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中文摘要

設 G是一個圖，且 A是複數的子集，其中 |A| = |E(G)|，且 E(G)為圖

G的邊所成集合。標號在集合 A裡頭的邊標記，是從 E(G)映射到 A的函

數。設 B 是複數的子集，且 |B| ≥ |E(G)|。若對於集合 B 的每個子集 A，

滿足 |A| = |E(G)|，而且標號在 A裡頭的邊標記，使得不同頂點它們連接

的邊標記之總和是不同的，則圖 G被稱為 B-反魔幻。一般文獻中，若 G

是 {1, 2, . . . , |E(G)|}-反魔幻，則稱圖 G是反魔幻的。反魔幻圖的概念是由

Hartsfield and Ringel [11]在 1990年提出的。他們猜測至少有兩條邊的連通

圖都是反魔幻的。這個猜想還沒有完全解決。許多研究人員在反魔圖領域

做出了一些努力。

設 R表所有實數所成集合，且 C表所有複數所成集合。我們將反魔圖

的定義延伸推廣至 R-反魔幻圖。在第二章，我們證明了每個 R-反魔幻圖都

是 C-反魔幻。我們也證明了若圖 G為正則圖，則 R+-反魔幻圖就是 R-反魔

幻。另外，我們也發現了有一類正則圖是 R-反魔幻。

在第三章中，我們證明了環及點數大於等於 3的完全圖是 R-反魔幻。

假設圖 G是環或點數大於 3的完全圖，我們可以依照每個頂點邊標記總和

的大小，將點以 u1, u2, · · · , un 排序，無關乎標號的選取，這樣的性質我們

就稱為均勻 R-反魔幻。明顯地，每個均勻 R-反魔幻,都是 R-反魔幻。我們

也證明了 G1�G2� · · ·�Gn (n ≥ 2)是均勻 R-反魔幻，其中每個 Gi 是環或

點數大於等於 3的完全圖。

在第四章，我們證明了輪子，爪子及點數大於等於 6的路徑是 R-反魔

幻。最後，我們在第五章作研究結果總結及討論，並提出未來研究方向。

關鍵字：R-反魔幻圖,正則圖,笛卡爾乘積圖,均勻 R-反魔幻
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Abstract

Let G be a finite graph, and A ⊆ C. An edge labeling of graph G with labels

in A is an injection from E(G) to A, where E(G) is the edge set of G, and A is a

subset of C. Suppose that B is a set of complex numbers with |B| ≥ |E(G)|. If

for every A ⊆ B with |A| = |E(G)|, there is an edge labeling of G with labels in

A such that the sums of the labels assigned to edges incident to distinct vertices are

different, then G is said to be B-antimagic. A graph G is an antimagic graph in the

literature, if G is {1, 2, . . . , |E(G)|}-antimagic.

The concept of antimagic graphs was introduced by Hartsfield and Ringel [11]

in 1990. They conjectured that every connected graph with at least two edges was

antimagic. The conjecture has not been completely solved yet.

We propose the concept of R-antimagic graphs in this thesis. In Chapter 2,

we prove that every R-antimagic graph is C-antimagic. We also show that every

R+-antimagic graph is also R-antimagic if the graph is regular. Additionally, we

discover a special class of regular graphs that areR-antimagic (see Theorem 2.3.5).

One of the graphs in this class is the Peterson graph.

In Chapter 3, we show that cycles and complete graphs of order ≥ 3 are

R-antimagic. Assume that G is a complete graph or a cycle with V (G) =

{u1, u2, · · · , un} (n ≥ 3). We have found that all the vertices of G can be listed

as u1, u2, · · · , un such that for every A ⊆ R with |A| = |E(G)|, there is an edge

labeling f of G with labels in A such that f +(u1) < f +(u2) < · · · < f +(un).

The property we call uniformly R-antimagic property which is independent of the

choice of the subset A of R. Clearly, every uniformly R-antimagic is R-antimagic.

We prove that Cartesian products G1�G2� · · ·�Gn (n ≥ 2) are uniformly R-

antimagic, where each Gi is a complete graph of order ≥ 2 or a cycle.

iii
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In Chapter 4, we prove that wheels, paws, and paths of order ≥ 6 are R-

antimagic. Finally, we summarize the findings and recommend future research in

Chapter 5.

Keywords: R-antimagic graphs, Regular graphs, Cartesian product of graphs,

Uniformly R-antimagic graphs

iv
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Chapter 1

Introduction

We begin this chapter by introducing some fundamental definitions and notations that will

be used throughout this thesis. Following that, we look at the literature on antimagic labeling

and give an overview of this study.

1.1 Fundamental definitions and notations

This section will go over some fundamental definitions and notations in graph theory which

are used in this thesis. We primarily adhere to the standard terminologies and notations found

in West’s graph theory textbook [21].

A graph G is represented by the ordered pair G = (V,E), where V is a collection of

elements referred to as vertices and E is a collection of unordered pairs of vertices referred to

as edges. The set V (or V (G)) is referred to as the vertex set of G, and the set E (or E(G)) is

referred to as the edge set of G. In a graph G, an edge is a two-element subset of V denoted

by e = xy, where e ∈ E, x and y are referred to as the endpoints of e. A vertex x is said to be

adjacent to the vertex y if there is an edge between x and y, and an edge e is said to be incident

to the vertex x if x is an endpoint of e.

The set of edges incident to v in graph G is denoted by EG(v). In a graph, a clique is a set

of vertices that are adjacent to each other, and a set of pairwise nonadjacent vertices in a graph

is called an independent set. If the vertices of a graph can be partitioned into a clique and an

independent set, it is a split graph. The order of graph G, denoted by |V (G)|, is defined as the

cardinality of the set V . The cardinality of the set E, denoted by |E(G)|, is the size of the graph

1
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G. If both the vertex set and the edge set of a graph are finite, the graph is considered to be

finite.

If V (H) ⊆ V (G) andE(H) ⊆ E(G), thenH is a subgraph ofG, andwe denote asH ⊆ G.

We callH is a spanning subgraph of a graph G if V (H) = V (G). A subgraphH = (V ′, E′) of

G = (V,E) is called an induced subgraph ofG if E′ consists of all edges ofG that join vertices

in V ′. For S ⊆ V (G), we denote G[S] as the induced subgraph of G, which is the subgraph

induced by S. The graph G−S is the subgraph of G induced by V (G)−S. For S = {v}, we

denote G−S by G−v. Similarly, G−uv is the graph obtained from G by deleting the edge uv,

and also G+ uv denotes the graph obtained from G by adding edge uv.

In a graph G, the neighborhood of a vertex v, written as NG(v) or N(v), is the set of all

vertices adjacent to v. In the graph G, the number of edges incident to v is called the degree

of a vertex v, denoted by degG(v) or deg(v). The maximum degree of G, denoted by ∆(G), is

the maximum of degG(v) over all vertices v in V (G), and the minimum degree of G, written as

δ(G), is the minimum of degG(v) over all vertices v in V (G), i.e., ∆(G) ≥ degG(v) ≥ δ(G),

for all v ∈ V (G). A vertex v is called an isolated vertex if it has no neighbor in G. A graph is

said to be a k-regular graph if all its vertices have the same degree k.

A loop is an edge whose endpoints are equal. Multiple edges are edges having the same

pair of endpoints. A simple graph is a graph having no loops or multiple edges. Next we define

some particular families of graphs studied in this thesis. A path is a simple graph whose vertices

can be ordered so that two vertices are adjacent if and only if they are consecutive in the list.

Pn denotes a path of order n. A u, v-path is a path whose vertices of degree 1 (its endpoints)

are u and v; the others are internal vertices. The length of u, v-path is the size of u, v-path. The

distance between vertices u and v on the u, v-path which is denoted by dG(u, v), is the least

length of u, v-path. A connected graph G is a graph in which there is an u, v−path whenever

u, v ∈ V (G). Otherwise, a graph is called disconnected. A closed path, a u, v-path with u = v,

is called a cycle. A cycle of order n, denoted by Cn. A tree is a graph that is connected and has

no cycles.

A complete graph Kn of order n is a graph where every two distinct vertices are adjacent.

The set of pairwise nonadjacent vertices in a graph is an independent set. A graphG is bipartite

if V (G) is the union of two disjoint independent sets, and each independent set is called a partite

set. A complete bipartite graph is a simple bipartite graph such that two vertices are adjacent

2
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if and only if they are in different partite sets. When the partite sets have sizes r and s, the

complete bipartite graph is denoted by Kr,s. The graph K1,n(n ≥ 2) is represented by the star

Sn, and mSn is a star forest made up of disjointed m(m ≥ 1) copies of Sn. A spider graph

is a tree with at most one vertex of degree greater than two. A paw is K1,3 + e. A wheel Wn,

with n spokes, is a graph with a center v connected to all the n vertices in cycle Cn. The graphs

mentioned above are all connected.

The Cartesian product of graphs G and H , denoted by G�H , is the graph that has vertex

set V (G) × V (H) = {(u, v) | u ∈ V (G), v ∈ V (H)}; and two vertices (u, v) and (u′, v′) are

adjacent inG�H if and only if (1) u = u′ and (v, v′) ∈ E(G), or (2) v = v′ and (u, u′) ∈ E(H).

1.2 Antimagicness of graphs

All graphs considered in this dissertation are finite, simple, and without isolated vertices.

Let R denote the set of real numbers and C the set of complex numbers. Assume that G is a

graph. We have the following definitions:

Definition 1.2.1. The edge labeling of G with the labels in A is a bijection from E(G) to A

where A is a subset of C with |A| = |E(G)|.

Definition 1.2.2. If f is an edge labeling of G with labels in A, then we use f+(v) to denote∑
e∈EG(v) f(e) for any vertex v of G, and f+(v) is called the vertex sum at v.

Definition 1.2.3. If B is a subset of C with |B| ≥ |E(G)| such that for each subset A of B with

|A| = |E(G)|, there is an edge labeling f of G with labels in A such that f+(u) is not equal to

f+(v) for any two distinct vertices u, v of G, then we say that f is a B-antimagic labeling of G.

A graph G is called B-antimagic if G has a B-antimagic labeling.

In the literature, a graphG is antimagic ifG is {1, 2, · · · , |E(G)|}-antimagic. The concept

of antimagic graphs was introduced by Hartsfield and Ringel [11] in 1990. They conjectured

that every connected graph with at least two edges was antimagic. This conjecture has not been

completely solved yet. In the field of antimagic graphs, graph theory researchers have made

some efforts. Some partial results are listed below.

Graphs with maximum degree |V (G)| − 1 are antimagic. Alon et al. [1] used probabilistic

methods and analytic number theory to show that there is an absolute constant C such that

3
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graphs with minimum degree δ(G) ≥ C log |V (G)| are antimagic. They also proved that

complete partite graphs (other than K2) and graphs with maximum degree at least |V (G)| − 2

are antimagic. Shang proved that all spiders are antimagic [15]. Later, Shang et al. [16] gave a

criterion for mS2 ∪ Sn(n ≥ 3) to be antimagic.

The antimagicness for some special types of regular graphs was verified by Cranston [9],

Cranston et al. [10], and Liang and Zhu [13]. According to Cranston [9], every regular bipartite

graph (with a degree of at least two) is antimagic. Cranston relied heavily on the Marriage

Theorem to prove this. Later, Cranston et al. [10] proved that all regular graphs with odd degree

are antimagic. And, it has been proved by Chang et al. [5] that all regular graphs with even

degree are antimagic. Hence, k-regular graphs are antimagic where k ≥ 2.

Some studies have addressed the antimagicness of Cartesian products. Wang [18] proved

that any Cartesian product of two or more cycles is antimagic. The general result also shows

that Cn�H is antimagic, where n ≥ 3, and H is an antimagic k-regular graph (k > 1). Wang

and Hsiao [19] later introduced new classes of antimagic graphs that were constructed using

Cartesian products. They proved that Pm�Pn (m ≥ n ≥ 2)and G�Pn (n ≥ 2) are antimagic,

where G is a regular antimagic graph. Cheng independently proved more generalized results

in [7,8], which are the Cartesian products of two paths, as well as the Cartesian products of two

or more regular graphs, are antimagic. Moreover, Zhang and Sun [22] proved that if a regular

graphG is antimagic, then for any connected graphH , the Cartesian productG�H is antimagic.

Assume that R+ denotes the set of positive numbers. Matamala et al. [14] proposed

the concept of universal antimagic graphs, and a graph G is universal antimagic if G is R+-

antimagic. They proved that paths, cycles, and graphs whose connected components are cycles

or paths of odd lengths are universal antimagic. Split graphs, as well as any graph containing a

complete bipartite graph as a spanning subgraph, are shown to be universal antimagic in their

paper.

1.3 Overview of the thesis

In this thesis, we generalize further and define R-antimagic graphs.

In Chapter 2, we prove that every R-antimagic graph is C-amtimagic. We also show that

every R+-antimagic graph is also R-antimagic if the graph is regular. Additionally, we propose

4
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that a class of regular graphs is R-antimagic.

In Chapter 3, we show that Cartesian productsG1�G2� · · ·�Gn (n ≥ 2) areR-antimagic,

where eachGi is a complete graph of order≥ 2 or a cycle. The methods of labeling on Cartesian

products of cycles used in this paper are similar in [7, 18]. We present efficient algorithms for

finding edge labelings of Cartesian products of cycles and complete graphs in Chapter 3.

In Chapter 4, we show that wheels, paws, and paths of order ≥ 6 are R-antimagic.

In Chapter 5, we summarize our results and make suggestions for future studies.

5
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Chapter 2

R-antimagic regular graphs

In this chapter, we will prove that R+-antimagic regular graphs are R-antimagic.

Furthermore, we also prove that a spacial class of regular graphs is R-antimagic.

2.1 R+ ∪ {0}-antimagic graphs

The concept of universal antimagic graphs is proposed in [14]. In this section, we introduce

R+ ∪{0}-antimagic graphs. It is easy to see that Sn (n ≥ 3) is R+ ∪{0}-antimagic. Moreover,

we have the following results.

Theorem 2.1.1. If G is a connected graph of order ≥ 3 with∆(G) = |V (G)| − 1 and G ̸= S2,

then G is R+ ∪ {0}-antimagic.

Proof. Assume |V (G)| = n, |E(G)| = m and v is a vetex of G with degree n−1 (see Figure

2.1). Let r1 > r2 > r3 > · · · > rn−1 > rn > · · · > rm be the arbitrarily given nonnegative

numbers. First, we arbitrarily assign labels in {rn, rn+1, rn+2, . . . , rm} to the edges in G−v.

Denote this labeling of G−v by g, and g+(w) is the vertex sum of w under the labeling g for

each vertex w of G−v. We order the vertices of G−v as v1, v2, . . . , vn−1 in such a way that

g+(v1) ≥ g+(v2) ≥ · · · ≥ g+(vn−1). Then we assign the remaining n−1 real numbers to the

edges vv1, vv2, . . . , vvn−1 in decreasing order, i.e., assign ri to vvi. We define an edge labeling

f of G with labels in {r1, r2, . . . , rn−1, rn, . . . , rm} by f(e) = g(e) if e ∈ E(G − v), and

f(vvi) = ri, i = 1, 2, . . . , n − 1. Then the vertex sum of vi, f+(vi) = g+(vi) + ri for i =

1, 2, . . . , n − 1, and f+(v) =
∑

1≤i≤n−1 ri. Since deg(v) ≥ deg(vi), i = 1, 2, . . . , n − 1, we

6
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v

G− v

v1

v2

v3

v4

v5

. . .

vn−1

Figure 2.1: ∆(G) = |V (G)| − 1

obtain f+(v) > f+(v1) > f+(v2) > · · · > f+(vn−1). The labeling is R+ ∪ {0}-antimagic

labeling.

We prove that stars are R+ ∪ {0}-antimagic, but not R-antimagic.

Remark 2.1.2. Sn (n ≥ 3) is R+ ∪ {0}-antimagic, but not R-antimagic.

Proof. Let Sn be the star with V (Sn) = {v1, v2, · · · , vn} ∪ {v} and E(Sn) = {vvi| i =

1, 2, · · · , n}. Since∆(Sn) = n = |V (G)|−1, we have, by Theorem 2.1.1, that Sn is R+∪{0}-

antimagic.

Now, we prove Sn (n ≥ 3) is not R-antimagic. Let r1 < r2 < r3 < · · · < rn be real

numbers with r1 + r2 + · · ·+ rn−1 = 0. Let f be an arbitrary edge labeling of Sn with labels in

{r1, r2, r3, · · · , rn}. Without loss of generality, f is defined by f(vvi) = ri for i = 1, 2, · · · , n

(see Figure 2.2). We see that f +(vn) = rn = r1 + r2 + · · ·+ rn−1 + rn = f +(v). Accordingly,

Sn is not {r1, r2, r3, · · · , rn}-antimagic, which results in Sn not R-antimagic.

As a result,  stars, complete graphs, and wheels are R+ ∪ {0}-antimagic. We illustrate that

wheels and complete graphs are R-antimagic in Chapters 3 and 4.

2.2 R-antimagic graphs and C-antimagic graphs

Assume that G is a graph. The main result of this section is that G is R-antimagic if and

only if G is C-antimagic. We begin with the following lemmas:

7
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v

v1

v2

v3

vn

vn−1

. . .

r1

r2

r3

rn

rn−1

Figure 2.2: Edge labeling of star

Lemma 2.2.1. Assume G is a graph and A ⊆ B ⊆ C with |A| ≥ |E(G)|. If G is B-antimagic,

then G is A-antimagic.

Lemma 2.2.1 implies that if a graph G is C-antimagic, it is R-antimagic, and if G is R-

antimagic, it is R+ ∪ {0}-antimagic.

Lemma 2.2.2. Suppose that a1 + b1i, a2 + b2i, . . . ,am + bmi (m ≥ 2) are distinct complex

numbers, where a1, a2, . . . , am, b1, b2, . . . , bm are real numbers. Then there exists r ∈ R such

that a1 + rb1, a2 + rb2, . . . ,am + rbm are all distinct.

Proof. Let f1(x) = a1+b1x, f2(x) = a2+b2x, . . . , fm(x) = am+bmx be linear real functions.

From the assumption, we see that f1(x), f2(x), . . . , fm(x) are distinct linear real functions.

Then, there exists r ∈ R such that f1(r), f2(r), . . . , fm(r) are distinct, i.e., a1 + rb1, a2 + rb2,

. . . ,am + rbm are all distinct.

Lemma 2.2.3. Let a, b, a′, b′, r be real numbers. Suppose that a + rb ̸= a′ + rb′. Then,

a+ bi ̸= a′ + b′i.

Proof. Suppose, on the contrary, that a+ bi = a′ + b′i. Since a, b, a′, b′, r be real numbers, we

have a = a′ and b = b′, which implies a + rb = a′ + rb′, contradicting the assumption. This

confirms the lemma.

Theorem 2.2.4. A graph G is R-antimagic if and only if G is C-antimagic.

8
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Proof. The ”if” part follows from Lemma 2.2.1. Now, we prove the ”only if” part.

We show that G is C-antimagic if G is R-antimagic. Let | E(G) |= m. Arbitrarily give

m distinct complex numbers a1 + b1i, a2 + b2i, . . . , am + bmi, where a1, a2, . . . , am, b1, b2,

. . . , bm are real numbers. By Lemma 2.2.2, there exists r ∈ R such that a1 + rb1, a2 + rb2, . . .

, am + rbm are all distinct. Since G is R-antimagic, there exists an edge labeling f of G with

labels in {a1 + rb1, a2 + rb2, . . . , am + rbm} such that the vertex sums of G are all distinct.

Let f ∗ be an edge labeling of G with labels in {a1 + b1i, a2 + b2i, . . . , am + bmi} defined

by f ∗(e) = aj + bji, if f(e) = aj + rbj(1 ≤ j ≤ m) where e ∈ E(G). We see that if the vertex

sum of f ∗ at a vertex v is A + Bi, then the vertex sum of f at a vertex v is A + rB. Since the

vertex sums of f are all distinct, we have, by Lemma 2.2.3, the vertex sums of f ∗ are all distinct.

This completes the proof.

2.3 A class of R-antimagic regular graphs

Some results of the R-antimagicness of regular graphs are obtained in this section.

Let A ⊆ C and α ∈ C. We denote the set {αa | a ∈ A} by αA, and denote (−1)A by−A.

We have the following lemma:

Lemma 2.3.1. Assume that G is a graph, and A is the subset of C, and α ∈ C − {0}. If G is

A-antimagic, then

(1) G is αA-antimagic.

(2) G is −A-antimagic.

Proof. (1) Assume that |E(G)| = m. Arbitrarily give m distinct complex numbers αz1, αz2,

. . . , αzm, where z1, z2, . . . , zm are in A ⊆ C, and α ̸= 0. We see that αzi ̸= αzj if and only if

zi ̸= zj . Because z1, z2, . . . , and zm are all distinct, αz1, αz2, . . . , and αzm are all distinct as

well. SinceG isA-antimagic, there exists an edge labeling f ofGwith labels in {z1, z2, . . . , zm}

such that the vertex sums f+ of G are all distinct.

Let g(e) = αf(e) for all e ∈ E(G). Then g is an edge labeling of G with labels in

{αz1, αz2, . . . , αzm}. Because the vertex sums f+ of G are all distinct, the vertex sums g+ of

G are also distinct. This completes the proof.

(2) Since −A = (−1)A, (2) follows from (1).

9
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Lemma 2.3.2. Assume that G is a regular graph and |E(G)| = m. Let α1, α2, . . . , αm be

distinct complex numbers, and α be a nonzero complex number. If G is {α1, α2, . . . , αm}-

antimagic, then G is {α1 + α, α2 + α, . . . , αm + α}-antimagic.

Proof. Assume that G is a k-regular graph and G is {α1, α2, . . . , αm}-antimagic. Then there

exist an edge labeling f , such that the vertex sums f +(v) =
∑

e∈EG(v) f(e) ofG are all distinct.

Let B = {α1 + α, α2 + α, . . . , αm + α}, and g(e) = f(e) +α. Then g is an edge labeling with

labels inB. SinceG is k-regular and f+ are all distinct, we obtain that g+(v) =
∑

e∈EG(v) g(e) =∑
e∈EG(v) f(e) + kα are all distinct. Hence, G is B-antimagic.

Theorem 2.3.3. Assume that G is a regular graph. Let a, b ∈ R and a < b. The following

statements are equivalent.

(1) G is R-antimagic.

(2) G is R+-antimagic.

(3) G is (a, b)-antimagic.

Proof. Assume that G is a regular graph of size m.

(1) ⇒ (3).

Since (a, b) ⊆ R and G is R-antimagic, G is (a, b)-antimagic by Lemma 2.2.1.

(3) ⇒ (2).

Let r1, r2, . . . , rm be the arbitrarily given positive numbers where 0 < r1 < r2 < · · · < rm.

For a < b, assume that ti = a+ (b− a)
ri

rm + 1
for i = 1, 2, . . . ,m. Since 0 < r1 < ri < rm <

rm + 1 and a < b, we can have

a < a+ (b− a)
ri

rm + 1
= ti < b

for i = 1, 2, . . . ,m. By Lemma 2.2.1, if G is (a, b)-antimagic, then G is {t1, t2, . . . , tm}-

antimagic. Therefore, G is {r1, r2, . . . , rm}-antimagic by Lemmas 2.3.1 and 2.3.2. Since

{r1, r2, . . . , rm} ⊆ R+ is arbitrary, we obtain that G is R+-antimagic.

(2) ⇒ (1).

Let r1, r2, . . . , rm be the arbitrarily given real numbers where r1 < r2 < · · · < rm. For

α > 0, assume that ti = ri−r1+α for i = 1, 2, . . . ,m. Then, we can have ti = ri−r1+α > 0.

10
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By Lemma 2.2.1, if G is R+-antimagic, then G is {t1, t2, . . . , tm}-antimagic. Therefore, G is

{r1, r2, . . . , rm}-antimagic by Lemma 2.3.2. Since {r1, r2, . . . , rm} ⊆ R is arbitrary, we obtain

that G is R-antimagic.

Let G be a graph and A be a subset of R with |A| = |E(G)|. If g is an edge labeling of G

with labels in A and K, L are nonempty subsets of E(G) such that g(x) < g(y) for all x ∈ K,

y ∈ L, then we writeK ≺ L under g. It is easy to see that the relation≺ is transitive (i.e., ifK,

L, M are nonempty subsets of E(G), and K ≺ L, L ≺ M , then K ≺ M ).

When proving Theorems 2.3.5, the following useful lemma will be utilized.

Lemma 2.3.4. Let G be an arbitrary graph and A be a subset of R with |A| = |E(G)|. Let f

be an edge labeling of G with labels in A. Suppose that A1, A2, B1, B2 are pairwise disjoint

nonempty subsets of the edge set E(G) with |A2| + |B1| ≤ k, |A1| + |A2| = |B1| + |B2| = k

such that A1 ≺ B1 ∪ B2 and A2 ≺ B2 under f . Then

∑
e∈A1∪A2

f(e) <
∑

e∈B1∪B2

f(e). (2.3.1)

Proof. SinceA1, A2,B1,B2 are pairwise disjoint, and |A1|+ |A2| = |B1|+ |B2| = k. Consider

that A1 ∪A2 = {a1, a2, . . . , ak} and B1 ∪B2 = {b1, b2, . . . , bk}. Since |A2|+ |B1| ≤ k, we can

assume that |A2| = t and |B1| ≤ k− t. Let s = |B2| = k− |B1| and A2 = {a1, a2, . . . , at} and

B2 = {b1, b2, . . . , bs}. Hence, s = |B2| = k − |B1| ≥ t = |A2|, i.e., 0 ≤ t ≤ s ≤ k. Since A1,

A2, B1, B2 are pairwise disjoint, we have

∑
e∈A1∪A2

f(e) =
∑
e∈A2

f(e) +
∑
e∈A1

f(e), (2.3.2)

and

∑
e∈B1∪B2

f(e) =
∑
e∈B2

f(e) +
∑
e∈B1

f(e) =
∑
1≤i≤s

f(bi) +
∑

s+1≤i≤k

f(bi) =
∑
1≤i≤t

f(bi) +
∑

t+1≤i≤k

f(bi).

(2.3.3)

Since A2 ≺ B2 under f and |A2| = t, we have f(a) < f(b) for all a ∈ A2, b ∈ B2. Hence

∑
e∈A2

f(e) <
∑
1≤i≤t

f(bi). (2.3.4)

11
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Also note that A1 ≺ B1 ∪B2 under f , we have f(a) < f(b) for all a ∈ A1, b ∈ B1 ∪B2. Then

∑
e∈A1

f(e) =
∑

t+1≤i≤k

f(ai) <
∑

t+1≤i≤k

f(bi). (2.3.5)

Combining (2.3.2)∼(2.3.5), we obtain

∑
e∈A1∪A2

f(e) <
∑

e∈B1∪B2

f(e). (2.3.6)

Assume G is a graph andH ⊆ V (G) andK ⊆ V (G). We define G [H,K] as the bipartite

subgraph of G induced by edges between H andK. The order of edge sets labeled in Theorem

2.3.5 is identical to that in [13]. Because of the difference in labels, we have the following

theorem.

Theorem 2.3.5. LetG be a k-regular graph, and v0 be an arbitrarily given vertex ofG. Assume

that every vertex ofG has distance at most p to v0. Let Lj = {u | dG(u, v0) = j} for 0 ≤ j ≤ p.

For all x ∈ Lj−1 and y ∈ Lj (j ≥ 1), if either

1. x is not adjacent to y and degG[Lj−1,Li](x) + degG[Lj−1,Lj ](y) ≤ k or

2. x is adjacent to y and degG[Lj−1,Lj ](x) + degG[Lj−1,Lj ](y) ≤ k + 1,

then G is R-antimagic.

Proof. Let G be a k-reqular graph, and v0 be a vertex of G. Assume that V (G) = L0 ∪ L1 ∪

· · · ∪Lp where Lp ̸= ∅. For each u ∈ V (G), u ∈ Lj (j = 1, 2, . . . , p), we arbitrarily choose an

edge joining u and a vertex in Lj−1, and denote this edge by τ(u). Clearly, τ(u) ∈ G [Lj−1, Lj].

We shall denote by G [Lj] the subgraph of G induced by Lj . Note that each vertex in Lj is

incident to at least one edge of G [Lj−1, Lj]. Let Ej = E(G [Lj]), E ′
j = {τ(u) | u ∈ Lj}, and

E ′′
j = E(G [Lj−1, Lj]) − E ′

j for j = 1, 2, . . . , p. We see that the edge set E(G) is the union of

Ej , E ′
j and E ′′

j (j = 1, 2, . . . , p). Also note that Ej , E ′
j and E ′′

j are pairwise disjoint. Now we

prove that G is R-antimagic. Let A ⊆ R with |A| = |E(G)| be arbitrarily given. Let f to be an

edge labeling of G with labels in A. The edge sets will be labeled sequentially as follows:

Ep, E
′′
p , E

′
p, Ep−1, E

′′
p−1, E

′
p−1, . . . , E1, E

′′
1 , E

′
1

12
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For v ∈ Lj , j ≥ 1, we define

s(v) =
∑

e∈E(G[Lj ,Lj+1])∩EG(v)

f(e) +
∑

e∈Ej∩EG(v)

f(e) +
∑

e∈E′′
j ∩EG(v)

f(e)

where EG(v) denotes the set of edge incident to v. Let |Lj| = nj for j = 1, 2, · · · , p. The labels

of the edges inEj andE ′′
j are arbitrary. Then the labeling f ofGwith labels inA satisfies Rules

2.3.1∼2.3.3:

Rule 2.3.1. For j = 1, 2, · · · , p, Ej ≺ E ′′
j ≺ E ′

j .

Rule 2.3.2. For j = 2, 3, · · · , p, E ′
j ≺ Ej−1.

Rule 2.3.3. For j = 1, 2, · · · , p, if s(u) ≤ s(v) then f(τ(u)) < f(τ(v)) for all u, v ∈ Lj , u ̸= v.

Claim 1. For j = 1, 2, · · · , p, u, v ∈ Lj , u ̸= v, then f +(u) ̸= f +(v).

Check of Claim 1. For j = 1, 2, · · · , p,

f +(u) =
∑

e∈E(G[Lj ,Lj+1])∩EG(u)

f(e) +
∑

e∈Ej∩EG(u)

f(e) +
∑

e∈E′′
j ∩EG(u)

f(e) + f(τ(u))

= s(u) + f(τ(u)),

(2.3.7)

and

f +(v) =
∑

e∈E(G[Lj ,Lj+1])∩EG(v)

f(e) +
∑

e∈Ej∩EG(v)

f(e) +
∑

e∈E′′
j ∩EG(v)

f(e) + f(τ(v))

= s(v) + f(τ(v)).

(2.3.8)

Without loss of generality, we may assume s(u) ≤ s(v). By Rule 2.3.3, since s(u) ≤ s(v), we

have f(τ(u)) < f(τ(v)). Therefore, f +(u) < f +(v) for j = 1, 2, · · · , p. This completes the

check of Claim 1.

Claim 2. For j = 1, 2, · · · , p, f +(y) < f +(x) for all x ∈ Lj−1, y ∈ Lj .

13
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Check of Claim 2. Let

A1 = (E(G [Lj, Lj+1]) ∪ Ej) ∩ EG(y),

A2 = E(G [Lj−1, Lj]) ∩ EG(y),

B1 = E(G [Lj−1, Lj]) ∩ EG(x),

B2 = (Ej−1 ∪ E(G [Lj−2, Lj−1])) ∩ EG(x).

(2.3.9)

We can see that

f +(y) =
∑

e∈E(G[Lj ,Lj+1]∩EG(y)

f(e) +
∑

e∈Ej∩EG(y)

f(e) +
∑

e∈E′′
j ∩EG(y)

f(e)

+ f(τ(y))

(2.3.10)

and

f +(x) =
∑

e′∈E(G[Lj−1,Lj ]∩EG(x)

f(e′) +
∑

e′∈Ej−1∩EG(x)

f(e′) +
∑

e′∈E′′
j−1∩EG(x)

f(e′)

+ f(τ(x))

(2.3.11)

Since τ(y) ∈ E ′
j and τ(x) ∈ E ′

j−1, we rewrite

f +(y) =
∑

e∈A1∪A2

f(e), (2.3.12)

and
f +(x) =

∑
e′∈B1∪B2

f(e′), (2.3.13)

We distinguish two cases:

Case 1. x is not adjacent to y (see Figure 2.3).

Since G be a k-reqular graph, and A1, A2, B1, B2 are pairwise disjoint nonempty subsets

of the edge set E(G), we have |A1| + |A2| = |B1| + |B2| = k. Since degG[Lj−1,Lj ](x) +

degG[Lj−1,Lj ](y) ≤ k for all x ∈ Lj−1 and y ∈ Lj , j ≥ 1, we have |A2| + |B1| ≤ k. From Rule

2.3.1 and Rule 2.3.2, since

E ′′
j+1 ≺ E ′

j+1 ≺ Ej ≺ E ′′
j ≺ E ′

j ≺ Ej−1 ≺ E ′′
j−1 ≺ E ′

j−1,

14
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we have A1 ≺ B1 ∪ B2 and A2 ≺ B2 under f . By Lemma 2.3.4, we obtain

v0

L1

L2

...

Lj−1

Lj

Lj+1

...

Lp

x

y

Figure 2.3: x is not adjacent to y

f +(y) =
∑

e∈A1∪A2

f(e) <
∑

e′∈B1∪B2

f(e′) = f +(x). (2.3.14)

Case 2. x is adjacent to y (see Figure 2.4).

Let ϵ = xy. We see that A2 ∩ B1 = {ϵ}. Let C = A2 − {ϵ} and D = B1 − {ϵ}.

Then A1, C, D, B2 are pairwise disjoint nonempty subsets of the edge set E(G), we have

|A1| + |C| = |D| + |B2| = k − 1. Since degG[Lj−1,Lj ](x) + degG[Lj−1,Lj ](y) ≤ k + 1 for all

15
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x ∈ Lj−1 and y ∈ Lj , j ≥ 1, we have |C|+ |D| ≤ k− 1. From Rule 2.3.1 and Rule 2.3.2, since

v0

L1

L2

...

Lj−1

Lj

Lj+1

...

Lp

x

ϵ

y

Figure 2.4: x is adjacent to y

E ′′
j+1 ≺ E ′

j+1 ≺ Ej ≺ E ′′
j ≺ E ′

j ≺ Ej−1 ≺ E ′′
j−1 ≺ E ′

j−1,

we have A1 ≺ D ∪ B2 and C ≺ B2 under f . By Lemma 2.3.4, we obtain

∑
e∈A1∪C

f(e) <
∑

e′∈D∪B2

f(e′). (2.3.15)

16
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u0

u1

u2 u3

u4

v0

v1

v2
v3

v4

Figure 2.5: Peterson Graph

That implies
f +(y) =

∑
e∈A1∪A2

f(e) =
∑

e∈A1∪C

f(e) + f(ϵ)

<
∑

e′∈D∪B2

f(e′) + f(ϵ) =
∑

e′∈B1∪B2

f(e′) = f +(x).
(2.3.16)

This completes the check of Claim 2.

From Claim 1 and Claim 2, we can have G is R-antimagic.

As a result, all cycles are R-antimagic. We will discuss cycles in Chapter 3. Additionally,

they have another property of R-antimagic.

Petersen graphs are graphs with the vertex set {u0, u1, . . . , u4, v0, v1, . . . , v4, } and the edge

set {uiui+1 | i = 0, 1, 2, 3, 4}∪{vivi+2 | i = 0, 1, 2, 3, 4}∪{uivi | i = 0, 1, 2, 3, 4} with indices

taken by modulo 5 (see Figure 2.5). The Petersen graph is without a doubt one of the most well-

known objects encountered by graph theorists. The following corollary shows that the Peterson

graph is R-antimagic.

Corollary 2.3.1. Peterson graph is R-antimagic.

Proof. Let G be the Peterson graph. We draw the Petersen graph in another way (see Figure

2.6). Let
V0 = {u1} ,

V1 = {u2, u6, u5} ,

V2 = {u3, u4, u7, u8, u9, u10} .

(2.3.17)

Therefore, V0, V1, and V2 form a partition of V (G), and Vi = {u | dG(u, u1) = i}. Note that

17
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G [V1, V 2] is the bipartite subgraph of G induced by edges between V1 and V2. Since Peterson

graph is 3-regular, and degG[V1,V 2](x) + degG[V1,V 2](y) = 3 for all x ∈ V1 and y ∈ V2. By

Theorem 2.3.5, we can obtain that G is R-antimagic. Then, we complete the proof.

u1

u2

u3 u4

u5u6

u7 u8 u9 u10

Figure 2.6: Another form of Peterson graph
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Chapter 3

Uniformly R-antimagic graphs

The main result in this chapter is that the Cartesian products G1�G2� · · ·�Gn (n ≥ 2)

are R-antimagic, where each Gi is a complete graph of order ≥ 2 or a cycle.

3.1 Cycles and complete graphs

To prove the results in this section, we need the concept of uniformly R-antimagic graphs,

which is defined below.

Definition 3.1.1. Let G be a graph. Suppose that all the vertices of G can be listed as

u1, u2, · · · , um such that for every A ⊆ R with |A| = |E(G)|, there is an edge labeling f

of G with labels in A such that f +(u1) < f +(u2) < · · · < f +(um). Then we say that G

is uniformly R-antimagic, and that the sequence of vertices u1, u2, · · · , um has the uniformly

R-antimagic property.

Note that in this definition, the ordering of the vertices u1, u2, · · · , um satisfying the

property f +(u1) < f +(u2) < · · · < f +(um) is independent of the choice of the subset A

of R. Obviously, every uniformly R-antimagic graph is R-antimagic.

We are the first to define R-antimagic graphs and to propose the uniformly R-antimagic

property. Some of our results are shown in [6]. Before proving our main result, we describe

uniformly R-antimagic property on cycles and complete graphs.

Theorem 3.1.2. [6] Every cycle is uniformly R-antimagic.

19
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n is odd

r5

r3

r1
r2

r4

r6

rn−1
rn

rn−2

v6

v4

v2
v1

v3

v5

v7

vn−2

vn

vn−1

vn−3

n is even

r7

r5

r3

r1

r2

r4

r6

rn−2

rn

rn−1

v6

v4

v2v1

v3

v5

v7

vn−3

vn−1 vn

vn−2

v8

Figure 3.1: Edge labeling of Cn

Proof. Let Cn be the cycle with vertex set {v1, v2, · · · , vn} and edge set {v1v2} ∪ {vivi+2| i =

1, 2, · · · , n − 2} ∪ {vn−1vn}. Let r1 < r2 < r3 < · · · < rn be the arbitrarily given n real

numbers. We define an edge labeling f of Cn with labels in {r1, r2, · · · , rn} by f(v1v2) = r1,

f(vivi+2) = ri+1 for i = 1, 2, · · · , n− 2, and f(vn−1vn) = rn (see Figure 3.1).

Then f+(v1) = r1+r2, f+(vi) = ri−1+ri+1 for i = 2, · · · , n−1, and f+(vn) = rn−1+rn.

Since r1+r2 < r1+r3 < r2+r4 < r3+r5 < r4+r6 < · · · < rn−3+rn−1 < rn−2+rn < rn−1+rn,

we have f +(v1) < f +(v2) < · · · < f +(vn). We see that the listing of vertices v1, v2, · · · , vn
with the property f +(v1) < f +(v2) < · · · < f +(vn) is independent of the arbitrarily given

r1 < r2 < r3 < · · · < rn. Thus, Cn is uniformly R-antimagic.

Theorem 3.1.3. [6] The complete graph Kn (n ≥ 3) is uniformly R-antimagic.

Proof. Let Kn be the complete graph with vertex set V (Kn) = {v1, v2, · · · , vn} and edge set

E(Kn) = {vivj| 1 ≤ i < j ≤ n}. Let r1 < r2 < r3 < · · · < r(n
2
) be the arbitrarily given real

numbers.

Let f be an edge labeling of Kn with labels in {r1, r2, r3, · · · , r(n
2
)} such that for i =

1, 2, · · · , n − 2, f(vivi+1) < f(vivi+2) < f(vivi+3) < · · · < f(vivn) < f(vi+1vi+2). Hence

f(v1v2) < f(v1v3) < · · · < f(v1vn) < f(v2v3) < f(v2v4) < · · · < f(v2vn) < f(v3v4) <
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v1

v2

v3

v4

v5

vn

vn−1

. . .

r1 r2

r3

rn

rn−1

r4

rn−3

rn−2

rn+1

rn+2

r(n
2

)

vn−2

Figure 3.2: Edge labeling ofKn

· · · < f(vn−1vn) (see Figure 3.1).

For 1 ≤ i ≤ n− 1, we have

f +(vi)

=
∑
1≤k<i

f(vkvi) + f(vivi+1) +
∑

i+1<k≤n

f(vivk)

<
∑
1≤k<i

f(vkvi+1) + f(vivi+1) +
∑

i+1<k≤n

f(vi+1vk)

=f +(vi+1).

(3.1.1)

Hence f +(v1) < f +(v2) < · · · < f +(vn). We see that the listing of vertices v1, v2, · · · , vn
with the property f +(v1) < f +(v2) < · · · < f +(vn) is independent of the arbitrarily given

r1 < r2 < r3 < · · · < r(n
2
). Thus, Kn is uniformly R-antimagic.

3.2 Cartesian products of uniformlyR-antimagic graphs and

complete graphs

We introduce the concept of ≺ in Section 2.3.

21
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Definition 3.2.1. Let G be a graph and A be a subset of R with |A| = |E(G)|. If g is an edge

labeling of G with labels in A and K, L are nonempty subsets of E(G) such that g(x) < g(y)

for all x ∈ K, y ∈ L, then we write K ≺ L under g.

The following trivial lemma will be used in the proofs of Theorems 3.2.3 and 3.3.1.

Lemma 3.2.2. [6] Let G be an arbitrary graph and A be a subset of R with |A| = |E(G)|.

Let g be an edge labeling of G with labels in A. Suppose that A1, A2, B1, B2 are pairwise

disjoint nonempty subsets of the edge set E(G) with |A1| = |B1|, |A2| = |B2| = 1 such that

A1 ≺ B1 ∪ B2 and A2 ≺ B1 under g. Then

∑
e∈A1∪A2

g(e) <
∑

e∈B1∪B2

g(e). (3.2.1)

Proof. Let A2 = {a} and b be an arbitrary edge in B1. Since A2 ≺ B1 under g, we have

g(a) < g(b). Since A1 ≺ B1 ∪ B2 under g and |A1| = |B2 ∪ (B1 − {b})|, we have

∑
e∈A1

g(e) <
∑

e∈B2∪(B1−{b})

g(e). (3.2.2)

Note that ∑
e∈A1∪A2

g(e) = g(a) +
∑
e∈A1

g(e), (3.2.3)

and ∑
e∈B1∪B2

g(e) = g(b) +
∑

e∈B2∪(B1−{b})

g(e). (3.2.4)

Combining (3.2.2), (3.2.3), (3.2.4) and g(a) < g(b), we have

∑
e∈A1∪A2

g(e) <
∑

e∈B1∪B2

g(e). (3.2.5)

We need the following notations. Let G be a graph, and A be a subset of R with |A| =

|E(G)|. If f is an edge labeling ofG with labels inA andD is a non-trivial connected subgraph

of G which contains no isolated vertices, then we use fE(D) to denote the restriction of f to

E(D) with range f(E(D)). Obviously, fE(D) is an edge labeling ofD with labels in f(E(D)).

Moreover, for a vertex v ∈ V (D), we use f+
E(D)(v) to denote

(
fE(D)

)+
(v). Recall that ED(v)

22
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is the set of all edges incident to v in D. Thus, f+
E(D)(v) =

∑
e∈ED(v) f(e).

LetG andH be two graphs with V (G) = {u1, u2, · · · , um} and V (H) = {v1, v2, · · · , vn},

respectively. The Cartesian product ofG andH , denoted byG�H , is the graph with vertex set

V (G) × V (H) such that (ui, vj) is adjacent to (uk, vl) if either ui = uk and vjvl ∈ E(H) or

vj = vl and uiuk ∈ E(G). For the convenience of the following discussions, we will use the

following notations in the proofs of Theorems 3.2.3 and 3.3.1. In the graph G�H , the vertex

(ui, vj) ∈ V (G) × V (H) is represented by wi,j . For j = 1, 2, · · · , n, we use Gj to denote the

subgraph of G�H induced by the vertices wi,j (i = 1, 2, · · · ,m).

Note 1. The graphs G, G1, G2, · · · , Gn are isomorphic, and for each i (i = 1, 2, · · · ,m) the

vertices ui ∈ V (G), wi,1 ∈ V (G1), wi,2 ∈ V (G2), · · · , wi,n ∈ V (Gn) are the corresponding

vertices under these isomorphisms.

Also, we useEj to denoteE(Gj); that is,Ej is the set of all edges inGj . For 1 ≤ j < l ≤ n

and vjvl ∈ E(H), we use Ej,l to denote the set {wi,jwi,l| i = 1, 2, · · · ,m}, i.e., Ej,l the set of

all edges joining the vertices in Gj and the vertices in Gl. We see that E(G�H) is the disjoint

union of Ej (j = 1, 2, · · · , n) and Ej,l (1 ≤ j < l ≤ n, vjvl ∈ E(H)).

The notations for the vertices wi,j , the subgraphs Gj and the edge sets Ej, Ej,l of G�H

will be used in the proofs of Theorems 3.2.3 and 3.3.1.

Theorem 3.2.3. [6] LetG be a regular and uniformlyR-antimagic graph. ThenG�Kn (n ≥ 2)

is also regular and uniformly R-antimagic.

Proof. Since bothG andKn are regular, it is trivial thatG�Kn is regular. SinceG is uniformly

R-antimagic, we assume that u1, u2, · · · , um (m ≥ 3) is the sequence of vertices of G with the

uniformly R-antimagic property. We see that the edge set E (G�Kn) is the union of Ej (j =

1, 2, · · · , n) and Ej,l (1 ≤ j < l ≤ n).

We prove that G�Kn (n ≥ 2) is uniformly R-antimagic. Let A ⊆ R with |A| =

|E(G�Kn)| be arbitrarily given. Define g to be an edge labeling of G�Kn with labels in A

by the following three rules:

Rule 3.2.1. For j = 1, 2, · · · , n− 1, Ej ≺ Ej,j+1 ≺ Ej,j+2 ≺ · · · ≺ Ej,n ≺ Ej+1.

Rule 3.2.2. For 1 ≤ j < l ≤ n, and for i = 1, 2, · · · ,m − 1, g(wi,jwi,l) < g(wi+1,jwi+1,l)

(i.e., g(w1,jw1,l) < g(w2,jw2,l) < g(w3,jw3,l) < · · · < g(wm,jwm,l)).
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Rule 3.2.3. For j = 1, 2, · · · , n and for i = 1, 2, · · · ,m − 1, g+Ej
(wi,j) < g+Ej

(wi+1,j)

(i.e., g +
Ej
(w1,j) < g +

Ej
(w2,j) < g +

Ej
(w3,j) < · · · < g +

Ej
(wm,j)).

That the edge labeling g with labels in A can have Rule 3.2.3 deriving from the fact that

the sequence of vertices u1, u2, · · · , um has the uniformly R-antimagic property in G and the

fact stated in Note 1.

Claim 1. For j = 1, 2, · · · , n, g +(w1,j) < g +(w2,j) < g +(w3,j) < · · · < g +(wm,j).

Check of Claim 1. We need to show g +(wi,j) < g +(wi+1,j) for i = 1, 2, · · · ,m− 1.

Let J = {1, 2, · · · , n}. Note that

g +(wi,j) = g +
Ej
(wi,j) +

∑
l∈J−{j}

g(wi,jwi,l), (3.2.6)

and
g +(wi+1,j) = g +

Ej
(wi+1,j) +

∑
l∈J−{j}

g(wi+1,jwi+1,l). (3.2.7)

By Rule 3.2.3, g +
Ej
(wi,j) < g +

Ej
(wi+1,j).

By Rule 3.2.2, for 1 ≤ j < l ≤ n, g(wi,jwi,l) < g(wi+1,jwi+1,l), it implies

∑
l∈J−{j}

g(wi,jwi,l) <
∑

l∈J−{j}

g(wi+1,jwi+1,l). (3.2.8)

Thus, g +(wi,j) < g +(wi+1,j), which completes the check of Claim 1.

Claim 2. For j = 1, 2, · · · , n− 1, g +(wm,j) < g +(w1,j+1).

Check of Claim 2. Let J = {1, 2, · · · , n}. Note that

g +(wm,j) = g +
Ej
(wm,j) +

∑
k∈J−{j}

g(wm,jwm,k)

= g +
Ej
(wm,j) + g(wm,jwm,j+1) +

∑
k∈J−{j,j+1}

g(wm,kwm,j),
(3.2.9)

and

g +(w1,j+1) = g +
Ej+1

(w1,j+1) +
∑

k∈J−{j+1}

g(w1,j+1w1,k)

= g +
Ej+1

(w1,j+1) + g(w1,jw1,j+1) +
∑

k∈J−{j,j+1}

g(w1,kw1,j+1).
(3.2.10)
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Let A1 = EGj
(wm,j) ⊆ Ej , A2 = {wm,jwm,j+1} ⊆ Ej,j+1, B1 = EGj+1

(w1,j+1) ⊆ Ej+1,

B2 = {w1,jw1,j+1} ⊆ Ej,j+1. Thus,

∑
e∈A1∪A2

g(e) = g +
Ej
(wm,j) + g(wm,jwm,j+1), (3.2.11)

and ∑
e∈B1∪B2

g(e) = g +
Ej+1

(w1,j+1) + g(w1,jw1,j+1). (3.2.12)

By Rule 3.2.1, Ej ≺ Ej,j+1 ≺ Ej+1. Since A1 ⊆ Ej , B1 ⊆ Ej+1, A2, B2 ⊆ Ej,j+1, we have

A1 ≺ B1 ∪ B2 and A2 ≺ B1. Also, note |A1| = |B1|, |A2| = |B2| = 1. Thus, by Lemma 3.2.2,∑
e∈A1∪A2

g(e) <
∑

e∈B1∪B2
g(e). Hence

g +
Ej
(wm,j) + g(wm,jwm,j+1) < g +

Ej+1
(w1,j+1) + g(w1,jw1,j+1). (3.2.13)

By Rule 3.2.1, Ek,j ≺ Ek,j+1 if k < j, and Ej,k ≺ Ej+1,k if k > j + 1, and we see that

wm,kwm,j ∈ Ek,j , w1,kw1,j+1 ∈ Ek,j+1. Thus, g(wm,kwm,j) < g(w1,kw1,j+1), which implies

∑
k∈J−{j,j+1}

g(wm,kwm,j) <
∑

k∈J−{j,j+1}

g(w1,kw1,j+1). (3.2.14)

Combining (3.2.13) and (3.2.14), we obtain g +(wm,j) < g +(w1,j+1). This completes the check

of Claim 2.

From Claims 1 and 2, we obtain

g +(w1,1) < g +(w2,1) < · · · < g +(wm,1)

<g +(w1,2) < g +(w2,2) < · · · < g +(wm,2)

<g +(w1,3) < g +(w2,3) < · · · < g +(wm,3)

< · · · < · · · · · · < · · ·

<g +(w1,n) < g +(w2,n) < · · · < g +(wm,n).

We also see that the order of the vertices w1,1, w2,1, w3,1, · · · , wm,1, w1,2, w2,2, w3,2, · · · , wm,2,

w1,3, w2,3, w3,3, · · · , wm,3, w1,4, · · · , wm,n−1, w1,n, w2,n, w3,n, · · · , wm,n satisfying the above-

mentioned strict inequalities is independent of the chosen A ⊆ R with |A| = |G�Kn|. Thus,

G�Kn (n ≥ 2) is uniformly R-antimagic.
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3.3 Cartesian products of uniformlyR-antimagic graphs and

cycles

It has been proved that the Cartesian product of two or more cycles is antimagic [18].

We further propose that G�Cn is (uniformly) R-antimagic where G is a regular and uniformly

R-antimagic graph. In G�Cn, the labels we use are in each subset A of real numbers with

|A| = |E(G)| and the labels used in [7,18] are in {1, 2, · · · , |E(G)|}. Because of the difference

in labels, we have to modify the order of labelings, which are different from those in [7,18]. We

use some strategies in the construction of labelings.

Theorem 3.3.1. [6] LetG be a regular and uniformly R-antimagic graph. ThenG�Cn is also

regular and uniformly R-antimagic.

Proof. Since both G and Cn are regular, it is trivial that G�Cn is regular. Now we show

that G�Cn is uniformly R-antimagic. By Theorem 3.2.3, G�K3 is uniformly R-antimagic.

Thus, G�C3 is uniformly R-antimagic. Using Theorem 3.2.3 twice, we see that (G�K2)�K2

is uniformly R-antimagic. Thus, G�C4 is uniformly R-antimagic since (G�K2)�K2 is

isomorphic to G�C4. We assume that n ≥ 5.

Assume that the cycle Cn has vertex set V (Cn) = {v1, v2, · · · , vn} and the edge set

E(Cn) = {v1v2} ∪ {vivi+2| i = 1, 2, · · · , n − 2} ∪ {vn−1vn}. We use the notations for the

vertices, subgraphs and edge sets ofG�H which are defined in Theorem 3.2.3 above, whereH

is now taken to be Cn. We see that the edge set E (G�Cn) is the union of Ej (j = 1, 2, · · · , n)

and E1,2, Ej,j+2 (j = 1, 2, · · · , n− 2), En−1,n.

Now we prove that G�Cn is uniformly R-antimagic. Since G is uniformly R-antimagic,

we assume that u1, u2, · · · , um (m ≥ 3) is the sequence of vertices of G with the uniformly

R-antimagic property. Let A ⊆ R with |A| = |E(G�Cn)| be arbitrarily given. Define g to be

an edge labeling of G�Cn with labels in A by the following three rules:

Rule 3.3.1. Rules of ≺ on G�Cn.

1. E1 ≺ E1,2 ≺ E2,

2. for j = 2, 3, · · · , n− 2, Ej ≺ Ej−1,j+1 ≺ Ej+1,
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3. En−1 ≺ En−2,n ≺ En−1,n ≺ En (Hence E1 ≺ E1,2 ≺ E2 ≺ E1,3 ≺ E3 ≺ E2,4 ≺

E4 ≺ E3,5 ≺ E5 ≺ · · · ≺ En−3 ≺ En−4,n−2 ≺ En−2 ≺ En−3,n−1 ≺ En−1 ≺ En−2,n ≺

En−1,n ≺ En.).

Rule 3.3.2. For vjvl ∈ E(Cn), g(w1,jw1,l) < g(w2,jw2,l) < g(w3,jw3,l) < · · · < g(wm,jwm,l).

Rule 3.3.3. For j = 1, 2, · · · , n, we have g +
Ej
(w1,j) < g +

Ej
(w2,j) < g +

Ej
(w3,j) < · · · <

g +
Ej
(wm,j).

That the edge labeling g with labels in A can have Rule 3.3.3 deriving from the fact that

the sequence of vertices u1, u2, · · · , um has the uniformly R-antimagic property in G and the

fact stated in Note 1.

Claim 1. For j = 1, 2, · · · , n, g +(w1,j) < g +(w2,j) < g +(w3,j) < · · · < g +(wm,j).

Check of Claim 1.

We need to show g +(wi,j) < g +(wi+1,j) for i = 1, 2, · · · ,m− 1. Note that

g +(wi,j) = g +
Ej
(wi,j) +

∑
vjvl∈E(Cn)

g(wi,jwi,l), (3.3.1)

and
g +(wi+1,j) = g +

Ej
(wi+1,j) +

∑
vjvl∈E(Cn)

g(wi+1,jwi+1,l). (3.3.2)

By Rule 3.3.3, g +
Ej
(wi,j) < g +

Ej
(wi+1,j).

From Rule 3.3.2, we obtain that for fixed i, i = 1, 2, · · · ,m− 1,

∑
vjvl∈E(Cn)

g(wi,jwi,l) <
∑

vjvl∈E(Cn)

g(wi+1,jwi+1,l). (3.3.3)

Thus, g +(wi,j) < g +(wi+1,j). This completes the check of Claim 1.

Claim 2. For j = 1, 2, · · · , n− 1, g +(wm,j) < g +(w1,j+1).

Check of Claim 2. We distinguish five cases: Case 1., j = 1; Case 2., j = 2; Case

3., j = 3, 4, · · · , n− 3; Case 4., j = n− 2; and Case 5., j = n− 1.

Case 1. j = 1.
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We need to show that g +(wm,1) < g +(w1,2). Let A1 = EG1(wm,1) and A2 = {wm,1wm,2}.

Then
g +(wm,1) = g(wm,1wm,3) +

∑
e∈A1∪A2

g(e). (3.3.4)

Let B1 = EG2(w1,2) and B2 = {w1,1w1,2}. Then

g +(w1,2) = g(w1,2w1,4) +
∑

e∈B1∪B2

g(e). (3.3.5)

From Rule 3.3.1, E1 ≺ E1,2 ≺ E2 ≺ E1,3 ≺ E2,4. Since E1,3 ≺ E2,4, we have

g(wm,1wm,3) < g(w1,2w1,4). (3.3.6)

Since E1 ≺ E1,2 ≺ E2, A1 ⊆ E1, A2, B2 ⊆ E1,2, B1 ⊆ E2, we have A1 ≺ B1 ∪ B2, A2 ≺ B1.

Since G is reqular, we have |A1| = |B1|. Trivially, |A2| = |B2| = 1. Thus, by Lemma 3.2.2,

∑
e∈A1∪A2

g(e) <
∑

e∈B1∪B2

g(e). (3.3.7)

From the aforementioned, we obtain g +(wm,1) < g +(w1,2).

Case 2. j = 2.

We need to show that g +(wm,2) < g +(w1,3). Note that

g +(wm,2) = g +
E2
(wm,2) + g(wm,1wm,2) + g(wm,2wm,4), (3.3.8)

and

g +(w1,3) = g +
E3
(w1,3) + g(w1,1w1,3) + g(w1,3w1,5). (3.3.9)

Since E2 ≺ E3, and G2 and G3 are regular with the same degree, we have

g +
E2
(wm,2) < g +

E3
(w1,3). (3.3.10)

Since E1,2 ≺ E1,3, we have

g(wm,1wm,2) < g(w1,1w1,3). (3.3.11)
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Since E2,4 ≺ E3,5, we have

g(wm,2wm,4) < g(w1,3w1,5). (3.3.12)

Thus, we obtain g +(wm,2) < g +(w1,3).

Case 3. j = 3, 4, · · · , n− 3.

We need to show that g +(wm,j) < g +(w1,j+1). For n = 5, we do not need to consider this

case. Assume that n ≥ 6. Note that

g +(wm,j) = g +
Ej
(wm,j) + g(wm,j−2wm,j) + g(wm,jwm,j+2), (3.3.13)

and

g +(w1,j+1) = g +
Ej+1

(w1,j+1) + g(w1,j−1w1,j+1) + g(w1,j+1w1,j+3). (3.3.14)

From Rule 3.3.1(2), we have Ej ≺ Ej−1,j+1 ≺ Ej+1 ≺ Ej,j+2 for 2 ≤ j ≤ n − 3. Since

Ej ≺ Ej+1, and Gj and Gj+1 are regular with the same degree, we have

g +
Ej
(wm,j) < g +

Ej+1
(w1,j+1). (3.3.15)

Since Ej−2,j ≺ Ej−1,j+1, we have

g(wm,j−2wm,j) < g(w1,j−1w1,j+1). (3.3.16)

Since Ej,j+2 ≺ Ej+1,j+3, we have

g(wm,jwm,j+2) < g(w1,j+1w1,j+3). (3.3.17)

Accordingly, we obtain g +(wm,j) < g +(w1,j+1).

Case 4. j = n− 2.

We need to show that g +(wm,n−2) < g +(w1,n−1). Note that

g +(wm,n−2) = g +
En−2

(wm,n−2) + g(wm,n−4wm,n−2) + g(wm,n−2wm,n), (3.3.18)
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and

g +(w1,n−1) = g +
En−1

(w1,n−1) + g(w1,n−3w1,n−1) + g(w1,n−1w1,n). (3.3.19)

Also note that En−4,n−2 ≺ En−2 ≺ En−3,n−1 ≺ En−1. Since wm,n−4wm,n−2 ∈ En−4,n−2,

w1,n−3w1,n−1 ∈ En−3,n−1, we have

g(wm,n−4wm,n−2) < g(w1,n−3w1,n−1). (3.3.20)

Since EGn−2(wm,n−2) ⊆ En−2, EGn−1(w1,n−1) ⊆ En−1, we have

g +
En−2

(wm,n−2) < g +
En−1

(w1,n−1). (3.3.21)

Furthermore, En−2,n ≺ En−1,n, this implies

g(wm,n−2wm,n) < g(w1,n−1w1,n). (3.3.22)

Hence, we obtain g +(wm,n−2) < g +(w1,n−1).

Case 5. j = n− 1.

We need to show that g +(wm,n−1) < g +(w1,n). Let A1 = EGn−1(wm,n−1) and A2 =

{wm,n−1wm,n}. Then

g +(wm,n−1) = g(wm,n−3wm,n−1) +
∑

e∈A1∪A2

g(e). (3.3.23)

Let B1 = EGn(w1,n) and B2 = {w1,n−1w1,n}. Then

g +(w1,n) = g(w1,n−2w1,n) +
∑

e∈B1∪B2

g(e). (3.3.24)

Note that En−3,n−1 ≺ En−1 ≺ En−2,n ≺ En−1,n ≺ En. From En−3,n−1 ≺ En−2,n and

wm,n−3wm,n−1 ∈ En−3,n−1, w1,n−2w1,n ∈ En−2,n, we have

g(wm,n−3wm,n−1) < g(w1,n−2w1,n). (3.3.25)

From En−1 ≺ En−1,n ≺ En and A1 ⊆ En−1, A2 ⊆ En−1,n, B1 ⊆ En, B2 ⊆ En−1,n, we
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have A1 ≺ B1 ∪ B2 and A2 ≺ B1. Since G is reqular, we have |A1| = |B1|. Trivially,

|A2| = |B2| = 1. Thus, by Lemma 3.2.2,

∑
e∈A1∪A2

g(e) <
∑

e∈B1∪B2

g(e). (3.3.26)

Therefore, we obtain g +(wm,n−1) < g +(w1,n).

These complete the check of Claim 2.

From Claims 1 and 2, we obtain

g +(w1,1) < g +(w2,1) < · · · < g +(wm,1)

<g +(w1,2) < g +(w2,2) < · · · < g +(wm,2)

<g +(w1,3) < g +(w2,3) < · · · < g +(wm,3)

< · · · < · · · · · · < · · ·

<g +(w1,n) < g +(w2,n) < · · · < g +(wm,n).

We also see that the order of the vertices w1,1, w2,1, w3,1, · · · , wm,1, w1,2, w2,2, w3,2, · · · , wm,2,

w1,3, w2,3, w3,3, · · · , wm,3, w1,4, · · · , wm,n−1, w1,n, w2,n, w3,n, · · · , wm,n satisfying the above-

mentioned strict inequalities is independent of the chosen A ⊆ R with |A| = |E (G�Cn) |.

Thus, G�Cn is uniformly R-antimagic. This completes the proof of the theorem.

The following Corollaries derive directly from Theorems 3.2.3 and 3.3.1.

Corollary 3.3.1. [6] The graph G1�G2� · · ·�Gn (n ≥ 2) is uniformly R-antimagic, where

G1 is regular and uniformly R-antimagic, and for i ≥ 2 each Gi is a complete graph of order

≥ 2 or a cycle.

Corollary 3.3.2. [6] The graph G1�G2� · · ·�Gn (n ≥ 2) is uniformly R-antimagic, where

each Gi is a complete graph of order ≥ 2 or a cycle.

Proof. Each Gi is a complete graph of order ≥ 2 or a cycle.

Case 1. Some Gi ̸= K2.

Without loss of generality, assume G1 ̸= K2. Then G1 is a cycle or a complete graph of

order ≥ 3. By Theorems 3.1.2 and 3.1.3, G1 is uniformly R-antimagic. Then the Corollary

derives from Corollary 3.3.1.
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Case 2. Gi = K2 for i = 1, 2, · · · , n.

Since K2�K2
∼= C4, by Theorem 3.1.2, G1�G2 is uniformly R-antimagic. Again, the

Corollary derives from Corollary 3.3.1.

Note that the hypercube Qn is isomorphic to G1�G2� · · ·�Gn, where each Gi = K2 for

i = 1, 2, · · · , n. The following corollary derives from Corollary 3.3.2.

Corollary 3.3.3. [6] Hypercube Qn (n ≥ 2) is uniformly R-antimagic.
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Chapter 4

Some irregular graphs

In Chapter 4, we prove that wheels, paws, and paths of order ≥ 6 are R-antimagic.

4.1 Wheels

LetCn denote the cycle of ordern. AwheelWn (n ≥ 3) is the graph obtained by connecting

a single vertex to every vertex of the cycle Cn. In this section, we prove that wheels are R-

antimagic.

Theorem 4.1.1. [6] Every wheel is R-antimagic.

Proof. Let Wn be the wheel with V (Wn) = {v1, v2, · · · , vn} ∪ {v} and E(Wn) = {v1v2} ∪

{vivi+2| i = 1, 2, · · · , n − 2} ∪ {vn−1vn} ∪ {vvi| i = 1, 2, · · · , n}. To prove the theorem, let

r1 < r2 < r3 < · · · < r2n be the arbitrarily given real numbers. We distinguish two cases: Case

1, rn−1 + rn < rn+1 + rn+2 + · · ·+ r2n−1; and Case 2, rn+1 + rn+2 + · · ·+ r2n−1 ≤ rn−1 + rn.

Case 1. rn−1 + rn < rn+1 + rn+2 + · · ·+ r2n−1.

We define an edge labeling f of Wn with labels in {r1, r2, r3, · · · , r2n} by f(v1v2) = r1,

f(vivi+2) = ri+1 for i = 1, 2, · · · , n − 2, f(vn−1vn) = rn and f(vvi) = rn+i for i =

1, 2, · · · , n (see Figure 4.1). Then f +(v1) = r1 + r2 + rn+1, f +(vi) = ri−1 + ri+1 + rn+i

for i = 2, · · · , n− 1, and f +(vn) = rn−1 + rn + r2n. Note that

f +(v1) = r1 + r2 + rn+1 < r1 + r3 + rn+2 = f +(v2), (4.1.1)
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n is odd

v rn+6

rn+4

rn+2

rn+1
rn+3

rn+5

rn+7

r2n−2

r2n r2n−1

r2n−3

r5

r3

r1
r2

r4

r6

rn−1
rn

rn−2

v6

v4

v2
v1

v3

v5

v7

vn−2

vn

vn−1

vn−3

n is even

v

rn+6

rn+4

rn+2

rn+1

rn+3

rn+5

rn+7

r2n−3

r2n−1
r2n

r2n−2

rn+8

r7

r5

r3

r1

r2

r4

r6

rn−2

rn

rn−1

v6

v4

v2v1

v3

v5

v7

vn−3

vn−1 vn

vn−2

v8

Figure 4.1: Edge labeling ofWn if rn−1 + rn < rn+1 + rn+2 + · · ·+ r2n−1

f +(vi) = ri−1 + ri+1 + rn+i < ri + ri+2 + rn+i+1 = f +(vi+1) (4.1.2)

for i = 2, · · · , n− 2,

f +(vn−1) = rn−2 + rn + r2n−1 < rn−1 + rn + r2n = f +(vn), (4.1.3)

and
f +(vn) = (rn−1 + rn) + r2n

< (rn+1 + rn+2 + · · ·+ r2n−1) + r2n

= f +(v).

(4.1.4)

Hence

f +(v1) < f +(v2) < · · · < f +(vn) < f +(v). (4.1.5)

Case 2. rn+1 + rn+2 + · · ·+ r2n−1 ≤ rn−1 + rn.

We define an edge labeling f ofWn with labels in {r1, r2, r3, · · · , r2n} by f(v1v2) = rn+1,

f(vivi+2) = rn+i+1 for i = 1, 2, · · · , n − 2, f(vn−1vn) = r2n, and f(vvi) = ri for
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n is odd

v r6

r4

r2

r1
r3

r5

r7

rn−2

rn rn−1

rn−3

rn+5

rn+3

rn+1
rn+2

rn+4

rn+6

r2n−1
r2n

r2n−2

v6

v4

v2
v1

v3

v5

v7

vn−2

vn

vn−1

vn−3

n is even

v
r6

r4

r2
r1

r3

r5

r7

rn−3

rn−1
rn

rn−2

r8

rn+7

rn+5

rn+3

rn+1

rn+2

rn+4

rn+6

r2n−2

r2n

r2n−1

v6

v4

v2v1

v3

v5

v7

vn−3

vn−1 vn

vn−2

v8

Figure 4.2: Edge labeling ofWn if rn+1 + rn+2 + · · ·+ r2n−1 ≤ rn−1 + rn

i = 1, 2, · · · , n (see Figure 4.2). Then f +(v1) = rn+1+rn+2+r1, f +(vi) = rn+i−1+rn+i+1+ri

for i = 2, · · · , n− 1, and f +(vn) = r2n−1 + r2n + rn. Note that

f +(v1) = rn+1 + rn+2 + r1 < rn+1 + rn+3 + r2 = f +(v2), (4.1.6)

f +(vi) = rn+i−1 + rn+i+1 + ri < rn+i + rn+i+2 + ri+1 = f +(vi+1) (4.1.7)

for i = 2, · · · , n− 2,

f +(vn−1) = r2n−2 + r2n + rn−1 < r2n−1 + r2n + rn = f +(vn), (4.1.8)

and
f +(v) = r1 + (r2 + r3 + · · ·+ rn−1 + rn)

< r1 + (rn+1 + rn+2 + · · ·+ r2n−2 + r2n−1)

≤ r1 + (rn−1 + rn) < f +(v1).

(4.1.9)

Hence

f +(v) < f +(v1) < f +(v2) < · · · < f +(vn). (4.1.10)
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This completes the proof.

4.2 Paws

A paw is a graph with a vertex set {v1, v2, v3, v4} and an edge set {v1v2, v2v3, v3v4, v2v4}.

Theorem 4.2.1. Every paw is R-antimagic.

Proof. LetG be the paw with vertex set {v1, v2, v3, v4} and an edge set {v1v2, v2v3, v3v4, v2v4}.

Let r1 < r2 < r3 < r4 be arbitrarily given real numbers. We distinguish five cases: Case

1., 0 ≤ r1 < r2 < r3 < r4; Case 2., r1 < 0 ≤ r2 < r3 < r4; Case 3., r1 < r2 < 0 ≤ r3 < r4;

Case 4., r1 < r2 < r3 < 0 < r4; and Case 5., r1 < r2 < r3 < r4 ≤ 0.

Case 1. 0 ≤ r1 < r2 < r3 < r4.

We define an edge labeling f ofGwith labels in {r1, r2, r3, r4} by f(v1v2) = r1, f(v2v3) =

r3, f(v3v4) = r2, and f(v2v4) = r4 (see Figure 4.3). Then vertex sums f+(v1) = r1, f+(v2) =

r1 + r3 + r4, f+(v3) = r2 + r3, and f+(v4) = r2 + r4

Note that f+(v1) < f+(v3), f+(v3) < f+(v4), and f+(v4) < f+(v2) for 0 ≤ r1 and

r2 < r3. Thus, the vertex sums are all distinct.

r1

r3

r2

r4

v1v2

v3

v4

Figure 4.3: Edge labeling f of paw

Case 2. r1 < 0 ≤ r2 < r3 < r4.

We take a look at both of these situations: r2 < r1 + r3 and r1 + r3 ≤ r2.

Subcase 2.1. r2 < r1 + r3.

We follow the same procedure as in Case 1 in terms of labeling the edges (see Figure 4.3).

Then vertex sums f+(v1) = r1, f+(v2) = r1+ r3+ r4, f+(v3) = r2+ r3, and f+(v4) = r2+ r4
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Note that f+(v1) < f+(v3) for r1 < 0 and 0 < r2 < r3, f+(v3) < f+(v4), and f+(v4) <

f+(v2) for r2 < r1 + r3. Thus, the vertex sums are all distinct.

Subcase 2.2. r1 + r3 ≤ r2.

We define an edge labeling g ofGwith labels in {r1, r2, r3, r4} by g(v1v2) = r1, g(v2v3) =

r2, g(v3v4) = r4, and g(v2v4) = r3 (see Figure 4.4). Then vertex sums g+(v1) = r1, g+(v2) =

r1 + r2 + r3, g+(v3) = r2 + r4, and g+(v4) = r3 + r4.

Note that g+(v1) < g+(v2) for 0 ≤ r2, r3, and g+(v3) < g+(v4). Also note that

g+(v2) =r1 + r2 + r3 = r2 + (r1 + r3)

≤r2 + r2 < r2 + r4 = g+(v3).
(4.2.1)

Thus, the vertex sums are all distinct.

r1

r2

r4

r3

v1v2

v3

v4

Figure 4.4: Edge labeling g of paw

Case 3. r1 < r2 < 0 ≤ r3 < r4.

We distinguish two subcases: r2 + r3 ̸= 0 and r2 + r3 = 0.

Subcase 3.1. r2 + r3 ̸= 0.

Weuse the edge labeling g ofGwith labels in {r1, r2, r3, r4} by g(v1v2) = r1, g(v2v3) = r2,

g(v3v4) = r4, and g(v2v4) = r3 (see Figure 4.4). Then vertex sums g+(v1) = r1, g+(v2) =

r1 + r2 + r3, g+(v3) = r2 + r4, and g+(v4) = r3 + r4

Note that

g+(v2) = r1 + r2 + r3 = r2 + (r1 + r3) < r2 + r3 < r2 + r4 = g+(v3) (4.2.2)
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for r1 < 0 and r3 < r4, and g+(v3) < g+(v4). Also note that g+(v1) < g+(v3) for r1 < r2,

0 < r4, and g+(v1) = r1 ̸= r1 + r2 + r3 = g+(v2) under the assumption of this subcase. Thus,

the vertex sums are all distinct.

Subcase 3.2. r2 + r3 = 0.

• r1 + r4 < r2.

We use the edge labeling h of G with labels in {r1, r2, r3, r4} by h(v1v2) = r4, h(v2v3) = r1,

h(v3v4) = r2, and h(v2v4) = r3 (see Figure 4.5). Then vertex sums h+(v1) = r4, h+(v2) =

r1 + r3 + r4, h+(v3) = r1 + r2, and h+(v4) = r2 + r3

Note that

h+(v3) = r1 + r2 < r1 + r3 + r4 = h+(v2), (4.2.3)

for r2 < 0 ≤ r3 < r4, and

h+(v2) = r1 + r3 + r4 = (r1 + r4) + r3 < r2 + r3 = h+(v4), (4.2.4)

for r2 < 0 ≤ r3 < r4, and h+(v4) = r2 + r3 = 0 < r4 = h+(v1). The vertex sums are all

distinct.

r4

r1

r2

r3

v1v2

v3

v4

Figure 4.5: Edge labeling h of paw

• r2 < r1 + r4.

We use the edge labeling h of G with labels in {r1, r2, r3, r4} by h(v1v2) = r4, h(v2v3) = r1,

h(v3v4) = r2, and h(v2v4) = r3 (see Figure 4.5). Then vertex sums h+(v1) = r4, h+(v2) =

r1 + r3 + r4, h+(v3) = r1 + r2, and h+(v4) = r2 + r3
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Note that h+(v3) = r1 + r2 < r2 + r3 = h+(v4), and

h+(v4) = r2 + r3 < (r1 + r4) + r3 = h+(v2) (4.2.5)

for r2 < r1 + r4, and

h+(v2) = r1 + r3 + r4 < (r2 + r3) + r4 = r4 = h+(v1), (4.2.6)

for r1 < r2, r2 + r3 = 0. The vertex sums are all distinct.

• r1 + r4 = r2.

We use the edge labeling s of G with labels in {r1, r2, r3, r4} by s(v1v2) = r1, s(v2v3) = r2,

s(v3v4) = r3, and s(v2v4) = r4 (see Figure 4.6). Then vertex sums s+(v1) = r1, s+(v2) =

r1 + r2 + r4, s+(v3) = r2 + r3, and s+(v4) = r3 + r4.

Note that

s+(v1) = r1 = r1 + (r2 + r3) < r1 + r2 + r4 = s+(v2) (4.2.7)

for r2 + r3 = 0, r3 < r4, and

s+(v2) = r1 + r2 + r4 = (r1 + r4) + r2 = r2 + r2 < r2 + r3 = s+(v3), (4.2.8)

for r1 + r4 = r2, r2 < r3, and s+(v3) = r2 + r3 < r3 + r4 = s+(v4). The vertex sums are all

distinct.

r1

r2

r3

r4

v1v2

v3

v4

Figure 4.6: Edge labeling s of paw

Case 4. r1 < r2 < r3 < 0 < r4.
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We have−r4 < 0 < −r3 < −r2 < −r1. By Case 2,G is {−r4,−r3,−r2,−r1}-antimagic.

By Lemma 2.3.1, we can have G is {r1, r2, r3, r4}-antimagic.

Case 5. r1 < r2 < r3 < r4 ≤ 0.

In this case, 0 ≤ −r4 < −r3 < −r2 < −r1. By Case 1, G is {−r4,−r3,−r2,−r1}-

antimagic. By Lemma 2.3.1, we can have G is {r1, r2, r3, r4}-antimagic. This completes the

proof.

4.3 Paths

Let Pm+1 denote a path withm edges form ≥ 1. It has been shown that Pn (n ≥ 3) isR+-

antimagic [14]. Actually, no path Pi has an antimagic labeling with labels in {−1, 0, . . . , i−3}

for i ∈ {3, 4, 5} [12]. Hence, Pi (i = 3, 4, 5) is not R-antimagic.

Theorem 4.3.1. The path Pm+1(m ≥ 5) is R-antimagic graph.

Proof. Let P be a path with m (m ≥ 5) edges. Let L = {r1, r2, . . . , rm} where r1, r2, . . . , rm
be real numbers, and r1 < r2 < · · · < rm. To prove the theorem, we need to assign the numbers

in L to the edges of P so that the vertex sums of P are all distinct. We distinguish the following

cases: Case 1: L does not contain 0, Case 2: L contains 0.

Case 1. L does not contain 0.

A path with size m can be obtained by deleting an edge from Cm+1. Let Cm+1 be the

cycle with vertex set {v1, v2, · · · , vm+1}. From Theorem 3.1.2, Cm+1 is R-antimagic. There

is an edge labeling f of Cm+1 with labels in L ∪ {0} such that f +(v1) < f +(v2) < · · · <

f +(vm+1). In E(Cm+1), there is an edge e = xy such that f(e) = 0 where x, y ∈ V (Cm+1).

Let P = Cm+1 − e. Then P is an x, y-path (see Figure 4.7). We define an edge labeling g

of P with labels in L by g(e′) = f(e′) where e′ ∈ E(Cm − e). Then, the vertex sum at x is

g +(x) = f +(x)− f(e) = f +(x), and the vertex sum at y is g +(y) = f +(y)− f(e) = f +(y).

Hence, g+(vi) = f +(vi) for all i = 1, 2, . . . ,m+1. Since the vertex sums of Cm+1 are distinct,

the vertex sums of P are distinct.

Case 2. L contains 0.
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Cm+1 Pm+1

0

x

y x y

v1
v2

v3
· · ·

Figure 4.7: L does not contain 0

We will use the edge labeling of Cm to generate the edge labeling of Pm+1. Let Cm be the

cycle with vertex set {v1, v2, · · · , vm} and edge set {v1v2} ∪ {vivi+2| i = 1, 2, · · · ,m − 2} ∪

{vm−1vm}. As in the proof of Theorem 3.1.2, an edge labeling f ofCm with labels inL is defined

by f(v1v2) = r1, f(vivi+2) = ri+1 for i = 1, 2, · · · ,m − 2, and f(vm−1vm) = rm. We have

f +(v1) = r1+r2, f +(vi) = ri−1+ri+1 for i = 2, · · · ,m−1, and f +(vm) = rm−1+rm. Since

r1+r2 < r1+r3 < r2+r4 < r3+r5 < r4+r6 < · · · < rm−3+rm−1 < rm−2+rm < rm−1+rm,

we have f +(v1) < f +(v2) < · · · < f +(vm).

From Lemma 2.3.1, we have that if G is L-antimagic, then G is −L-antimagic. Thus, we

only need to consider the following cases: subcase 2.1. r1 = 0, subcase 2.2. r2 = 0, and subcase

2.3. ri = 0 where 3 ≤ i ≤ m− 2.

Subcase 2.1. r1 = 0.

We split the vertex v1 into two new vertices x and y, obtaining an x, y-path P with the

same set of edges as Cm (see Figure 4.8). We define an edge labeling g of P with labels in L by

g(e) = f(e) where e ∈ E(Cm). Then, the vertex sum at x is g +(x) = f +(v1)− r2 = r1 = 0,

and the vertex sum at y is g +(y) = f +(v1) − r1 = r2. Since 0 = r1 < r2 < r1 + r3 <

r2 + r4 < r3 + r5 < r4 + r6 < · · · < rm−3 + rm−1 < rm−2 + rm < rm−1 + rm, we have

g +(x) < g +(y) < g +(v2) < g +(v3) < · · · < g +(vm). We see that the vertex sums are all

distinct.

Subcase 2.2. r2 = 0.
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r1q
0 v4

v6 x r1 = 0
r3 r5

y
r2r4r6· · ·

v3
v1

v5
v2

Cm Pm+1

r2

r3
r4

r5

r6

Figure 4.8: r1 = 0

We split the vertex v4 into two new vertices x and y, obtaining an x, y-path P with the

same set of edges as Cm (see Figure 4.9). We define an edge labeling g of P with labels in L by

g(e) = f(e) where e ∈ E(Cm). Then, the vertex sum at x is g +(x) = f +(v4) − r5 = r3, and

the vertex sum at y is g +(y) = f +(v4)− r3 = r5. Since r1 < 0, r1+ r3 < r3. Hence, r1+ r2 <

r1 + r3 < r3 < r4 = r2 + r4 < r5 < r4 + r6 < · · · < rm−3 + rm−1 < rm−2 + rm < rm−1 + rm.

We have g +(v1) < g +(v2) < g +(x) < g +(v3) < g +(y) < g +(v5) < · · · < g +(vm). We see

that the vertex sums are all distinct.

r1

v4

v6 x
r3 r1

r2 = 0
r4

y
r5r7· · ·

v3
v1

v5
v2

Cm Pm+1

r2q
0 r3

r4

r5

r6

r7

Figure 4.9: r2 = 0

Subcase 2.3. ri = 0 where 3 ≤ i ≤ m− 2.
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We split the vertex vi into two new vertices x and y, obtaining an x, y-path P with the same

set of edges as Cm (see Figure 4.10). We define an edge labeling g of P with labels in L by

g(e) = f(e)where e ∈ E(Cm). Then, the vertex sum at x is g+(x) = f +(vi)−ri+1 = ri−1, and

the vertex sum at y is g+(y) = f +(vi)−ri−1 = ri+1. Since r1+r2 < r1+r3 < · · · < ri−2+ri =

ri−2 < ri−1 < ri+1 < ri+2 = ri + ri+2 < · · · < rm−3 + rm−1 < rm−2 + rm < rm−1 + rm, we

have g +(v1) < g +(v2) < · · · < g +(vi−1) < g +(x) < g +(y) < g +(vi+1) < · · · < g +(vm).

We see that the vertex sums are all distinct.

r1

v4

vi−1

vi+1

x
ri−1ri−3 · · ·

y
ri+1ri+3

v3
v1

· · ·
v2

Cm Pm+1

r2

r3
r4

· · ·
ri−1

vi

ri = 0

ri+1

Figure 4.10: ri = 0 (3 ≤ i ≤ m− 2)
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Chapter 5

Conclusions and further studies

5.1 Results

In this thesis, we propose the notion of R-antimagic graph. This is a generalization of

R+-antimagic graph. Every R-antimagic graph is R+-antimagic, and every R+-antimagic is

antimagic. Not all R+-antimagic graphs (e.g. stars and Pn, n = 3, 4, 5) are R-antimagic.

In Chapter 2, We prove that every R-antimagic graph is C-amtimagic. We also show that

every R+-antimagic graph is also R-antimagic if the graph is regular. Additionally, we discover

a class of regular graphs that are R-antimagic (see Theorem 2.3.5). One of the graphs in this

class is the Peterson graph.

In Chapter 3, we show that cycles, and complete graphs of order ≥ 3 are R-antimagic.

Assume that G is a complete graph (except K1) or a cycle with V (G) = {u1, u2, · · · , un}. We

have found that all the vertices of G can be listed as u1, u2, · · · , un such that for every A ⊆ R

with |A| = |E(G)|, there is an edge labeling f of G with labels in A such that f +(u1) <

f +(u2) < · · · < f +(un). The property we call uniformly R-antimagic property which is

independent of the choice of the subset A of R. Clearly, every uniformly R-antimagic is R-

antimagic. We prove that Cartesian products G1�G2� · · ·�Gn (n ≥ 2) are uniformly R-

antimagic, where each Gi is a complete graph of order ≥ 2 or a cycle.

In Chapter 4, we prove that wheels, paws, and paths of order ≥ 6 are R-antimagic.
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5.2 Discussions

In our study, we use labelingsmodified from those in [7,18] andmake themmore systematic

for Cartesian products of cycles and complete graphs. The proofs in this dissertation provide

efficient algorithms for finding edge labelings of Cartesian products of cycles and complete

graphs. Our contribution is to quickly find the edge labelings of Cartesian products of cycles and

complete graphs through the algorithms we constructed. It has been proved that the Cartesian

products G1�G2� · · ·�Gn (n ≥ 2) of G1, G2, · · · , Gn are (uniformly) R-antimagic if eachGi

is either a complete graph (exceptK1) or a cycle in Section 3.2 and 3.2.

We construct some classes of uniformly R-antimagic graphs through Cartesian products.

The join of simple graphs G andH is denoted by G+H with the vertex set V (G)∪ V (H) and

the edge set E(G)∪E(H)∪ {uv|u ∈ V (G), v ∈ V (H)}. That some join graphs are antimagic

has been proved in [2,17]. In [17], Wang et al. use the way of listing edges in [8] to show that a

class of join graphs is antimagic. It makes the method of labelings in our study more plausible.

We were the first to propose uniformly R-antimagic property [6]. Let G be a graph, and f

be an edge labeling of G with labels in {1, 2, . . . , |E(G)|}. If for any two distinct vertices u, v

of G, f+(u) < f+(v) whenever deg(u) < deg(v), then G is called strongly antimagic [3, 4].

Some results strongly antimagic graphs have been shown in [3, 4]. Uniformly R-antimagic

property and strongly antimagic are similar concepts, but different. Assume thatG is uniformly

R-antimagic and that for any two distinct vertices u and v of G, the vertex sum of u is less than

the vertex sum of v. The degree of vertex u may not be less than the degree of vertex v.

5.3 Further studies

Generalized Petersen graphs P (n, k) (1 ≤ k ≤ n

2
), which consist of the vertex

set {u0, u1, . . . , un−1, v0, v1, . . . , vn−1} and the edge set {uiui+1 | i = 0, 1, 2, . . . , n− 1} ∪

{vivi+k | i = 0, 1, 2, . . . , n− 1} ∪ {uivi | i = 0, 1, 2, . . . , n− 1} with indices taken by modulo

n, were defined byWatkins [20]. The standard Petersen graph is the instance P (5, 2) (see Figure

2.5). Another example is P (7, 3) (see Figure 5.1). From Theorem 2.3.5 and Corollary 2.3.1, we

have the following conjecture:

Conjecture. Generalized Petersen graphs P (n, k) are R-antimagic where (n, k) = 1.

In the future, we would like to study the following issues:
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u0

u1

u2

u3

u4

u5

u6

v0

v1

v2

v3

v4

v5

v6

Figure 5.1: Generalized Petersen graph P (7, 3)

1. R-antimagicness of other graphs (e.g., generalized Petersen graph, paths, trees, caterpillars,

forests etc.)

2. R-antimagicness of some special classes of regular graphs

3. R-antimagic labelings of some Cartesian products of some types of graphs
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