payment, advance 

payment, or credit payment, (2) The degrading rate for a perishable 
product is linked to its expiration date, and (3) There is a fixed carbon 
tax to encourage firms to reduce carbon emissions and slow down global 
climate change. Next, the theoretical results have demonstrated that 
there exists a unique optimal solution to the problem under each of these 
three payment types. In addition, the relationships between an impor-
tant parameter and optimal solution have been characterized. Further-
more, to illustrate the model under three different payment types, 
numerical examples have been conducted. Finally, sensitivity analyses 
to examine the impacts of critical parameters on ordering behaviors, 
optimal total cost per unit time and optimal carbon emissions per unit 
time have been performed. Comparing the results from three different 
payment types, several managerial insights have been obtained. For 
example, the advance payment with a price discount is the least 
expensive to operate while generating the highest carbon emissions per 
unit time, and creating the greatest damage to the environment. How-
ever, it is estimated by The World Health Organization (2016) that 3 
million people die from ambient outdoor pollution every year. As a 
result, to a society or country, economic benefits of reducing carbon 
emissions outweigh the cost of mitigation carbon emissions. Therefore, 
the buyer as an individual should select a credit payment which has the 
lowest total carbon emissions per unit time among these three payment 
types. 

This research can be extended in several directions in future studies. 
First, we may extend the carbon-tax policy examined here to include 
many other types of carbon-tax regulations (e.g., cap-and-trade regula-
tion, carbon cap regulation, carbon offset regulation, etc.) which may 
affect buyers’ ordering behaviors differently. Second, selling price and 
product freshness are two important factors that affect consumers pur-
chasing decisions on perishable goods. As a result, the demand rate 
should be expanded to a dynamic function of selling price and product 
freshness. Third, there is only one objective in this research to minimize 
the total relevant cost per unit of time. It would be an interesting and 
relevant research to use a multi-criteria decision analysis minimizing 
both total relevant cost and carbon emissions simultaneously. Finally, 
the proposed model is built from the perspective of the buyer. In today’s 
supply chain coordination, we could explore a win-win solution (e.g., 
Pareto or integrated solution) including both the seller’s and the buyer’s 
perspectives. 
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Appendix A. Proof of Theorem 1 

From (9), we define 

f1ðTÞ¼ ðKþ τbKÞ þ
�
cpþ τbcp

�
Z T

0
De
R x

0
θðτÞdτdxþ

�
chþ τbchþ Iccp

�
Z T

0

Z T

t
De
R x

t
θðvÞdvdxdt;

and 
g1ðTÞ ¼ T > 0: Taking the first-order and the second-order derivatives of f1ðTÞ with respect to T, we obtain 

f 01ðTÞ¼
�
cp þ τbcp

�
De
R T

0
θðvÞdv

þ
�
chþ τbchþ Iccp

�
Z T

0
De
R T

t
θðvÞdvdt; (A1)  

and 

f 001 ðTÞ¼
�
cpþ τbcp

� 1
1þ m � T

De
R T

0
θðvÞdv

þ
�
chþ τbchþ Iccp

�
D
�

1þ
1

1þ m � T

Z T

0
e
R T

t
θðvÞdvdt

�

> 0: (A2) 

Applying Theorems 3.2.9 and 3.2.10 from Cambini and Martein (2009), we know that TC1ðTÞ ¼ f1ðTÞ=g1ðTÞ is a strictly pseudo-convex function in 
T. Hence, there exists a unique global minimum T*

1. This completes the Proof of Part (a) of Theorem 1. 
Taking the first-order derivative of TC1ðTÞ in (9) with respect to T, and rearranging terms, we get 

dTC1ðTÞ
dT

¼ �
1

T2

�

K þ τbK �
�
cp þ τbcp

�
�

TDe
R T

0
θðvÞdv

�

Z T

0
De
R x

0
θðvÞdvdx

�

�
�
ch þ τbch þ Iccp

�
�

T
Z T

0
De
R T

t
θðvÞdvdt �

Z T

0

Z T

t
De
R x

t
θðvÞdvdxdt

�

:

(A3) 

For simplicity, let 

H1ðTÞ ¼ K þ τbK �
�
cp þ τbcp

�
�

TDe
R T

0
θðvÞdv

�

Z T

0
De
R x

0
θðvÞdvdx

�

�
�
ch þ τbch þ Iccp

�
�

T
Z T

0
De
R T

t
θðvÞdvdt �

Z T

0

Z T

t
De
R x

t
θðvÞdvdxdt

�

:

(A4) 

Then we know that H1ðTÞ is decreasing in T 2 ½0;m� because 

H 0

1ðTÞ¼ �
�
cpþ τbcp

�
T

1
1þ m � T

e
R T

0
θðvÞdv

�
�
chþ τbchþ Iccp

�
DT
�

1þ
1

1þ m � T

Z T

0
e
R T

t
θðvÞdvdt

�

< 0: (A5) 

Since H1ð0Þ ¼ Kþ τbK > 0, and 

H1ðmÞ¼Δ1 ¼ K þ τbK �
�
cpþ τbcp

�
�

mDe
R m

0
θðvÞdv
�

Z m

0
De
R x

0
θðvÞdvdx

�

�
�
chþ τbchþ Iccp

�
�

m
Z m

0
De
R m

t
θðvÞdvdt �

Z m

0

Z m

t
De
R x

t
θðvÞdvdxdt

�

: (A6) 

Thus, if Δ1 � 0; then H1ðTÞ � 0 for all T 2 ½0;m�. It is clear from (A3) and (A4) that TC01ðTÞ < 0 for all T 2 ½0;m�; and hence TC1ðTÞ is decreasing in 
T 2 ½0;m�. Therefore, T*

1 ¼ m. This completes the Proof of Part (b) of Theorem 1. On the other hand, if Δ1 ¼ H1ðmÞ < 0; then applying the Mean Value 
Theorem, we know that there exists a unique T*

1 2 ð0;mÞ such that H1ðT*
1Þ ¼ 0. This completes the proof of Part (c) of Theorem 1. 

Appendix B. Proof of Proposition 1 

It is obvious that Part (a) of Proposition 1 immediately follows from (9). Next, we will provide the Proof of Part (b) of Proposition 1. 
From Theorem 1 we know that there exists a unique minimum solution of TC1ðTÞ: Taking the first-order derivative of TC1ðTÞ in (9) with respect to 

T; setting the result to zero, 
we obtain: 

1
T

�

ðK þ τbKÞ þ
�
cp þ τbcp

�
Z T

0
De
R x

0
θðvÞdvdxþ

�
ch þ τbch þ Iccp

�
Z T

0

Z T

t
De
R x

t
θðvÞdvdxdt

�

¼
�
cp þ τbcp

�
De
R T

0
θðvÞdv

þ
�
ch þ τbch þ Iccp

�
Z T

0
De
R T

t
θðvÞdvdt:

(B1) 

Taking the implicit derivative of (B1) with respect to τ yields 

1
T

�

bK þbcp

Z T

0
De
R x

0
θðvÞdvdxþ

�
cp þ τbcp

�
De
R T

0
θðvÞdvdT

dτ þbch

Z T

0

Z T

t
De
R x

t
θðvÞdvdxdt  

þ
�
chþ τbchþ Iccp

�
Z T

0
De
R T

t
θðvÞdvdt

dT
dτ

�

�
1

T2

�

ðKþ τbKÞþ
�
cpþ τbcp

�
Z T

0
De
R x

0
θðvÞdvdx 
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þ
�
chþ τbchþ Iccp

�
Z T

0

Z T

t
De
R x

t
θðvÞdvdxdt

�
dT
dτ  

¼ bcpDe
R T

0
θðvÞdv

þ
�
cpþ τbcp

� 1
1þ m � T

De
R T

0
θðvÞdvdT

dτ  

þbch

Z T

0
De
R T

t
θðvÞdvdt þ

�
chþ τbchþ Iccp

�
D
�

1þ
1

1þ m � T

Z T

0
e
R T

t
θðvÞdvdt

�
dT
dτ :

Rearranging terms, we get 

CE
T
þ

1
T

�
�
cpþ τbcp

�
De
R T

0
θðvÞdv
þ
�
chþ τbchþ Iccp

�
Z T

0
De
R T

t
θðvÞdvdt  

�
1
T

�

ðKþ τbKÞþ
�
cpþ τbcp

�
Z T

0
De
R x

0
θðvÞdvdxþ

�
chþ τbchþ Iccp

�
Z T

0

Z T

t
De
R x

t
θðvÞdvdxdt

��
dT
dτ  

¼ bcpDe
R T

0
θðvÞdv

þ
�
cpþ τbcp

� 1
1þ m � T

De
R T

0
θðvÞdvdT

dτ  

þbch

Z T

0
De
R T

t
θðvÞdvdt þ

�
chþ τbchþ Iccp

�
D
�

1þ
1

1þ m � T

Z T

0
e
R T

t
θðvÞdvdt

�
dT
dτ :

Applying (B1) and simplifying terms, we have 

CE
T
¼ bcpDe

R T

0
θðvÞdv

þ
�
cp þ τbcp

� 1
1þ m � T

De
R T

0
θðvÞdvdT

dτ

þbch

Z T

0
De
R T

t
θðvÞdvdt þ

�
ch þ τbch þ Iccp

�
D
�

1þ
1

1þ m � T

Z T

0
e
R T

t
θðvÞdvdt

�
dT
dτ :

(B2) 

Finally, taking the first-order derivative of CE/T, and simplifying terms, we obtain 

d
dτ

�
CE
T

��
�
�
�
T¼T*

1

¼
1
T

�
dCE
dτ �

CE
T

dT
dτ

��
�
�
�
T¼T*

1

¼ �
1
T

( 

cp þ τbcp

!
1

1þ m � T
De
R T

0
θðvÞdv

�
dT
dτ

�2

þ

 

ch þ τbch þ Iccp

!

D
�

1þ
1

1þ m � T

Z T

0
e
R T

t
θðvÞdvdt

��
dT
dτ

�2
)�
�
�
�
�
T¼T*

1

< 0:

(B3) 

This completes the Proof of Proposition 1. 

Appendix C. Proof of Theorem 2 

Applying (13), we define 

f2ðTÞ¼ ðKþ τbKÞ þ
�

ð1 � r2Þcp þ τbcp þ
1þ n

2n
IcLð1 � r2Þcp

�Z T

0
De
R x

0
θðvÞdvdx  

þ

�

ch þ τbch þ Icð1 � r2Þcp

� Z T

0

Z T

t
De
R x

t
θðvÞdvdxdt;

and 

g2ðTÞ¼ T > 0:

By taking the first-order and the second-order derivatives of f2ðTÞ with respect to T, we derive as follows: 

f
0

2ðTÞ ¼
�

ð1 � r2Þcp þ τbcp þ
1þ n

2n
IcLð1 � r2Þcp

�

De
R T

0
θðvÞdv

þ
�
ch þ τbch þ Icð1 � r2Þcp

�
Z T

0
De
R T

t
θðvÞdvdt;

(C1)  

and 

f 002 ðTÞ ¼
�

ð1 � r2Þcp þ τbcp þ
1þ n

2n
IcLð1 � r2Þcp

�
1

1þ m � T
De
R T

0
θðvÞdv

þ
�
ch þ τbch þ Icð1 � r2Þcp

�
D
�

1þ
1

1þ m � T

Z T

0
e
R T

t
θðvÞdvdt

�

> 0:

(C2) 

Therefore, TC2ðTÞ is a strictly pseudo-convex function in T, which implies that there exists a unique global minimum T*
2. This completes the Proof of 
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Part (a) of Theorem 2. 
For convenience, let us define 

H2ðTÞ ¼ K þ τbK �
�

ð1 � r2Þcp þ τbcp þ
1þ n

2n
IcLð1 � r2Þcp

��

TDe
R T

0
θðvÞdv

�

Z T

0
De
R x

0
θðvÞdvdx

�

�
�
ch þ τbch þ Icð1 � r2Þcp

�
�

T
Z T

0
De
R T

t
θðvÞdvdt �

Z T

0

Z T

t
De
R x

t
θðvÞdvdxdt

�

:

(C3) 

Taking the first-order derivative of TC2ðTÞ with respect to T and rearranging terms, we obtain 

dTC2ðTÞ
dT

¼ �
1

T2

�

K þ τbK �
�

ð1 � r2Þcp þ τbcp þ
1þ n

2n
IcLð1 � r2Þcp

��

TDe
R T

0
θðvÞdv

�

Z T

0
De
R x

0
θðvÞdvdx

�

�
�
ch þ τbch þ Icð1 � r2Þcp

�
�

T
Z T

0
De
R T

t
θðvÞdvdt �

Z T

0

Z T

t
De
R x

t
θðvÞdvdxdt

��

¼ �
1

T2H2ðTÞ:

(C4) 

Taking the first-order derivative of H2ðTÞ with respect to T; we obtain 

H 0

2ðTÞ ¼ �
�

ð1 � r2Þcp þ τbcp þ
1þ n

2n
IcLð1 � r2Þcp

�
1

1þ m � T
DTe

R T

0
θðvÞdv

�
�
ch þ τbch þ Icð1 � r2Þcp

�
DT
�

1þ
1

1þ m � T

Z T

0
e
R T

t
θðvÞdvdt

�

< 0:

(C5) 

Hence, H2ðTÞ is decreasing in T 2 ð0;mÞ: Note that H2ð0Þ ¼ Kþ τbK > 0, and Δ2 ¼ H2ðmÞ: If Δ2 � 0; then H2ðTÞ > 0 for all T 2 ½0;m�, which implies 
that TC2ðTÞ is decreasing in ½0;m�. Thus, T*

2 ¼ m: This completes the Proof of Part (b) of Theorem 2. 
If Δ2 < 0; then H2ð0Þ > 0; and H2ðmÞ < 0: Applying the Intermediate Value Theorem, there exists a unique T*

2 2 ð0;mÞ such that TC2ðTÞ is 
minimized. This completes the Proof of Part (c) of Theorem 2. 

Appendix D. Proof of Proposition 2 

Part (a) of Proposition 2 immediately follows from (13), thus we omit it. Next, we will provide the Proof of Part (b) of Proposition 2. 
From Theorem 2 we know that there exists a unique minimum solution of TC2ðTÞ: Taking the first-order derivative of TC2ðTÞ in (13) with respect to 

T; setting the result to zero, we obtain: 

1
T

�

ðK þ τbKÞ þ
�

ð1 � r2Þcp þ τbcp þ
1þ n

2n
IcLð1 � r2Þcp

� Z T

0
De
R x

0
θðvÞdvdx

þ
�
ch þ τbch þ Icð1 � r2Þcp

�
Z T

0

Z T

t
De
R x

t
θðvÞdvdxdt

�

¼

�

ð1 � r2Þcp þ τbcp þ
1þ n

2n
IcLð1 � r2Þcp

�

De
R T

0
θðvÞdv

þ
�
ch þ τbch þ Icð1 � r2Þcp

�
Z T

0
De
R T

t
θðvÞdvdt;

(D1) 

Similar to the Proof of Proposition 1, taking the implicit derivative of (D1) with respect to τ; applying (D1) and simplifying terms, we have 

CE
T
¼bcpDe

R T

0
θðvÞdv

þ

�

ð1 � r2Þcpþ τbcpþ
1þ n

2n
IcLð1 � r2Þcp

�
1

1þ m � T
De
R T

0
θðvÞdvdT

dτ  

þbch

Z T

0
De
R T

t
θðvÞdvdt þ

�
chþ τbchþ Icð1 � r2Þcp

�
D
�

1þ
1

1þ m � T

Z T

0
e
R T

t
θðvÞdvdt

�
dT
dτ : (D2) 

Finally, taking the first-order derivative of CE/T, and simplifying terms, we obtain 

d
dτ

�
CE
T

��
�
�
�
T¼T*

2

¼
1
T

�
dCE
dτ �

CE
T

dT
dτ

��
�
�
�
T¼T*

2

¼ �
1
T

(��

1 � r2

�

cp þ τbcp þ
1þ n

2n
IcL
�

1 � r2

�

cp

�
1

1þ m � T
De
R T

0
θðvÞdv

�
dT
dτ

�2

þ
�
ch þ τbch þ Ic

�
1 � r2

�
cp
�
D
�

1þ
1

1þ m � T

Z T

0
e
R T

t
θðvÞdvdt

���
dT
dτ

�2
)�
�
�
�
�
T¼T*

2

< 0:

(D3) 

This completes the Proof of Part (b) of Proposition 2. 
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Appendix E. Proof of Lemma 1 

For simplicity, we define 

H31ðTÞ ¼ K þ τbK �
�
cp þ τbcp

�
�

TDe
R T

0
θðvÞdv

�

Z T

0
De
R x

0
θðvÞdvdx

�

� ðch þ τbchÞ

�

T
Z T

0
De
R T

t
θðvÞdvdt �

Z T

0

Z T

t
De
R x

t
θðvÞdvdxdt

�

� Iccp

�

T
Z T

M
De
R T

t
θðvÞdvdt �

Z T

M

Z T

t
De
R x

t
θðvÞdvdxdt

�

�
1
2
IesDM2:

(E1) 

Taking the first-order derivative of H31ðTÞ with respect to T yields 

H 0

31ðTÞ ¼ �
�
cp þ τbcp

� 1
1þ m � T

DTe
R T

0
θðvÞdv

� ðch þ τbchÞDT
�

1þ
1

1þ m � T

Z T

0
e
R T

t
θðvÞdvdt

�

� IccpDT
�

1þ
1

1þ m � T

Z T

M
e
R T

t
θðvÞdvdt

�

< 0;

(E2) 

Consequently, H31ðTÞ is a strictly decreasing function in T;which implies that Δ311 ¼ H31ðMÞ > H31ðmÞ ¼ Δ312. This completes the Proof of Lemma 
1. 

Appendix F. Proof of Theorem 3 

From (17), we define 

f31ðTÞ¼ ðKþ τbKÞ þ
�
cp þ τbcp

�
Z T

0
De
R x

0
θðvÞdvdxþ ðchþ τbchÞ

Z T

0

Z T

t
De
R x

t
θðvÞdvdxdt  

þIccp

Z T

M

Z T

t
De
R x

t
θðvÞdvdxdt �

1
2
IesDM2;

and 

g31ðTÞ¼ T:

Taking the first-order and second-order derivatives of f31ðTÞ with respect to T; we obtain 

f 031ðTÞ¼
�
cpþ τbcp

�
De
R T

0
θðvÞdv

þ ðchþ τbchÞ

Z T

0
De
R T

t
θðvÞdvdt þ Iccp

Z T

M
De
R T

t
θðvÞdvdt; (F1)  

and 

f 0031ðTÞ ¼
�
cp þ τbcp

�
D

1
1þ m � T

e
R T

0
θðvÞdv

þ ðch þ τbchÞD
�

1þ
1

1þ m � T

Z T

0
e
R T

t
θðvÞdvdt

�

þIccpD
�

1þ
1

1þ m � T

Z T

M
e
R T

t
θðvÞdvdt

�

> 0;

(F2) 

Therefore, TC31ðTÞ is a strictly pseudo-convex function in T; and hence there exists a unique global minimum T*
31 such that TC31ðTÞ is minimized. 

This completes the Proof of Part (a) of Theorem 3. 
By taking the first-order derivative of TC31ðTÞ in (19) with respect to T; and rearranging terms, we have dTC31ðTÞ=dT ¼ � H31ðTÞ=T as shown in 

(E1). We know from Appendix E that H31ðTÞ is a strictly decreasing function in T; and Δ311 ¼ H31ðMÞ > H31ðmÞ ¼ Δ312, for all M <m: If Δ312 � 0, then 
H31ðTÞ is positive for all T 2 ½M;m�. Hence, TC31ðTÞ is decreasing in ½M;m�, and T*

31 ¼ m: This completes the Proof of Part (b) of Theorem 3. 
H31ðTÞ is a decreasing function in T. If Δ311 > 0 and Δ312 < 0, then H31ðTÞ ¼ 0 has a unique solution T*

31 2 ½M;m�. From Part (a), we know that 
TC31ðTÞ is a strictly pseudo-convex function in T: Therefore, there exists a unique T*

31 2 ðM;mÞ such that TC31ðTÞ is minimized. This completes the 
Proof of Part (c) of Theorem. 

If Δ311 < 0 and Δ312 < Δ311 < 0; then H31ðTÞ is negative for all T 2 ½M;m�: Conversely, TC31ðTÞ is increasing in T 2 ½M;m�;which implies TC31ðTÞ is 
minimized at T*

31 ¼ M: This completes the Proof of Part (d) of Theorem 3. 

Appendix G. Proof of Proposition 3 

Part (a) of Proposition 3 immediately follows from (17) and (19), thus we omit it. Next, we will provide the Proof of Part (b) of Proposition 3. 
From Theorem 3 we know that there exists a unique minimum solution of TC31ðTÞ: Taking the first-order derivative of TC31ðTÞ in (17) with respect 

to T; setting the result to zero, we obtain: 
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1
T

�

ðK þ τbKÞ þ
�
cp þ τbcp

�
Z T

0
De
R x

0
θðvÞdvdxþ ðch þ τbchÞ

Z T

0

Z T

t
De
R x

t
θðvÞdvdxdt

þIccp

Z T

M

Z T

t
De
R x

t
θðvÞdvdxdt �

1
2
IesDM2

�

¼
�
cp þ τbcp

�
De
R T

0
θðvÞdv

þ ðch þ τbchÞ

Z T

0
De
R T

t
θðvÞdvdt þ Iccp

Z T

M
De
R T

t
θðvÞdvdt;

(G1) 

Similar to the Proof of Proposition 1, taking the implicit derivative of (G1) with respect to τ; applying (G1) and simplifying terms, we have 

CE
T
¼ bcpDe

R T

0
θðvÞdv

þ
�
cp þ τbcp

�
D

1
1þ m � T

e
R T

0
θðvÞdvdT

dτ

þbch

Z T

0
De
R T

t
θðvÞdvdt þ ðch þ τbchÞD

�

1þ
1

1þ m � T

Z T

0
e
R T

t
θðvÞdvdt

�
dT
dτ

þIccpD
�

1þ
1

1þ m � T

Z T

M
e
R T

t
θðvÞdvdt

�
dT
dτ :

(G2) 

Finally, taking the first-order derivative of CE/T, and simplifying terms, we obtain 

d
dτ

�
CE
T

��
�
�
�
T¼T*

31

¼
1
T

�
dCE
dτ �

CE
T

dT
dτ

��
�
�
�
T¼T*

31

¼ �
1
T

( 

cp þ τbcp

!

D
1

1þ m � T
e
R T

0
θðvÞdv

�
dT
dτ

�2

þ

 

ch þ τbch

!

D
�

1þ
1

1þ m � T

Z T

0
e
R T

t
θðvÞdvdt

��
dT
dτ

�2

þIccpD
�

1þ
1

1þ m � T

Z T

M
e
R T

t
θðvÞdvdt

��
dT
dτ

�2
)�
�
�
�
�
T¼T*

31

< 0:

(G3) 

This completes the Proof of Part (b) of Proposition 3. 

Appendix H. Proof of Theorem 4 

Applying (19), we define 

f32ðTÞ¼ ðKþ τbKÞ þ
�
cp þ τbcp

�
Z T

0
De
R x

0
θðvÞdvdxþ ðchþ τbchÞ

Z T

0

Z T

t
De
R x

t
θðvÞdvdxdt  

� IesDT
�

M �
1
2

T
�

;

and 

g32ðTÞ¼ T:

Taking the first-order and second-order derivatives of f31ðTÞ with respect to T; we obtain 

f 032ðTÞ¼
�
cpþ τbcp

�
De
R T

0
θðvÞdv

þ ðchþ τbchÞ

Z T

0
De
R T

t
θðvÞdvdt � IesDðM � TÞ; (H1)  

and 

f 0032ðTÞ ¼
�
cp þ τbcp

�
D

1
1þ m � T

e
R T

0
θðvÞdv

þ ðch þ τbchÞD
�

1þ
1

1þ m � T

Z T

0
e
R T

t
θðvÞdvdt

�

þIesD > 0:

(H2) 

Therefore, TC32ðTÞ is a strictly pseudo-convex function in T; and hence there exists a unique global minimum T*
32 such that TC32ðTÞ is minimized. 

This completes the Proof of Part (a) of Theorem 4. 
By taking the first-order derivative of TC32ðTÞ in (21) with respect to T; and rearranging terms, we have 

dTC32ðTÞ
dT

¼ �
1

T2

�

Kþ τbK �
�

cpþ τbcp

��

TDe
R T

0
θðvÞdv
�

Z T

0
De
R x

0
θðvÞdvdx

�

�

�

chþ τbch

��

T
Z T

0
De
R T

t
θðvÞdvdt �

Z T

0

Z T

t
De
R x

t
θðvÞdvdxdt

�

�
1
2
IesDT2

�

(H3) 

Let dTC32ðTÞ
dT ¼ � 1

T2H32ðTÞ; taking the first-order derivative of H32ðTÞ; yield 
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H 0

32ðTÞ ¼ �
�
cp þ τbcp

�
DT

1
1þ m � T

e
R T

0
θðvÞdv

� ðch þ τbchÞDT
�

1þ
1

1þ m � T

Z T

0
e
R T

t
θðvÞdvdt

�

� IesDT < 0:

(H4) 

Hence, H32ðTÞ is decreasing in T 2 ð0;MÞ: Note that H32ð0Þ ¼ Kþ τbK > 0, and Δ32 ¼ H32ðMÞ: If Δ32 � 0; then H32ðTÞ > 0 for all T 2 ½0;M�, which 
implies that TC32ðTÞ is decreasing in ½0;M�. Thus, T*

32 ¼ M: This completes the Proof of Part (b) of Theorem 4. 
If Δ32 < 0; then H32ð0Þ > 0; and Δ32 ¼ H32ðMÞ < 0: Applying the Intermediate Value Theorem, there exists a unique T*

32 2 ð0;MÞ such that TC32ðTÞ
is minimized. This completes the Proof of Part (c) of Theorem 4. 

Appendix I. Proof of Theorem 5 

We know from (20) that TC31ðMÞ ¼ TC32ðMÞ: Applying the fact that Δ311 ¼ Δ32 > Δ312; and Theorems 3 and 4, we have the following results: 
If Δ311 ¼ Δ32 < 0; then Δ312 < Δ311 ¼ Δ32 < 0; TC31ðTÞ is increasing in ½M;m� and TC32ðTÞ is decreasing in ½0;T*

32� but increasing in ½T*
32;M�:

Consequently, TC32ðT*
32Þ < TC31ðMÞ ¼ TC32ðMÞ: As a result, the optimal replenishment cycle time is T*

3 ¼ T*
32: This completes the Proof of Part (a) of 

Theorem 5. 
If Δ311 ¼ Δ32 > 0; and Δ312 < 0; then TC31ðTÞ is decreasing in ðM;T*

31Þ while increasing in ðT*
31;mÞ and TC32ðTÞ is decreasing in ð0;MÞ: Thus, 

TC31
�
T*

31
�
< TC31ðMÞ ¼ TC32ðMÞ which results in T*

3 ¼ T*
31. This completes the Proof of Part (b) of Theorem 5. 

If Δ312 > 0; then Δ311 ¼ Δ32 > Δ312 > 0; TC31ðTÞ is decreasing in ðM;mÞ and TC32ðTÞ is decreasing in ð0;MÞ: Therefore, TC31ðmÞ < TC31ðMÞ ¼
TC32ðMÞ and T*

3 ¼ m: This completes the Proof of Part (c) of Theorem 5. 
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