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Abstract

Let GG be a finite graph, and A C C. An edge labeling of graph G with labels
in A is an injection from E(G) to A, where E(G) is the edge set of G, and A is a
subset of C. Suppose that B is a set of complex numbers with |B| > |E(G)|. If
for every A C B with |A| = |E(G)], there is an edge labeling of G with labels in
A such that the sums of the labels assigned to edges incident to distinct vertices are
different, then G is said to be B-antimagic. A graph ( is an antimagic graph in the
literature, if G is {1, 2, ..., |F(G)|}-antimagic.

The concept of antimagic graphs was introduced by Hartsfield and Ringel [11]
in 1990. They conjectured that every connected graph with at least two edges was
antimagic. The conjecture has not been completely solved yet.

We propose the concept of R-antimagic graphs in this thesis. In Chapter 2,
we prove that every R-antimagic graph is C-antimagic. We also show that every
R*-antimagic graph is also R-antimagic if the graph is regular. Additionally, we
discover a special class of regular graphs that are R-antimagic (see Theorem 2.3.5).
One of the graphs in this class is the Peterson graph.

In Chapter 3, we show that cycles and complete graphs of order > 3 are
R-antimagic. Assume that G is a complete graph or a cycle with V(G) =
{uy,ug, -+ ,u,} (n > 3). We have found that all the vertices of G can be listed
as uy, ug, - -, u, such that for every A C R with |A| = |E(G)|, there is an edge
labeling f of G with labels in A such that f T (uy) < f T(ug) < -+ < f T(un).
The property we call uniformly R-antimagic property which is independent of the
choice of the subset A of R. Clearly, every uniformly R-antimagic is R-antimagic.
We prove that Cartesian products G10G.0---0G,, (n > 2) are uniformly R-

antimagic, where each G is a complete graph of order > 2 or a cycle.

il
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In Chapter 4, we prove that wheels, paws, and paths of order > 6 are R-
antimagic. Finally, we summarize the findings and recommend future research in
Chapter 5.

Keywords: R-antimagic graphs, Regular graphs, Cartesian product of graphs,

Uniformly R-antimagic graphs
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Chapter 1

Introduction

We begin this chapter by introducing some fundamental definitions and notations that will
be used throughout this thesis. Following that, we look at the literature on antimagic labeling

and give an overview of this study.

1.1 Fundamental definitions and notations

This section will go over some fundamental definitions and notations in graph theory which
are used in this thesis. We primarily adhere to the standard terminologies and notations found
in West’s graph theory textbook [21].

A graph G is represented by the ordered pair G = (V, E), where V is a collection of
elements referred to as vertices and E is a collection of unordered pairs of vertices referred to
as edges. The set V' (or V(G)) is referred to as the vertex set of GG, and the set E (or E(G)) is
referred to as the edge set of G. In a graph (G, an edge is a two-element subset of V' denoted
by e = xy, where e € F, x and y are referred to as the endpoints of e. A vertex x is said to be
adjacent to the vertex y if there is an edge between x and y, and an edge e is said to be incident
to the vertex x if  is an endpoint of e.

The set of edges incident to v in graph G is denoted by E¢(v). In a graph, a clique is a set
of vertices that are adjacent to each other, and a set of pairwise nonadjacent vertices in a graph
is called an independent set. If the vertices of a graph can be partitioned into a clique and an
independent set, it is a split graph. The order of graph GG, denoted by |V (G)], is defined as the
cardinality of the set V. The cardinality of the set £, denoted by |E'(G)|, is the size of the graph
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G. If both the vertex set and the edge set of a graph are finite, the graph is considered to be
finite.

IfV(H) CV(G)and E(H) C E(G), then H is a subgraph of G, and we denoteas H C G.
We call H is a spanning subgraph of a graph G if V(H) = V(G). A subgraph H = (V', E’) of
G = (V, E) is called an induced subgraph of G if E' consists of all edges of G that join vertices
inV'. For S C V(G), we denote G[S] as the induced subgraph of G, which is the subgraph
induced by S. The graph G—S is the subgraph of G induced by V' (G)—S. For S = {v}, we
denote G—S by G—v. Similarly, G—uv is the graph obtained from G by deleting the edge uv,
and also G + uv denotes the graph obtained from G by adding edge uv.

In a graph G, the neighborhood of a vertex v, written as N (v) or N(v), is the set of all
vertices adjacent to v. In the graph (G, the number of edges incident to v is called the degree
of a vertex v, denoted by degq(v) or deg(v). The maximum degree of GG, denoted by A(G), is
the maximum of degq (v) over all vertices v in V(G), and the minimum degree of G, written as
d(G), is the minimum of degq(v) over all vertices v in V (G), i.e., A(G) > degg(v) > §(G),
forall v € V(G). A vertex v is called an isolated vertex if it has no neighbor in G. A graph is
said to be a k-regular graph if all its vertices have the same degree k.

A loop is an edge whose endpoints are equal. Multiple edges are edges having the same
pair of endpoints. A simple graph is a graph having no loops or multiple edges. Next we define
some particular families of graphs studied in this thesis. A path is a simple graph whose vertices
can be ordered so that two vertices are adjacent if and only if they are consecutive in the list.
P, denotes a path of order n. A u, v-path is a path whose vertices of degree 1 (its endpoints)
are u and v; the others are internal vertices. The length of u, v-path is the size of u, v-path. The
distance between vertices u and v on the w, v-path which is denoted by dg(u,v), is the least
length of u, v-path. A connected graph G is a graph in which there is an u, v—path whenever
u,v € V(G). Otherwise, a graph is called disconnected. A closed path, a u, v-path with u = v,
is called a cycle. A cycle of order n, denoted by C,,. A tree is a graph that is connected and has
no cycles.

A complete graph K,, of order n is a graph where every two distinct vertices are adjacent.
The set of pairwise nonadjacent vertices in a graph is an independent set. A graph G is bipartite
if V(G) is the union of two disjoint independent sets, and each independent set is called a partite

set. A complete bipartite graph is a simple bipartite graph such that two vertices are adjacent

DOI:10.6814/NCCU202200274



if and only if they are in different partite sets. When the partite sets have sizes r and s, the
complete bipartite graph is denoted by K ;. The graph K ,(n > 2) is represented by the star
Sy, and m.S,, is a star forest made up of disjointed m(m > 1) copies of S,,. A spider graph
is a tree with at most one vertex of degree greater than two. A paw is K 3 + e. A wheel W,
with n spokes, is a graph with a center v connected to all the n vertices in cycle C,,. The graphs
mentioned above are all connected.

The Cartesian product of graphs G and H, denoted by GLIH, is the graph that has vertex
set V(G) x V(H) = {(u,v) |u e V(G),v € V(H)}; and two vertices (u,v) and (u',v") are
adjacent in GOH ifand only if (1) u = v’ and (v,v’) € E(G),or (2)v = v"and (u,u’) € E(H).

1.2 Antimagicness of graphs

All graphs considered in this dissertation are finite, simple, and without isolated vertices.
Let R denote the set of real numbers and C the set of complex numbers. Assume that G is a

graph. We have the following definitions:

Definition 1.2.1. The edge labeling of G with the labels in A is a bijection from E(G) to A
where A is a subset of C with |A| = |E(G)].

Definition 1.2.2. If f is an edge labeling of G with labels in A, then we use f*(v) to denote

> ecBaw) f(€) for any vertex v of G, and f*(v) is called the vertex sum at v.

Definition 1.2.3. If B is a subset of C with | B| > |E(G)| such that for each subset A of B with
|A| = |E(QG)|, there is an edge labeling f of G with labels in A such that f*(u) is not equal to

f1(v) for any two distinct vertices u, v of G, then we say that [ is a B-antimagic labeling of G.

A graph G is called B-antimagic if G has a B-antimagic labeling.

In the literature, a graph G is antimagic if Gis {1,2, - - - ,|E(G)|}-antimagic. The concept
of antimagic graphs was introduced by Hartsfield and Ringel [11] in 1990. They conjectured
that every connected graph with at least two edges was antimagic. This conjecture has not been
completely solved yet. In the field of antimagic graphs, graph theory researchers have made
some efforts. Some partial results are listed below.

Graphs with maximum degree |V (G)| — 1 are antimagic. Alon et al. [1] used probabilistic

methods and analytic number theory to show that there is an absolute constant C' such that
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graphs with minimum degree §(G) > C'log|V(G)| are antimagic. They also proved that
complete partite graphs (other than K5) and graphs with maximum degree at least |V (G)| — 2
are antimagic. Shang proved that all spiders are antimagic [15]. Later, Shang et al. [16] gave a
criterion for mSs U S,,(n > 3) to be antimagic.

The antimagicness for some special types of regular graphs was verified by Cranston [9],
Cranston et al. [10], and Liang and Zhu [13]. According to Cranston [9], every regular bipartite
graph (with a degree of at least two) is antimagic. Cranston relied heavily on the Marriage
Theorem to prove this. Later, Cranston et al. [10] proved that all regular graphs with odd degree
are antimagic. And, it has been proved by Chang et al. [5] that all regular graphs with even
degree are antimagic. Hence, k-regular graphs are antimagic where k > 2.

Some studies have addressed the antimagicness of Cartesian products. Wang [18] proved
that any Cartesian product of two or more cycles is antimagic. The general result also shows
that C,[1H is antimagic, where n > 3, and H is an antimagic k-regular graph (£ > 1). Wang
and Hsiao [19] later introduced new classes of antimagic graphs that were constructed using
Cartesian products. They proved that P,,[ 1P, (m > n > 2)and GLIP, (n > 2) are antimagic,
where G is a regular antimagic graph. Cheng independently proved more generalized results
in [7,8], which are the Cartesian products of two paths, as well as the Cartesian products of two
or more regular graphs, are antimagic. Moreover, Zhang and Sun [22] proved that if a regular
graph G is antimagic, then for any connected graph H, the Cartesian product GL1H is antimagic.

Assume that RY denotes the set of positive numbers. Matamala et al. [14] proposed
the concept of universal antimagic graphs, and a graph G is universal antimagic if G is R*-
antimagic. They proved that paths, cycles, and graphs whose connected components are cycles
or paths of odd lengths are universal antimagic. Split graphs, as well as any graph containing a

complete bipartite graph as a spanning subgraph, are shown to be universal antimagic in their

paper.

1.3 Overview of the thesis

In this thesis, we generalize further and define R-antimagic graphs.
In Chapter 2, we prove that every R-antimagic graph is C-amtimagic. We also show that

every RT-antimagic graph is also R-antimagic if the graph is regular. Additionally, we propose
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that a class of regular graphs is R-antimagic.

In Chapter 3, we show that Cartesian products G10G,0 - - - G, (n > 2) are R-antimagic,
where each (G; is a complete graph of order > 2 or a cycle. The methods of labeling on Cartesian
products of cycles used in this paper are similar in [7, 18]. We present efficient algorithms for
finding edge labelings of Cartesian products of cycles and complete graphs in Chapter 3.

In Chapter 4, we show that wheels, paws, and paths of order > 6 are R-antimagic.

In Chapter 5, we summarize our results and make suggestions for future studies.
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Chapter 2
R-antimagic regular graphs

In this chapter, we will prove that R*-antimagic regular graphs are R-antimagic.

Furthermore, we also prove that a spacial class of regular graphs is R-antimagic.

2.1 R* U {0}-antimagic graphs

The concept of universal antimagic graphs is proposed in [14]. In this section, we introduce
R* U {0}-antimagic graphs. Itis easy to see that S,, (n. > 3) is R U {0}-antimagic. Moreover,

we have the following results.

Theorem 2.1.1. If G is a connected graph of order > 3 with A(G) = |V(G)| — 1 and G # S,
then G is R* U {0}-antimagic.

Proof. Assume |V (G)| = n, |E(G)| = m and v is a vetex of G with degree n—1 (see Figure
2.1). Letry >r9 >r3 > -+ > 1,1 >1r, > -+ > 1, be the arbitrarily given nonnegative
numbers. First, we arbitrarily assign labels in {7, 7,1, 7nso,...,"n} to the edges in G—v.

Denote this labeling of G—v by g, and g*(w) is the vertex sum of w under the labeling ¢ for

each vertex w of G—v. We order the vertices of G—v as vy, vs,...,v,-1 in such a way that
g (v1) > gt(va) > -+ > g (v,-1). Then we assign the remaining n—1 real numbers to the
edges vvy, vuy, . .., vu,—; in decreasing order, i.e., assign r; to vv;. We define an edge labeling

f of G with labels in {ry,ro,...,7h_1,7n,...,"m} by f(e) = g(e) ife € E(G — v), and
fvv;) = 7,0 = 1,2,...,n — 1. Then the vertex sum of v;, f*(v;) = g% (v;) + r; fori =
L,2,...,n—1,and f*(v) = > ;7 Since deg(v) > deg(v;),i = 1,2,...,n — 1, we
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Figure 2.1: A(G) = |V(G)] — 1

obtain f*(v) > fT(vy) > ft(va) > -+ > ft(v,-1). The labeling is R™ U {0}-antimagic
labeling. u

We prove that stars are R™ U {0}-antimagic, but not R-antimagic.
Remark 2.1.2. S, (n > 3) is RT U {0}-antimagic, but not R-antimagic.

Proof. Let S,, be the star with V(S,)) = {v1,vq, - ,v,} U {v} and E(S,) = {vv;]| i =
1,2,--- ,n}. Since A(S,) = n = |[V(G)| -1, we have, by Theorem 2.1.1, that S,, is Rt U{0}-
antimagic.

Now, we prove .S, (n > 3) is not R-antimagic. Letry < ry < r3 < --- < r, be real
numbers with r; + 79 + - -+ 17,1 = 0. Let f be an arbitrary edge labeling of S,, with labels in
{r1,r9, 73, -+ , 75 }. Without loss of generality, f is defined by f(vv;) = r; fori =1,2,--- |n
(see Figure 2.2). Wesee that f T(v,) =1, =ri+ro+--+71,1+7r, = f T(v). Accordingly,

S, isnot {ry, 79,73, - - , T, }-antimagic, which results in .S,, not R-antimagic. O

As aresult, stars, complete graphs, and wheels are R* U {0}-antimagic. We illustrate that

wheels and complete graphs are R-antimagic in Chapters 3 and 4.

2.2 R-antimagic graphs and C-antimagic graphs

Assume that GG is a graph. The main result of this section is that G is R-antimagic if and
only if G is C-antimagic. We begin with the following lemmas:

7
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Figure 2.2: Edge labeling of star

Lemma 2.2.1. Assume G is a graph and A C B C Cwith |A| > |E(G)|. If G is B-antimagic,

then G is A-antimagic.

Lemma 2.2.1 implies that if a graph G is C-antimagic, it is R-antimagic, and if G is R-

antimagic, it is Rt U {0}-antimagic.

Lemma 2.2.2. Suppose that a; + byi, az + bai, ... 4y + byi (m > 2) are distinct complex
numbers, where a1, as, ..., Qm, b1, ba, ..., b,, are real numbers. Then there exists r € R such
that a1 + rby, ag + by, ... ,a,, + b, are all distinct.

Proof. Let fi(x) = a1+ b1z, fo(x) = as+box, ..., fin(z) = @y, + byx be linear real functions.

From the assumption, we see that fi(x), fo(z), ..., fn(z) are distinct linear real functions.
Then, there exists € R such that fi(r), fo(r), ..., fm(r) are distinct, i.e., a; + 7by, ag + rba,
. ,am + b, are all distinct. O]

Lemma 2.2.3. Let a, b, d, U, r be real numbers. Suppose that a + rb # o' + rb'. Then,
a+bi #d + Vi

Proof. Suppose, on the contrary, that a + bi = a’ 4+ b'i. Since a, b, d’, I/, r be real numbers, we
have a = a/ and b = b/, which implies a + rb = a’ + rb/, contradicting the assumption. This

confirms the lemma. OJ

Theorem 2.2.4. A graph G is R-antimagic if and only if G is C-antimagic.
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Proof. The ”if” part follows from Lemma 2.2.1. Now, we prove the only if” part.

We show that G is C-antimagic if G is R-antimagic. Let | E(G) |= m. Arbitrarily give
m distinct complex numbers ay + b1i, as + bot, ... , Gy + byt, Where aq, as, ..., G, b1, b,
..., by, are real numbers. By Lemma 2.2.2, there exists € R such that a; + rby, as + rbo, . ..
, Gy + 7b,, are all distinct. Since G is R-antimagic, there exists an edge labeling f of G with
labels in {ay + b1, as + 1bs, . .., am + by, } such that the vertex sums of GG are all distinct.

Let f* be an edge labeling of G with labels in {ay + b1i, ag + bat, . .., Gy, + byi} defined
by f*(e) = a; + bji, if f(e) = a; +rb;(1 < j < m) where e € E(G). We see that if the vertex
sum of f* at a vertex v is A + Bi, then the vertex sum of f at a vertex v is A + rB. Since the
vertex sums of f are all distinct, we have, by Lemma 2.2.3, the vertex sums of f* are all distinct.

This completes the proof. ]

2.3 A class of R-antimagic regular graphs

Some results of the R-antimagicness of regular graphs are obtained in this section.
Let A C Cand a € C. We denote the set {aa | a € A} by oA, and denote (—1)A by —A.

We have the following lemma:

Lemma 2.3.1. Assume that G is a graph, and A is the subset of C, and o € C — {0}. If G is

A-antimagic, then
(1) G is aA-antimagic.
(2) G is —A-antimagic.

Proof. (1) Assume that |E(G)| = m. Arbitrarily give m distinct complex numbers az;, azo,

..., OZpy, Where 21, 29, ..., Zy arein A C C, and o # 0. We see that az; # az; if and only if
2 # z;. Because 21, 29, ..., and z,, are all distinct, @z, oz, ..., and oz, are all distinct as
well. Since G is A-antimagic, there exists an edge labeling f of G with labels in {21, 2o, ..., 2, }

such that the vertex sums f* of GG are all distinct.

Let g(e) = af(e) for all e € E(G). Then g is an edge labeling of G with labels in
{az1,azs, ..., az,}. Because the vertex sums f* of GG are all distinct, the vertex sums g* of
G are also distinct. This completes the proof.

(2) Since —A = (—1)A, (2) follows from (1). O
9
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Lemma 2.3.2. Assume that G is a regular graph and |E(G)| = m. Let ay,s,. .., a,, be

distinct complex numbers, and o« be a nonzero complex number. If G is {aq, o, ..., am}-
antimagic, then G is {ay + a, a2 + «, . . .,y + a}-antimagic.
Proof. Assume that G is a k-regular graph and G is {ay, ao, . .., a;, b-antimagic. Then there

exist an edge labeling f, such that the vertex sums f *(v) = > () f(e) of G are all distinct.
Let B={oy + a,as + a,...,q,, +a},and g(e) = f(e) + a. Then g is an edge labeling with
labels in B. Since G is k-regular and ™ are all distinct, we obtain that g (v) = > c () 9(€) =
> ecEg(v) J (€) + ka are all distinct. Hence, G is B-antimagic. O

Theorem 2.3.3. Assume that G is a regular graph. Let a,b € R and a < b. The following

Statements are equivalent.
(1) G is R-antimagic.
(2) G is Rt-antimagic.
(3) G is (a,b)-antimagic.

Proof. Assume that G is a regular graph of size m.

(1) = (3).

Since (a,b) C R and G is R-antimagic, G is (a, b)-antimagic by Lemma 2.2.1.

(3) = (2).

Letry, ro, ..., r, bethe arbitrarily given positive numbers where 0 < r; < ry < - -+ < 1y,
For a < b, assume thatt; = a + (b — a) r_i‘_ G fortr =1,2,...,m.Since 0 <7r; <r; <1y <

TTI’L
rm + 1 and a < b, we can have
<a+(b—a) i ti <b
a<a —a =37
Tm + 1

fori = 1,2,...,m. By Lemma 2.2.1, if G is (a,b)-antimagic, then G is {t;,t2,... ¢ }-

antimagic. Therefore, G is {ry,rs,...,r, }-antimagic by Lemmas 2.3.1 and 2.3.2. Since
{r1,r9,...,rm} C RT is arbitrary, we obtain that G is R -antimagic.
(2) = (1).
Let ry, 79, ..., 7, be the arbitrarily given real numbers where r; < ro < --- < 7,,. For
a > 0,assume thatt; = r;—ri+afore =1,2,...,m. Then, we canhavet; = r;—ri +a > 0.
10
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By Lemma 2.2.1, if G is Rt -antimagic, then G is {t, ts,. .., t,, }-antimagic. Therefore, G is
{r1,79,..., 7y t-antimagic by Lemma 2.3.2. Since {ry, 79, ..., 7, } C R is arbitrary, we obtain

that G is R-antimagic. ]

Let GG be a graph and A be a subset of R with |A| = |E(G)|. If g is an edge labeling of G
with labels in A and K, L are nonempty subsets of £(G) such that g(z) < g(y) forall z € K,
y € L, then we write K < L under g. It is easy to see that the relation < is transitive (i.e., if K,
L, M are nonempty subsets of F(G), and K < L, L. < M, then K < M).

When proving Theorems 2.3.5, the following useful lemma will be utilized.

Lemma 2.3.4. Let G be an arbitrary graph and A be a subset of R with |A| = |E(G)|. Let f
be an edge labeling of G with labels in A. Suppose that Ay, As, By, By are pairwise disjoint
nonempty subsets of the edge set E(G) with |As| + |B1| < k, |A1| + |As| = |B1| + | Bz = k
such that Ay < By U By and Ay < By under f. Then

> fler< Y fle) 2.3.1)

ecA1UA5 ec B1UBsy

Proof. Since Ay, Ay, By, B, are pairwise disjoint, and | Ay | +|As| = | By|+|Bz| = k. Consider
that Ay U Ay = {ay,ag,...,ax} and By U By = {by, bs,...,b;}. Since |Ay| +|By| < k, we can
assume that |Ay| = tand |B;| < k —t. Let s = |By| = k — | By| and Ay = {ay,a9,...,a;} and
By = {b1,bs,...,bs}. Hence, s = [Bs| = k — |By| >t = |Ay],1e.,0 <t < s < k. Since Ay,

As, By, B, are pairwise disjoint, we have

Yo fle)=Y"fler+ > fle), 23.2)

e€A1UA2 ec Ay e€A,
and
Yoofe)=D"fle+ > flo=> fl)+ > fh)=>_ fb)+ Y. f(b)
e€B1UB> e€By e€By 1<i<s s+1<i<k 1<i<t t+1<i<k

(2.3.3)
Since A < By under f and |As| = t, we have f(a) < f(b) forall a € Ay, b € Bs. Hence

D fle) < > fb). (2.3.4)

e€Ay 1<i<t

11
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Also note that A; < By U By under f, we have f(a) < f(b) foralla € A;,b € B; U B,y. Then

dHey= D fla)< D fb). (2.3.5)

e€Ay t+1<i<k t+1<i<k

Combining (2.3.2)~(2.3.5), we obtain

Yoofe< Y fle) (2.3.6)

ecA1UA ecB1UB>2

]

Assume G is a graphand H C V(G) and K C V(G). We define G [H, K] as the bipartite
subgraph of GG induced by edges between H and K. The order of edge sets labeled in Theorem
2.3.5 is identical to that in [13]. Because of the difference in labels, we have the following

theorem.

Theorem 2.3.5. Let G be a k-regular graph, and vy be an arbitrarily given vertex of G. Assume
that every vertex of G has distance at most p to vy. Let Lj = {u | dg(u,vo) = j} for0 < j <np.
Forallz € Lj_yandy € L; (j > 1), if either

1. x is not adjacent to y and deggp,_, 1,)(v) + deggir,_,,L,)(y) < kor
2. wis adjacent to y and deggr,;_,.;)(7) + degar,_,..,)(y) <k +1,
then G is R-antimagic.

Proof. Let G be a k-reqular graph, and v, be a vertex of G. Assume that V(G) = Ly U L; U
--+U L, where L, # @. Foreachu € V(G),ue L; (j =1,2,...,p), we arbitrarily choose an
edge joining u and a vertex in L;_, and denote this edge by 7(u). Clearly, 7(u) € G [L;—1, L;].
We shall denote by G [L,] the subgraph of GG induced by L;. Note that each vertex in L; is
incident to at least one edge of G [L;-1, L;]. Let E; = E(G [Ly]), E; = {7(u) | u € L;}, and
B} = E(G[Lj-1, Lj]) — Ej for j = 1,2,...,p. We see that the edge set F/(G) is the union of
Ej, Ej and EY (j = 1,2,...,p). Also note that F;, E’ and E are pairwise disjoint. Now we
prove that G is R-antimagic. Let A C R with |A| = |E(G)| be arbitrarily given. Let f to be an
edge labeling of GG with labels in A. The edge sets will be labeled sequentially as follows:

o

p—1r-

E, E! E E, 1,E!

p—1

.., B, E! E}
12
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Forv € L;, j > 1, we define

s(v) = > fley+ > fle+ D fle)

e€E(G[L;,Lj+1])NEg(v) e€E;NEg(v) e€E/NEg(v)

where E¢(v) denotes the set of edge incident to v. Let |L;| = n; for j = 1,2,--- , p. The labels
of the edges in £; and E7 are arbitrary. Then the labeling f of G with labels in A satisfies Rules
2.3.1~2.3.3:

Rule2.3.1. Forj=1,2,--- p, B; < B} < .

Rule2.3.2. Forj =2,3,---,p, &} < E; 4.

Rule233. Forj=1,2,--- p,if s(u) < s(v) then f(r(u)) < f(r(v)) forallu,v € L;, u # v.
Claim 1. For j =1,2,--- .p,u,v € Lj, u # v, then f *(u) # f T(v).

Check of Claim 1. For j = 1,2,--- ,p,

fr(u) = >, flo+ Y, fe+ D fe)+ flr(w)
e€E(G[L;,L;j+1]))NEg(u) e€E;NEq(u) e€E/NEG(u) (2.3.7)
= s(u) + f(7(u)),
and
frv) = > flo+ Y flo+ Y, fle)+ frw)
e€E(G[L;,Lj11])NEg(v) e€E;NEg(v) e€E/NEg(v) (238)
— 5(v) + f(r(v)).

Without loss of generality, we may assume s(u) < s(v). By Rule 2.3.3, since s(u) < s(v), we
have f(7(u)) < f(7(v)). Therefore, f *(u) < f *(v) for j = 1,2,--- ,p. This completes the
check of Claim 1.

Claim 2. For j=1,2,--- ,p, fT(y) < f () forallxz € L;_y,y € L;.

13
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Check of Claim 2. Let

A1 = (E(G[Ly, Lj1]) U Ej) N Eg(y),
Ay = E(G[Lj-1, Lj]) N Ec(y),

(2.3.9)
By = E(G[Lj-1, Lj]) N Eg(z),
By = (Ej-1 U E(G [Lj-2, Lj-1])) N Eg(x).
We can see that
fH) = > fleo+ >, fle+ > fl)
¢€B(GIL;, ;111N Ea(v) e€B;NEa(y) e€E/NE(y) (2.3.10)
+ f(7(y))
and
fr(x) = > fE+ > O+ D e
e'€E(G[Lj_1,L;INEg(x) e'€E;_1NEg(x) eery |NEc(z) (2‘3.11)
+ f(7(2))
Since 7(y) € Ej and 7(x) € E}_,, we rewrite
= > fle), 2.3.12)
ecA1UAy
and
fray= "> f), 2.3.13)
e’€B1UBy

We distinguish two cases:
Case 1. z is not adjacent to y (see Figure 2.3).

Since G be a k-reqular graph, and A, A,, By, B, are pairwise disjoint nonempty subsets
of the edge set E(G), we have |Ay| 4 [Ay] = |By| + |By| = k. Since deggir, ,.,(z) +
deggir, ..0;)(y) < kforallz € Ly andy € L;, j > 1, we have |Ay| + |B;| < k. From Rule
2.3.1 and Rule 2.3.2, since

Bl <Ej<E;<E/<E;<E; 1 <E | <E, |,

14
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we have A; < B; U By and Ay < By under f. By Lemma 2.3.4, we obtain

— -—
— — —
e e e . . e e e E— —— —

Figure 2.3: z is not adjacent to y

Fry = > fleg< > fld)=f" () (2.3.14)

ecA1UA e’eB1UB>y

Case 2. z is adjacent to y (see Figure 2.4).

Let ¢ = xy. We see that A, N By = {e}. Let C = Ay — {e} and D = B; — {¢}.
Then A,, C, D, By are pairwise disjoint nonempty subsets of the edge set £(G), we have
|A1| + |C] = |D| + |Bs| = k — 1. Since deggr, ,,.,)(x) + degair, 0, (y) < k + 1 for all

15
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re€L;yandy € L;, j > 1, wehave |C|+ |D| < k— 1. From Rule 2.3.1 and Rule 2.3.2, since

— -—
— —
— — —
e e e e e e e e e — —

Figure 2.4: z is adjacent to y

" /

=B =B <E <E;_1<E] | <FEj

we have A} < DU B and C' < By under f. By Lemma 2.3.4, we obtain

d o ofler< D ). (2.3.15)

ec A UC e’e DUB>
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Figure 2.5: Peterson Graph

That implies
Frw =3 fle= >, fle)+1(
e€cA1UA2 ec A UC (2316)
< Y fE@+fE@= > fl&)=F"(a).
e’e DUB> e’€e B1UB>
This completes the check of Claim 2.
From Claim 1 and Claim 2, we can have G is R-antimagic. ]

As a result, all cycles are R-antimagic. We will discuss cycles in Chapter 3. Additionally,
they have another property of R-antimagic.

Petersen graphs are graphs with the vertex set {ug, u1, . . ., ug, Vo, v1, . . ., U4, } and the edge
set {uuipg |1 =0,1,2,3,4}U{vva0 |1 =0,1,2,3,4} U{uw; | 0 =0,1,2,3,4} with indices
taken by modulo 5 (see Figure 2.5). The Petersen graph is without a doubt one of the most well-
known objects encountered by graph theorists. The following corollary shows that the Peterson

graph is R-antimagic.
Corollary 2.3.1. Peterson graph is R-antimagic.

Proof. Let GG be the Peterson graph. We draw the Petersen graph in another way (see Figure
2.6). Let
Vo ={u},
Vi = {ug, ug,us}, (2.3.17)
Vy = {us, ug, uz, us, ug, 1o} -

Therefore, V;, Vi, and V5 form a partition of V(G), and V; = {u | dg(u,u,) = i}. Note that

17
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G [V4, V2] is the bipartite subgraph of G induced by edges between V; and V5. Since Peterson
graph is 3-regular, and degqv, vo(®) + degapy,ve(y) = 3 forallz € Vi andy € Vo By

Theorem 2.3.5, we can obtain that GG is R-antimagic. Then, we complete the proof. ]

Uy

Figure 2.6: Another form of Peterson graph
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Chapter 3
Uniformly R-antimagic graphs

The main result in this chapter is that the Cartesian products G;0G.0---0OG, (n > 2)

are R-antimagic, where each G; is a complete graph of order > 2 or a cycle.

3.1 Cycles and complete graphs

To prove the results in this section, we need the concept of uniformly R-antimagic graphs,

which is defined below.

Definition 3.1.1. Let G be a graph. Suppose that all the vertices of G can be listed as
Uy, Us, -+, Uy Such that for every A C R with |A| = |E(G)|, there is an edge labeling f
of G with labels in A such that f *(u1) < f T(u2) < --- < f T(um). Then we say that G
is uniformly R-antimagic, and that the sequence of vertices wuy,us, - - - , Uy, has the uniformly

R-antimagic property.

Note that in this definition, the ordering of the vertices wuy,us, - - - , u,, satisfying the
property f t(u1) < f t(u2) < -+ < f T(uy) is independent of the choice of the subset A
of R. Obviously, every uniformly R-antimagic graph is R-antimagic.

We are the first to define R-antimagic graphs and to propose the uniformly R-antimagic
property. Some of our results are shown in [6]. Before proving our main result, we describe

uniformly R-antimagic property on cycles and complete graphs.

Theorem 3.1.2. /6] Every cycle is uniformly R-antimagic.

19
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n 1s odd n 1S even

Figure 3.1: Edge labeling of C,,

Proof. Let C,, be the cycle with vertex set {vy,vq, - - , v, } and edge set {v1vo} U {v;v;40] i =
1,2,--- ;n—2}U{v,_1v,}. Letr; < ry <13 < --- < 1, be the arbitrarily given n real
numbers. We define an edge labeling f of C,, with labels in {7y, 79, -+ ,7,} by f(viv2) = 71,
f(vivige) =ripg fori =1,2,--- 'n—2,and f(v,_1v,) = 7, (see Figure 3.1).

Then f*(v1) = 11479, [T (v) =ri1+rifori =2 -+ n—1,and f*(v,) = rp_1+7n.
Sincer;+re < ri+r3 < rot+rs < r3+rs < Tatre < v < Ppeztrply < Tp_atrn < Tne1+Tn,
we have f T(v1) < f T(vg) < -+ < fT(v,). We see that the listing of vertices vy, v, - , vy,
with the property f T (v1) < f T(v2) < -+ < f (v,) is independent of the arbitrarily given

r1 <re <rg < ---<r,. Thus, C, is uniformly R-antimagic. O]

Theorem 3.1.3. /6] The complete graph K,, (n > 3) is uniformly R-antimagic.

Proof. Let K,, be the complete graph with vertex set V(K,,) = {vy,vs, -+ ,v,} and edge set
E(K,) ={vv;|1<i<j<n} Letr; <ry<rs<---< () be the arbitrarily given real
numbers.

Let f be an edge labeling of K, with labels in {ry, 79,73, - ,r(g)} such that for i =
1,2,---n—2, flowigr) < f(oiviga) < flvvgs) < -+ < f(vvn) < f(vip1vieo). Hence

f(’l}lvg) < f(Ul’Ug) < e < f(UIUn) < f(Ug’Ug) < f(U2U4> < - K< f(’UQUn) < f(U3U4) <
20
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Us

Figure 3.2: Edge labeling of K,

-+« < f(vy—1vy) (see Figure 3.1).

For1l <7 <n —1, we have

£ (w)
= > flowo) + fowg) + Y fow)
1<k<i i+1<k<n (3 1 1)
< Z fopvigr) + f(vivi) + Z f(vigioy)
1<k<i i+1<k<n
=1 " (vis1)-
Hence f T(v1) < f T(v2) < --- < f T(v,). We see that the listing of vertices vy, v, -+ , v,

with the property f T(v1) < f T(v2) < -+ < f T(v,) is independent of the arbitrarily given

rp<ry<ryg << T (2): Thus, K, is uniformly R-antimagic. ]

2

3.2 Cartesian products of uniformly R-antimagic graphs and
complete graphs

We introduce the concept of < in Section 2.3.
21
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Definition 3.2.1. Let G be a graph and A be a subset of R with |A| = |E(G)|. If g is an edge
labeling of G with labels in A and K, L are nonempty subsets of E(G) such that g(z) < g(y)

forallx € K, y € L, then we write K < L under g.
The following trivial lemma will be used in the proofs of Theorems 3.2.3 and 3.3.1.

Lemma 3.2.2. /6] Let G be an arbitrary graph and A be a subset of R with |A| = |E(G)|.
Let g be an edge labeling of G with labels in A. Suppose that A, As, By, By are pairwise
disjoint nonempty subsets of the edge set E(G) with |A,| = |By|, |As| = |Ba| = 1 such that
Ay < By U By and Ay < By under g. Then

> gley< > gle). (3.2.1)

ecA1UAs e€B1UB>

Proof. Let Ay = {a} and b be an arbitrary edge in B;. Since Ay < B; under g, we have
g(a) < g(b). Since A; < By U By under g and |A;| = | By U (B — {b})|, we have

S gley< > gle). (3.2.2)

e€A; e€BaU(B1—{b})
Note that
> gle) =gla)+ Y gle), (3.2.3)
eEAluAQ 6€A1
and

S ogle)=gb)+ > gle) (3.2.4)

e€B1UBs e€BaU(B1—{b})

Combining (3.2.2), (3.2.3), (3.2.4) and g(a) < g(b), we have

>, ogler< D> gle). (3.2.5)

e€A1UAs e€B1UB3

O

We need the following notations. Let GG be a graph, and A be a subset of R with |[A] =
|E(G)|. If f is an edge labeling of G with labels in A and D is a non-trivial connected subgraph
of G which contains no isolated vertices, then we use fg(p) to denote the restriction of f to
E(D) with range f(E(D)). Obviously, fz(p) is an edge labeling of D with labels in f(E(D)).

Moreover, for a vertex v € V (D), we use fE(D) (v) to denote (fE(D))Jr (v). Recall that Ep(v)

22
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is the set of all edges incident to v in D. Thus, fg(D)(v) =D eempw f(€)-

Let G and H be two graphs with V(G) = {uy,ug,- -+ ,untand V(H) = {vy,va, -+ ,v,},
respectively. The Cartesian product of G and H, denoted by GLJH, is the graph with vertex set
V(G) x V(H) such that (u;,v;) is adjacent to (u,v;) if either u; = uy and vju; € E(H) or
v; = v and u;u,, € E(G). For the convenience of the following discussions, we will use the
following notations in the proofs of Theorems 3.2.3 and 3.3.1. In the graph GLJH, the vertex
(ui,vj) € V(G) x V(H) is represented by w; ;. For j = 1,2,--- ,n, we use G; to denote the
subgraph of GLIH induced by the vertices w; ; (i = 1,2,--- ,m).

Note 1. The graphs G, G4, G, - -+, G, are isomorphic, and for each i (i = 1,2,--- ,m) the
vertices u; € V(G), w1 € V(Gy), wia € V(Gs), -+, wi, € V(G,) are the corresponding

vertices under these isomorphisms.

Also, we use E; to denote F(G); thatis, E; isthe set ofalledges in G;. For1 < j <[ <n
and vju; € E(H), we use E;; to denote the set {w; jw;;| i = 1,2,--- ,m}, i.e., Ej; the set of
all edges joining the vertices in (G, and the vertices in G;. We see that E(GUH) is the disjoint
unionof £; (j = 1,2,--- ,n)and E;; (1 < j <l <n,vjy € E(H)).

The notations for the vertices w; ;, the subgraphs G; and the edge sets E;, E;; of GLH
will be used in the proofs of Theorems 3.2.3 and 3.3.1.

Theorem 3.2.3. /6] Let G be a regular and uniformly R-antimagic graph. Then GOK,, (n > 2)

is also regular and uniformly R-antimagic.

Proof. Since both GG and K, are regular, it is trivial that GL1K, is regular. Since G is uniformly
R-antimagic, we assume that uy, us, - - - , u,, (m > 3) is the sequence of vertices of G with the
uniformly R-antimagic property. We see that the edge set £ (GUK,,) is the union of E; (j =
1,2,---,n)and Ej; (1 < 5 <1 < ).

We prove that GUK,, (n > 2) is uniformly R-antimagic. Let A C R with |A| =
|E(GOK,)| be arbitrarily given. Define g to be an edge labeling of GOK,, with labels in A
by the following three rules:

Rule3.2.1. Forj=1,2,--- n—1,E; <Ejj11 < Ejj2 << Ej, < Ej.
Rule 32.2. Forl < j <l < mn,andfori = 1,2,--- ,m — 1, g(w; jw;;) < g(wi+1jwit1,)

(i.e., g(wl,jwl,z) < 9(w2,jw2,l) < 9(w3,jw3,l) << g(wm,jwm,l))~
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Rule 3.23. For j = 1,2,--- ,nand fori = 1,2,---,m — 1, ggj(wi,j) < ggj(wiﬂ,j)

(i-e.y g 3y, (w1g) < g (wa;) < g, (wy5) < < g g (W)
That the edge labeling g with labels in A can have Rule 3.2.3 deriving from the fact that
the sequence of vertices uy, us, - - - , u,, has the uniformly R-antimagic property in G and the

fact stated in Note 1.
Claim 1. For j =1,2,--- ,n, g *(w1;) < g T(wa;) < g T (ws;) < -+ < g (wny)

Check of Claim 1. We need to show g *(w; ;) < g *(w;y1;) fori =1,2,--- ,m — 1.
Let J = {1,2,--- ,n}. Note that

g (wiy) =g % (wig)+ Y glwijwi), (3.2.6)
leJ-{j}
and
9" (Wis1g) =g 5 (Wisag)+ > glwirjwisry). (3.2.7)
leJ—{j}

By Rule 3.2.3, g ;. (wi ;) < g . (Wit15)-
By Rule 3.2.2, for 1 < j <1 <mn, g(w; jwi;) < g(wi+1jWi+1,), it implies

Z g(wijwig) < Z 9(Wit1jwis1). (3.2.8)

leJ—{j} leJ—{j}
Thus, g *(w; ;) < g *(wi+1), which completes the check of Claim 1.
Claim2. For j=1,2,--- ,n—1, g T (wn;) < g (w1 1)

Check of Claim 2. Let J = {1,2,--- ,n}. Note that

9 +(wm7j> =9 Ej (W j) + Z (Wi j Wiy 1)

keIl (3.2.9)
=g b (W) + 9 W wm i)+ D G kW),
keJ—{j.j+1}
and
g wiin) =gk, (wn)+ D glwnw)
ket (3.2.10)

=g b (i) Fg(wiwn)+ Y glwikw ).
keT—{j4+1}
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Let Ay = Eg,(wm;) € Ej, Ay = {Wm jwm 1} C Ejjp1, B = Eg,,, (wij) © B,

By = {wy jwyj11} € Ej 1. Thus,

> gle) = g b (Wmy) + 9w jwm 1), (3.2.11)
ecA1UA>
and
Y gle) =g (wijn) + g(wrjwr ). (3.2.12)
e€B1UB>

By Rule 3.2.1, Ej = Ej7j+1 = Ej+1. Since A; C Ej, B; C Ej+1, A27BQ - Ej7j+19 we have
Ay < B1U By and A; < By. Also, note |A;| = |By|, |As| = |Bs| = 1. Thus, by Lemma 3.2.2,

ZEEA]_UAQ g<e> < ZGEBluBQ g(e) Hence

9 &, (W) + 9 Wi jwm 1) < g 5 (Wig41) + g(wi wr ). (3.2.13)

By Rule 3.2.1, E}; < Epj1ifk < j,and B, < Ej1ifk > 5+ 1, and we see that

Wi kWm,j € Eks,ja W1 kW1 541 € Ek,j+1- Thus, g(wmkwm,j) < g(wlﬂkwm“), which implies

> gwnpwng) < Y glwigw ). (3.2.14)

keJ—{j,j+1} keJ—{j,j+1}

Combining (3.2.13) and (3.2.14), we obtain g " (w, ;) < g " (wy j+1). This completes the check
of Claim 2.

From Claims 1 and 2, we obtain

9 "(wia) < g (wan) <o < g T (W)
<g (wip) < g (wa2) <o < g T (Wino)
<gt(wiz) < g (wes) < < g (wns)
<oe< <

<gM(win) < g (wapn) < < g (wnn)

We also see that the order of the vertices w1, wa 1, W31, =+, Wi 1, W12, W2, W32, ** * Wiy 2,
W1,3, W23, W33, *** 5 Wm,3, W14, ** 5 Wmyn—1, Win, W2 n, W3n, 5 Wnn SatiSfying the above-
mentioned strict inequalities is independent of the chosen A C R with |A| = |GOK,,|. Thus,

GUK,, (n > 2) is uniformly R-antimagic.

25

DOI:10.6814/NCCU202200274



3.3 Cartesian products of uniformly R-antimagic graphs and
cycles

It has been proved that the Cartesian product of two or more cycles is antimagic [18].
We further propose that GLIC, is (uniformly) R-antimagic where G is a regular and uniformly
R-antimagic graph. In GUC,, the labels we use are in each subset A of real numbers with
|A| = |E(G)| and the labels used in [7,18] are in {1, 2, - - - | |E(G)|}. Because of the difference
in labels, we have to modify the order of labelings, which are different from those in [7,18]. We

use some strategies in the construction of labelings.

Theorem 3.3.1. [6] Let G be a regular and uniformly R-antimagic graph. Then GUC,, is also

regular and uniformly R-antimagic.

Proof. Since both G and ), are regular, it is trivial that GLIC), is regular. Now we show
that GOJC,, is uniformly R-antimagic. By Theorem 3.2.3, GL K3 is uniformly R-antimagic.
Thus, GOC} is uniformly R-antimagic. Using Theorem 3.2.3 twice, we see that (GOK,) OK,
is uniformly R-antimagic. Thus, GOC, is uniformly R-antimagic since (GOK,)OK, is
isomorphic to GLIC;. We assume that n > 5.

Assume that the cycle C), has vertex set V(C,,) = {vi,vq, -+ ,v,} and the edge set
E(C,) = {vive} U{vwie| i = 1,2,-+- ;n — 2} U {v,_1v,}. We use the notations for the
vertices, subgraphs and edge sets of GLJH which are defined in Theorem 3.2.3 above, where H
is now taken to be C,,. We see that the edge set £ (GOC,) is the union of E; (j = 1,2,--- ,n)
and B9, Fjjio(J=1,2,--- ,n—2), Ep_1,.

Now we prove that GLIC,, is uniformly R-antimagic. Since G is uniformly R-antimagic,
we assume that wuy, us, - -+, u,, (Mm > 3) is the sequence of vertices of G with the uniformly
R-antimagic property. Let A C R with |A| = |E(GOC,,)| be arbitrarily given. Define g to be
an edge labeling of GLIC), with labels in A by the following three rules:

Rule 3.3.1. Rules of < on GUIC,,.
l. By < Ei5 < Ey,
2. forj=2,3,--- ,n—2,E; < Ej_1 ;11 < Ejq,
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3. B, < En_g,n < En—l,n < F, (Hence E; < El,g < FEy < E173 < B3 < E2’4 <
Ey < E3s <Fs <+ <FEp3<FE,4pno=<F,9=<FE, 3,1 <F,1<E,2,<
En 10 = Ey.).

Rule 3.3.2. Forvju; € E(Cy,), g(wy jwi;) < g(wse jway) < g(ws jwsy) < - < g(W Wi 1)-
Rule 3.3.3. For j = 1,2,---,n, we have g ;, (w1;) < g ; (wa;) < g f(wsy) < -+ <
g E] (wmvj)'

That the edge labeling g with labels in A can have Rule 3.3.3 deriving from the fact that
the sequence of vertices uy, us, - - - , u,, has the uniformly R-antimagic property in G and the
fact stated in Note 1.

Claim 1. For j =1,2,--- ,n, g T(w1;) < g T(wa;) < g (ws;) <--- < g (W)

Check of Claim 1.

We need to show g *(w; ;) < g T(wiy14) fori =1,2,---  m — 1. Note that
g (wij) =g J]Ej (wi ) + Z g(w; jwi ), (3.3.1)
vjv €E(Ch)
and
Yo, . ) = g T . P . ans
g (wz+1,]) T~ 9 E; (wz—i-l,]) + Z g(wz-i-l,ng—‘rl,l)- (3.3.2)
Uj’UlEE(Cn)

By Rule 3.33, g} (wi;) < g5 (wit1;).

From Rule 3.3.2, we obtain that for fixed i, =1,2,--- ,m — 1,
Yo glwigwi) < D glwijwig). (3.3.3)
vju EE(Cy) v €E(Cp)

Thus, g *(w; ;) < g *(wi41;). This completes the check of Claim 1.
Claim2. For j=1,2,--- ,n—1, g " (wn;) < g (w1 1)

Check of Claim 2. We distinguish five cases: Case 1., j = 1; Case 2., j = 2; Case
3,7=3,4,--- ,n—3;Case4.,j=n—2;and Case 5., j = n — 1.

Casel. j =1
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We need to show that g ¥ (w,, 1) < g T(wi2). Let Ay = Eg, (wm.1) and Ay = {w, 102}
Then
95 (W) = gWmawns) + D gle). (3.3.4)

e€A1UAs

Let Bl = EG2 (U)LQ) and BQ = {wl,lwl,g}. Then

g9 " (wi2) = g(wipwia) + Z g(e). (3.3.5)

e€B1UBs>

From Rule 3.3.1, F; < ELQ < By < E173 < E274. Since E173 < E274, we have

9(Win 1 Wi 3) < g(w1 2wy 4). (3.3.6)

Since E1 < ELQ < EQ, A1 C El, AQ, BQ - ELQ’ B1 - EQ, we have Al < Bl U BQ, AQ < Bl.
Since G is reqular, we have |A;| = |By|. Trivially, | As| = |By| = 1. Thus, by Lemma 3.2.2,

> ogley< > gle). (3.3.7)

e€A1UAs e€B1UB3

From the aforementioned, we obtain g ™ (w,, 1) < g T(wy2).
Case2. j =2

We need to show that g * (w, 2) < g *(wy,3). Note that

9 (Wm2) = 9 5, (Wm2) + 9(Win 1 Wi, 2) + §(Wn 2 Wi 4), (3.3.8)

and

g (wig) =g ES (wy,3) + g(wi1w13) + glw zwys). (3.3.9)

Since Fy < FEj3, and G, and G5 are regular with the same degree, we have

9 1y (Wm2) < 9§ (wys). (3.3.10)
Since £ » < £ 3, we have
(Wi 1 Wi 2) < g(wiiwy3). (3.3.11)
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Since E5 4 < E3 5, we have

I (Wi 2Wm,a) < g(w1zwss). (3.3.12)

Thus, we obtain g *(w,,2) < g T(w13).
Case3. j=3,4,--- ,n—3.

We need to show that g *(w, ;) < g T(w1 4+1). Forn = 5, we do not need to consider this

case. Assume that n > 6. Note that

9 (W) = g 5, (W) + 9(Winj—2Wn,;) + §(Win,jWim,j+2), (3.3.13)

and

9 " (Wig41) = g 5, (Wig41) + g(wi 1w i) + 9w 1w j4a). (3.3.14)

From Rule 3.3.1(2), we have E; < E;_1jn < Ej < Ejjpfor2 < 5 < n— 3. Since

E; < Ej;1,and G; and G4 are regular with the same degree, we have
g JJEJ( mi) < g Ej+1(w1,j+1)- (3.3.15)
Since F;_5; < Ej_1 41, we have
(Wi j—2Win 5) < g(w1 j_1w1 j41). (3.3.16)
Since F; j12 < Fji1 j+3, we have

G( Wi Wi jr2) < glwr 1101 543)- (3.3.17)

Accordingly, we obtain g *(w, ;) < g (w1, j+1).
Cased. j=n— 2

We need to show that g ™ (wy, ,—2) < g T(w1,-1). Note that

g +(wm,n—2) =g En72 (wm,n—Q) + g(wm,n—4wm,n—2) + g(wm,n—me,n)a (3318)
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and

g +(wl,n—l) =g ;Enfl (W1n-1) + g(W1 p—3w1 n_1) + g(W1 p_1w1 ). (3.3.19)

Also note that En—4,n—2 < FE,_5 < En—B,n—l < FE,_4. Since Win,n—aWmnp—2 € En—4,n—29

Wi p—3W1,n—1 € Ey_3,-1, we have

g(wm,n—4wm,n—2) < g(wl,n—Swl,n—1>‘ (3320)

Since E¢, ,(Wmn—2) € Ey_9, Eg, (w1 ,-1) € E,_1, we have

g En72<wmm—2) <9 J}En,l(wl,n—ﬂ. (3.3.21)

Furthermore, E,,_s,, < E,_1,, this implies

g(wm,n—me,n) < g(wl,n—lwl,n)~ (3322)

Hence, we obtain g ©(w, n—2) < g T(w1,-1).
CaseS. j=n— 1

We need to show that g T (wy,-1) < g T(win). Let Ay = Eg, ,(Wmn-1) and Ay =

{Wpm n—1Wpn}. Then

9 (Wan1) = 9 Wan—sWmn—1) + > gle). (3.3.23)

ecA1UA5

Let Bl = EG" (wLn) and B2 = {wlﬂ_lwl,n}. Then

9 (win) = g(wipowin) + > gle). (3.3.24)

eeB1UB>y

Note that En—S,n—l < B, < En—Q,n < En—l,n < FE,. From En—3,n—1 =< En—2,n and

Wm,n—3Wm,n—1 € En—37n—1a W1 n—2W1n S En—?,na we have
g(wm,n—i’)wm,n—1> < g(wl,n—2w1,n)- (3325)

From En—l = En—l,n = En and Al g En—la AQ g En—l,na Bl g Ena B2 g En—l,na we
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have A; < B; U By and Ay < Bj. Since G is reqular, we have |A;| = |B;|. Trivially,
|As| = |By| = 1. Thus, by Lemma 3.2.2,

dogley< > gle). (3.3.26)

e€A1UAs e€B1UB>

Therefore, we obtain g * (W n—1) < g T (w1,).
These complete the check of Claim 2.

From Claims 1 and 2, we obtain

g (win) < g (wan) << g (W)

<g+(w1,2) < g+(w272) <.+ < 9+(wm,2)

<gM(win) < g (wapn) < - < g (wnn)

We also see that the order of the vertices Wi,1, W21, W31, * s W1, W12, W22, W32, ** 5 W2,
Wy,3, W23, W33, ***y W3, W14, "5 Wyn—1 Win, W2n, W3n, ' Wnn SatiSfying the above-
mentioned strict inequalities is independent of the chosen A C R with |A| = |E(GOC,) |.

Thus, GUIC,, is uniformly R-antimagic. This completes the proof of the theorem. O
The following Corollaries derive directly from Theorems 3.2.3 and 3.3.1.

Corollary 3.3.1. /6] The graph G,[0G,0 - --0OG,, (n > 2) is uniformly R-antimagic, where
G is regular and uniformly R-antimagic, and for i > 2 each G; is a complete graph of order

> 2 oracycle.

Corollary 3.3.2. [6] The graph G10G,0---0G,, (n > 2) is uniformly R-antimagic, where

each G; is a complete graph of order > 2 or a cycle.

Proof. Each G, is a complete graph of order > 2 or a cycle.
Case 1. Some G; # K.

Without loss of generality, assume G; # K,. Then (5 is a cycle or a complete graph of
order > 3. By Theorems 3.1.2 and 3.1.3, (G; is uniformly R-antimagic. Then the Corollary
derives from Corollary 3.3.1.

31

DOI:10.6814/NCCU202200274



Case2. G, = Ky fori=1,2,--- ,n.

Since KUK, = ()4, by Theorem 3.1.2, G;[JG is uniformly R-antimagic. Again, the
Corollary derives from Corollary 3.3.1. ]

Note that the hypercube @),, is isomorphic to G,UG. - - - UG, where each G; = K for
t=1,2,--- ,n. The following corollary derives from Corollary 3.3.2.

Corollary 3.3.3. /6] Hypercube QQ,, (n > 2) is uniformly R-antimagic.
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Chapter 4

Some irregular graphs

In Chapter 4, we prove that wheels, paws, and paths of order > 6 are R-antimagic.

4.1 Wheels

Let C,, denote the cycle of order n. A wheel W,, (n > 3) is the graph obtained by connecting
a single vertex to every vertex of the cycle C,,. In this section, we prove that wheels are R-

antimagic.
Theorem 4.1.1. [6] Every wheel is R-antimagic.

Proof. Let W, be the wheel with V(W,,) = {vy,v9,-- ,v,} U{v} and E(W,,) = {v1v2} U
{vivigal 1 = 1,2, -+ ;0 — 2} U{vpqv,} U{vy] i = 1,2,---  n}. To prove the theorem, let
ry <rg <rsg<---<ry,bethe arbitrarily given real numbers. We distinguish two cases: Case
Lrp1+7, <rpi1+7Tpnao+ - +ry,_sandCase 2, 7,01 +Tpao+ -+ 721 <11 + 7.

Case 1. Tne1+Tn <Tpy1 + Tpya + -+ Top_1.

We define an edge labeling f of W), with labels in {ry, 0,73, -+ , 72, } by f(viv2) = 71,
fvivige) = 1igq fori = 1,2, . n — 2, f(vp_qv,) = 1, and f(vv;) = ryy for @ =
1,2,--- ,n (see Figure 4.1). Then f *(v1) = r1 + 72 + rny1, f T(vi) = 1imy + i1 + T

fori =2,--- ,n—1,and f *(v,) = r,_1 + rn + 72,. Note that

Frw) =+ 1o+ a1 <+ 13+ e = f (), 4.1.1)
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n 1s odd n 1S even

Figure 4.1: Edge labeling of W, ifr,, 1 + 1, < 7rpeq1 + o+ -+ 7ropq

FT (i) =rica+rigr + rogs < it rive + Togin = f (Vi) (4.1.2)

fortr=2,--- ,n—2,

F o (Vne1) = Toog & o+ Tone1 < Tne1 + T'n 4 Ton = f T (), (4.1.3)
and
f i (n) = (razr+10) + 720
< (Tpa1 4 Toge + - F 7o 1) + 7o (4.1.4)
= f " (v).
Hence
Fr) < () << fHv) < fH (). (4.1.5)

Case2. rp i1+ 1o+ -+ 1o 1 < Ty + The

We define an edge labeling f of W,, with labels in {ry, ro, 73, -+, 72, } by f(v102) = 71,

f(0ivige) = rpyipr fori = 1,2, n — 2, f(v,_1vn) = 7o, and f(vv;) = 1 for

34

DOI:10.6814/NCCU202200274



n 1s odd n 1S even

Figure 4.2: Edge labeling of W, if r,, o1 +rpao+ -+ 191 <1rpg + 1,

i=1,2,---,n(seeFigure4.2). Then f*(v1) = rop1+rupo+71, f () = ropi+ i+
fori =2,--- ,n—1,and f *(v,) = r2,_1 + 72, + . Note that

FT(01) = Tyt 4 Pogo + 71 < Tyt + Tras + 12 = £ T (03), (4.1.6)

f +(Ui) = Tptic1 + Tppie1 + 7 < Tpgi + Tnpige + Tip1 = f +('Ui+1> (4.1.7)

fort=2,---,n—2,

JH(Uno1) = Ton—a + ron + Tt < Tope1 + 7o + 10 = f T (vn), (4.1.8)
and
fr)=rm+(ra+rs+-+rn1+m)
<71+ Ty + g2+ 122+ Ton 1) (4.1.9)
<ri+ (o + 1) < f F(o).
Hence
FrH) < f o) < fHv) <o < f T (o). (4.1.10)
35

DOI:10.6814/NCCU202200274



This completes the proof. ]

4.2 Paws

A paw is a graph with a vertex set {vy, vo, v3,v4} and an edge set {v;vs, Vav3, V34, VoU4 }.
Theorem 4.2.1. Every paw is R-antimagic.

Proof. Let GG be the paw with vertex set {v, v, v3, v, } and an edge set {v1 vy, Vov3, V3V, VoV }.
Let r;y < ry < r3 < ry be arbitrarily given real numbers. We distinguish five cases: Case
1,0< i <ro<rg<ry;Case.,r; <0 <ry<ry3<ryCaseld,r <ry <0< r3 <ry;
Cased.,r1 <ro<r3<0<rygyandCases.,r <ry<ry3<ry <O0.
Casel. 0<r; <reg<rz<ry

We define an edge labeling f of G with labels in {ry, 75,73, 74} by f(viva) = 71, f(vov3) =
r3, f(v3vg) = ro, and f(vavy) = 14 (see Figure 4.3). Then vertex sums [T (vy) = r1, fT(vg) =
r14rs+ry, fT(v3) =rg+rg,and fH(vg) =141y

Note that f*(vy) < f*(vs), fT(v3) < fT(vy), and fH(vy) < fH(vg) for 0 < ry and
ro < rs. Thus, the vertex sums are all distinct.

U3

3

9 (%) (8] 0!l

T4

Uy

Figure 4.3: Edge labeling f of paw

Case2. 1 <0< ry<rs3<ry
We take a look at both of these situations: o < ry + r3 and r| + r3 < ro.
Subcase 2.1. o, < 11 + 13.

We follow the same procedure as in Case 1 in terms of labeling the edges (see Figure 4.3).

Then vertex sums [T (v) =1y, fT(vy) =11 +r3+7ry, fT(v3) =ro+r3,and fT(vy) =ra+1y
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Note that f*(vy) < f*(vg) forr, < 0and 0 < ry < 73, fT(v3) < fT(vy), and fT(vy) <

f1(ve) for oy < r1 + r3. Thus, the vertex sums are all distinct.
Subcase 2.2. r; + r3 < 7.

We define an edge labeling g of G with labels in {7y, 79, r3, 74} by g(vive) = r1, g(vovs) =
9, g(v3v4) = 14, and g(vevy) = 73 (see Figure 4.4). Then vertex sums g+ (v1) = 71, g7 (v2) =

r1+ 1o+ 13, g (v3) = 1o+ 1y, and g7 (vy) = r3 4 1y

Note that g™ (v;) < g™ (vg) for 0 < rq, 73, and g7 (v3) < g7 (vy). Also note that

g+(U2) =ri+re+rg=rq9+ (T1+T3)
(4.2.1)

<ro+ 719 <1944 =g (v3).
Thus, the vertex sums are all distinct.
U3

T2

74 (%) (8] ol

rs

Uy

Figure 4.4: Edge labeling g of paw

Case3. r <ro < 0<r3<ry
We distinguish two subcases: 7o + r3 # 0 and ry + r3 = 0.
Subcase 3.1. 75 + 3 # 0.

We use the edge labeling g of G with labels in {71, 7o, 73, 74} by g(viv9) = r1, g(vav3) = 19,
g(vzvg) = ry, and g(vovy) = 713 (see Figure 4.4). Then vertex sums g*(vy) = ry, g7 (vg) =
T + T2 -+ T3, g+(1)3) = T9 + T4, and g+(v4) =T3 -+ T4

Note that

gt(we) =ri+ro+rs=ro+ (r1+r3) <ro+rs <ry+r4=g" (v3) 4.2.2)
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forr, < Oandr3 < 74, and g*(vs) < g7 (vy). Also note that g™ (vy) < g*(vs) for ry < ro,
0 <ry,and g"(vy) =11 # r1 + ro + r3 = g7 (v2) under the assumption of this subcase. Thus,

the vertex sums are all distinct.

Subcase 3.2. 5, +r3 = 0.
e r1+ 1y <71a.

We use the edge labeling h of G with labels in {ry, o, 73,74} by h(vive) = 14, h(vovs) = 11,
h(vsvy) = 1o, and h(vevy) = r3 (see Figure 4.5). Then vertex sums At (vy) = 14, ht(vg) =
r1+ 1341y, K (v3) =11 +ro,and bt (vy) = 1o + 13

Note that

h(vs3) = ri 41 <1113+ 1y = hT (), (4.2.3)

forry < 0 <rs < ry,and

Wt (va) =11 4 rs+ 1y = (ri4ra) + 73 <12 +13 =" (v4), (4.2.4)

forra < 0 < r3 <ry,and h™(vg) = ro+r3 =0 < ry = h*(v1). The vertex sums are all
distinct.
U3

1

79 (%) T4 U1

3

Uy

Figure 4.5: Edge labeling i of paw

* 9 < T+ T4

We use the edge labeling h of G with labels in {71, 79,73, 74} by h(vive) = 14, h(vevs) = 11,
h(vsvy) = ro, and h(vovy) = r3 (see Figure 4.5). Then vertex sums A (v) = ry, ht(vg) =

1 +7"3 +7"4, h+(1}3) =T +7"2, and h+(1}4) = T9 +7"3

38

DOI:10.6814/NCCU202200274



Note that 2 (v3) =11 + 19 < 19+ 15 = h*(v4), and

ht(vg) =ro+13 < (r1+14) +135=h"(v) (4.2.5)

for ro < ry + ry, and

ht(ve) =11+ 713+ 10 < (ro+73) + 74 =14 = W (01), (4.2.6)

for r1 < r9, 79 + 3 = 0. The vertex sums are all distinct.
*ri+1rg =r9.

We use the edge labeling s of G with labels in {ry, ry, 3,74} by s(viv2) = 71, s(vavs) = 79,
s(vsvy) = 713, and s(vqvy) = 14 (see Figure 4.6). Then vertex sums s (v) = 7y, sT(vy) =
r1+ 1o+ 1y, sT(v3) =19 + 1r3,and sT(vy) = 13 + 14

Note that

st(v)=r =r+ (ra+7r3) <71 +r9 4714 =5 (0s) (4.2.7)

for ro +1r3 =0, r3 < r4, and

st(e) =11+ 1o 1y = (1 +70) +ro =19 +75 < 1o+ 73 = 5T (v3), (4.2.8)

for ry + 1y = ro, r9 < 13, and st (v3) = ro + 13 < r3 +ry = st(v4). The vertex sums are all
distinct.
U3

I'2

3 (%) 71 U1

T4

(o

Figure 4.6: Edge labeling s of paw

Cased. | <rg <r3<0<ry.
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We have —ry, < 0 < —r3 < —ry < —ry. By Case 2, G is {—ry4, —13, —19, —11 }-antimagic.

By Lemma 2.3.1, we can have G is {7y, r9, 13, 74 }-antimagic.
CaseS5. r <ry<rg<ry <0

In this case, 0 < —ry < —r3 < —ry < —r1. By Case 1, G is {—ry, —13, —79, —71 }-
antimagic. By Lemma 2.3.1, we can have G is {ry, 7,13, 74 }-antimagic. This completes the

proof. O

4.3 Paths

Let P, denote a path with m edges for m > 1. It has been shown that P, (n > 3)is R*-
antimagic [14]. Actually, no path P; has an antimagic labeling with labels in {-1,0,...,i—3}
fori € {3,4,5} [12]. Hence, P; (i = 3,4, 5) is not R-antimagic.

Theorem 4.3.1. The path P,,.1(m > 5) is R-antimagic graph.

Proof. Let P be a path with m (m > 5) edges. Let L = {ry,72,..., 7} Where ri, 7o, ... .7
be real numbers, and r; < ro < --- < r,,. To prove the theorem, we need to assign the numbers
in L to the edges of P so that the vertex sums of P are all distinct. We distinguish the following

cases: Case 1: L does not contain 0, Case 2: L contains 0.
Case 1. L does not contain 0.

A path with size m can be obtained by deleting an edge from C,, ;. Let C,,1 be the
cycle with vertex set {vq, vo, -, Upmy1}. From Theorem 3.1.2, C,, 1 is R-antimagic. There
is an edge labeling f of C,, 1 with labels in L U {0} such that f *(v1) < f T(1p) < -+ <
f T (Ums1). In E(Clpy11), there is an edge e = xy such that f(e) = 0 where z,y € V(Cp11).
Let P = ()41 — e. Then P is an z, y-path (see Figure 4.7). We define an edge labeling g
of P with labels in L by g(¢’) = f(e') where ¢/ € E(C,, — e). Then, the vertex sum at x is
9" (x) = f(z) = f(e) = f "(x), and the vertex sum at y is g * (y) = f " (y) — f(e) = f " (y)-
Hence, g *(v;) = f T (v;) foralli = 1,2,...,m+ 1. Since the vertex sums of C,,, 1 are distinct,

the vertex sums of P are distinct.

Case 2. L contains 0.
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-
- — -

Cm+1 Pm+l

Figure 4.7: L does not contain 0

We will use the edge labeling of (', to generate the edge labeling of P,,, . Let C,, be the
cycle with vertex set {v1,vq, - -+, v, } and edge set {vivo} U {vjvi40| i = 1,2,--- ;m — 2} U
{Um—1Um }. Asinthe proof of Theorem 3.1.2, an edge labeling f of C,,, with labels in L is defined
by f(viv2) = 11, f(viv2) = g fori = 1,2,--« 'm — 2, and f(v,,_10,) = 7. We have
fr(v) =ri4rey, fT(v) =rig+rifori=2,--- m—1,and f " (v,,) = 1+ 7. Since
ri+re < ri4ry < ro+ry < r3+rs < rgtrg < v < T3 FTme1 < Tt T < Tae1+Tm,
we have [ T(vy) < fT(v2) < -+ < f T(vm).

From Lemma 2.3.1, we have that if G is L-antimagic, then GG is — L-antimagic. Thus, we
only need to consider the following cases: subcase 2.1. r; = 0, subcase 2.2. ry = 0, and subcase

23.r;=0where 3 <i<m — 2.
Subcase 2.1. r; = 0.

We split the vertex v; into two new vertices x and y, obtaining an x, y-path P with the
same set of edges as (), (see Figure 4.8). We define an edge labeling g of P with labels in L by
g(e) = f(e) where e € E(C,,). Then, the vertex sum at z is g *(z) = f T(v)) —ro =11 =0,
and the vertex sum at y is g *(y) = f T(v1) — 71 = ro. Since 0 = r; < 1y < 11+ 713 <
To+ 7Ty <7 3+715 <Tgat+7r < < T3+ Tmo1 < Tme2a+Tm < Tm_1 -+ Tm, We have
g () <gt(y) < gt(v) <gt(vs) < -+ < gF(v,). We see that the vertex sums are all

distinct.

Subcase 2.2. r, = 0.
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7’1:0
r3 Ts Te T4 T2

Cm Pm+1
Figure 4.8: r; =0

We split the vertex v, into two new vertices x and y, obtaining an x, y-path P with the
same set of edges as (), (see Figure 4.9). We define an edge labeling g of P with labels in L by
g(e) = f(e) where e € E(C,,). Then, the vertex sum at z is ¢ *(z) = f " (v4) — r5 = 73, and
the vertex sum at y is g " (y) = f T(vy) —r3 = r5. Since r; < 0,71 +r3 < r3. Hence, 1 + 13 <
T+ r3<r3<rg=ro+7rs <15 <Ta+7<- < Tpatrmi1<Tmatrm<Tm1t+tn
We have g *(v1) < g " (v2) < g (x) < g (v3) <gF(y) < g (vs) <+ <gF(vm) Wesee

that the vertex sums are all distinct.

re =0
$0—0—0—20—o—o—o—o—o—o—o—o—o—o
rs M Ty T Ts
Cm Pm+1

Figure 4.9: r, =0

Subcase 2.3. r; = O where 3 <1 <m — 2.
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We split the vertex v; into two new vertices x and y, obtaining an z, y-path P with the same
set of edges as (), (see Figure 4.10). We define an edge labeling g of P with labels in L by
g(e) = f(e) where e € E(C,,). Then, the vertex sumat z is g " (z) = f*(v;) =141 = r;_1, and
the vertex sumatyis g™ (y) = f(v;)—ri_1 = ripq. Sinceri+ry < ri+r3 < - < rjo+r; =
Ticg < Tim1 <Tig1 < Tiga =7+ Tigo < - < T3 + Tt < T2 7 < Fpp1 + T, WE
have g 7 (v1) < g T (v2) <+ < gF(vi1) < g7 (x) <gF(y) < g (Vig1) <0 < g T (vm)
We see that the vertex sums are all distinct. [

U1

U3

T Yy
Ti—175—3 Ti43Ti+1

Perl

Figure 4.10: 7, =03 <i <m — 2)
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Chapter 5

Conclusions and further studies

5.1 Results

In this thesis, we propose the notion of R-antimagic graph. This is a generalization of
R*-antimagic graph. Every R-antimagic graph is R*-antimagic, and every R -antimagic is
antimagic. Not all R*-antimagic graphs (e.g. stars and P,,n = 3,4, 5) are R-antimagic.

In Chapter 2, We prove that every R-antimagic graph is C-amtimagic. We also show that
every R*-antimagic graph is also R-antimagic if the graph is regular. Additionally, we discover
a class of regular graphs that are R-antimagic (see Theorem 2.3.5). One of the graphs in this
class is the Peterson graph.

In Chapter 3, we show that cycles, and complete graphs of order > 3 are R-antimagic.
Assume that G is a complete graph (except K7) or a cycle with V(G) = {uy, ug, -+ ,u,}. We
have found that all the vertices of GG can be listed as w1, ug, - - -, u,, such that for every A C R
with |A| = |E(G)|, there is an edge labeling f of G with labels in A such that f T(u;) <
f T(ug) < -+ < f *(u,). The property we call uniformly R-antimagic property which is
independent of the choice of the subset A of R. Clearly, every uniformly R-antimagic is R-
antimagic. We prove that Cartesian products G10G,0---0G,, (n > 2) are uniformly R-
antimagic, where each G; is a complete graph of order > 2 or a cycle.

In Chapter 4, we prove that wheels, paws, and paths of order > 6 are R-antimagic.
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5.2 Discussions

In our study, we use labelings modified from those in [7,18] and make them more systematic
for Cartesian products of cycles and complete graphs. The proofs in this dissertation provide
efficient algorithms for finding edge labelings of Cartesian products of cycles and complete
graphs. Our contribution is to quickly find the edge labelings of Cartesian products of cycles and
complete graphs through the algorithms we constructed. It has been proved that the Cartesian
products G;0G,0---0OG,, (n > 2) of G4, Go, - - -, G,, are (uniformly) R-antimagic if each G;
is either a complete graph (except K) or a cycle in Section 3.2 and 3.2.

We construct some classes of uniformly R-antimagic graphs through Cartesian products.
The join of simple graphs G and H is denoted by G + H with the vertex set V(G) UV (H) and
the edge set £(G) U E(H) U{uv|u € V(G),v € V(H)}. That some join graphs are antimagic
has been proved in [2,17]. In [17], Wang et al. use the way of listing edges in [8] to show that a
class of join graphs is antimagic. It makes the method of labelings in our study more plausible.

We were the first to propose uniformly R-antimagic property [6]. Let GG be a graph, and f
be an edge labeling of G with labels in {1, 2, ..., |E(G)|}. If for any two distinct vertices u, v
of G, ft(u) < f*(v) whenever deg(u) < deg(v), then G is called strongly antimagic [3,4].
Some results strongly antimagic graphs have been shown in [3, 4]. Uniformly R-antimagic
property and strongly antimagic are similar concepts, but different. Assume that G is uniformly
R-antimagic and that for any two distinct vertices v and v of (7, the vertex sum of « is less than

the vertex sum of v. The degree of vertex u may not be less than the degree of vertex v.

5.3 Further studies

Generalized Petersen graphs P(n,k) (1 < k < g), which consist of the vertex
set {ug,uy,..., Uy 1,00,0V1,...,0,_1} and the edge set {u;u;11|i=0,1,2,...,n—1} U
{vivigr | 1=0,1,2,... ,n =1} U{ww; | i=0,1,2,...,n — 1} with indices taken by modulo
n, were defined by Watkins [20]. The standard Petersen graph is the instance P(5, 2) (see Figure
2.5). Another example is P(7, 3) (see Figure 5.1). From Theorem 2.3.5 and Corollary 2.3.1, we

have the following conjecture:
Conjecture. Generalized Petersen graphs P(n, k) are R-antimagic where (n, k) = 1.

In the future, we would like to study the following issues:
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Uo

Ug

Uy

I> Us

\
U2

Uy

Uus

Figure 5.1: Generalized Petersen graph P(7,3)

1. R-antimagicness of other graphs (e.g., generalized Petersen graph, paths, trees, caterpillars,

forests etc.)
2. R-antimagicness of some special classes of regular graphs

3. R-antimagic labelings of some Cartesian products of some types of graphs
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