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Abstract
Acute stroke is one of the leading causes of disability and death worldwide. Regarding clinical diagnoses, a rapid and accurate 
procedure is necessary for patients suffering from acute stroke. This study proposes an automatic identification scheme for 
acute ischemic stroke using deep convolutional neural networks (DCNNs) based on non-contrast computed tomographic 
(NCCT) images. Our image database for the classification model was composed of 1254 grayscale NCCT images from 96 
patients (573 images) with acute ischemic stroke and 121 normal controls (681 images). According to the consensus of criti-
cal stroke findings by two neuroradiologists, a gold standard was established and used to train the proposed DCNN using 
machine-generated image features. Including the earliest DCNN, AlexNet, the popular Inception-v3, and ResNet-101 were 
proposed. To train the limited data size, transfer learning with ImageNet parameters was also used. The established models 
were evaluated by tenfold cross-validation and tested on an independent dataset containing 50 patients with acute ischemic 
stroke (108 images) and 58 normal controls (117 images) from another institution. AlexNet without pretrained parameters 
achieved an accuracy of 97.12%, a sensitivity of 98.11%, a specificity of 96.08%, and an area under the receiver operating 
characteristic curve (AUC) of 0.9927. Using transfer learning, transferred AlexNet, transferred Inception-v3, and transferred 
ResNet-101 achieved accuracies between 90.49 and 95.49%. Tested with a dataset from another institution, AlexNet showed 
an accuracy of 60.89%, a sensitivity of 18.52%, and a specificity of 100%. Transferred AlexNet, Inception-v3, and ResNet-101 
achieved accuracies of 81.77%, 85.78%, and 80.89%, respectively. The proposed DCNN architecture as a computer-aided 
diagnosis system showed that training from scratch can generate a customized model for a specific scanner, and transfer 
learning can generate a more generalized model to provide diagnostic suggestions of acute ischemic stroke to radiologists.

Keywords Acute ischemic stroke · Computed tomography · Convolutional neural networks

Introduction

According to World Health Organization statistics, stroke is 
the most common form of cerebrovascular disease among 
adults, is one of the leading causes of death, and the major 
cause of permanent disability globally. Every two seconds, 
someone suffers a stroke, which results in approximately 
6.24 million deaths worldwide each year [1]. Stroke patients 
are at high risk of recurrence, which increases from 3% 
(after 30 days) to 40% (after 10 years) [2]. Additionally, the 
Global Burden of Disease reports that up to 11 million stroke 
cases occur in young adults aged 20~64 years [3]. Stroke is 
a brain injury that induces physical impacts, such as limb 
impairment, dementia, aphasia, and cognitive abnormalities  
[4, 5], which impair patients’ independence. The required 
expenditures for medical resources and family burdens are 
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enormous. Therefore, timely stroke recognition and treat-
ment are urgently needed to reduce brain tissue injury as 
much as possible.

Stroke caused by disruption of blood supply to the brain 
can be classified into either rupture or blockage of blood 
vessels, namely, hemorrhagic and ischemic stroke, respec-
tively [6]. Ischemic stroke is by far the most common type 
(up to 80%) worldwide [7]. The main cause is large vessel 
occlusion due to either an arterial or cardiac embolism [8]. 
The primary goal of critical treatment in the acute phase of 
ischemic stroke is to recover the supply of blood perfusion. 
Good clinical outcomes were correlated with early vessel 
recanalization [9, 10]. The correct use of treatment highly 
depends on an accurate diagnosis of acute ischemic stroke; 
therefore, a rapid and reliable imaging examination is neces-
sary for subsequent treatment.

Non-contrast computed tomography (NCCT) and mag-
netic resonance imaging (MRI) are routinely used to diag-
nose ischemic stroke [11]. NCCT is a fast and readily avail-
able diagnostic tool for emergency situations and is used to 
detect cerebral hemorrhage (a contraindication to thrombo-
lytic therapy) or other mimics of acute stroke. Diffusion-
weighted imaging is a highly sensitive MRI technique that 
provides reliable information on acute cerebral ischemia 
[12]. Compared to NCCT, MRI is less accessible and more 
limited by patient intolerance, contraindications, and a long 
examination duration. Consequently, NCCT remains the 
first-line imaging modality for identifying ischemia extent in 
the brain parenchyma [13]. Nevertheless, these findings are 
present in fewer than 50% of cases [14]. Erroneous interpre-
tations, such as sulcal effacement and inconsistent scanning 
protocols, limit the sensitivity of NCCT. In the literature, 
NCCT has a sensitivity of 57~71% within 24 h and only 12% 
in the first 3 h [15, 16].

With the development of image processing, computer-
aided diagnosis (CAD) systems based on quantitative image 
features and machine learning techniques can achieve bet-
ter efficiency and accuracy [17, 18], and the use of CAD in 
diagnosing acute ischemic stroke by NCCT can meet clinical 
needs. CAD systems are quantitative, efficient, and consist-
ent; therefore, CAD systems have been proposed to improve 
diagnostic quality. For example, textural features are used 
to evaluate liver cirrhosis at an early stage based on ultra-
sound images [19]. Shape features are used to automatically 
detect pulmonary nodules in CT imaging [20] and detect 
masses and microcalcifications on mammograms [21]. Pre-
vious CAD systems used handcrafted shape, intensity, and 
textural features that were manipulated by human experts; 
however, selecting and implementing relevant features are 
complicated and may be biased. Deep convolutional neural 
networks (DCNNs) are a better approach to automatically 
generate and combine image features. DCNNs with multi-
ple convolutional layers can extract as much information as 

possible from images, which are automatically processed 
with several types of filters and learn to recognize features 
at differing spatial levels [22]. Prior literature showed that 
the performance of DCNN in diagnosing diabetic retinopa-
thy and skin cancer outperformed specialized expertise with 
an area under the receiver operating characteristic curves 
(AUC) for accuracy of 0.96–0.99 [23–25]. In this study, 
DCNN as a CAD system was proposed to diagnose acute 
ischemic stroke on NCCT images to provide an efficient and 
accurate diagnostic suggestion for clinical use. Additionally, 
NCCT image datasets were collected from different scanners 
and institutions for performance validation to evaluate the 
generalizability of the trained model.

Materials and Methods

Study Participants and Image Acquisition

The study protocol was reviewed and approved by our insti-
tutional review board (No. 17MMHIS133). The collected 
NCCT image datasets were from two institutions. As shown 
in Fig. 1, the main dataset from institution A was used for 
conventional model building. The dataset was separated into 
a training set and a test set under tenfold cross validation for 
evaluation. Additionally, the image dataset from institution 
B was also used for an independent test to verify model per-
formance regarding data from different protocols, scanners, 
and institutions.

From January 2017 to December 2019, the image dataset from  
institution A contains a total of 1254 NCCT slices, including 
573 stroke slices and 681 normal slices from 96 acute ischemic 
stroke patients and 121 normal control patients. Among the 96 
stroke patients, a baseline NCCT was performed within a mean 
of 127 min and a median of 113 min after the time of last known 
wellness. Images reconstructed in the axial CT were acquired 
using routine brain window settings (width, 100 HU; center, 35 
HU) to generate 512 × 512 images (Fig. 2a). Between January  
2018 and October 2019, the image dataset from institution B 
consisted of 108 stroke slices and 117 normal slices, which were  
extracted from 50 acute ischemic stroke patients and 58 normal 
control patients for independent model testing. Among the 50 
stroke patients, a baseline NCCT was performed within a mean of  
121 min and a median of 109 min after the time of last known 
wellness. Images reconstructed in the axial CT were acquired 
using routine brain window settings (width, 90 HU; center, 
40 HU) to generate 512 × 512 images (Fig. 2b). Patients with 
negative findings on neurological examination and no structural  
abnormalities on NCCT were recruited as normal controls. 
Forty-two patients with vertebrobasilar artery occlusion (n = 13), 
arrival time > 6 h (n = 24), and motion artifacts (n = 5) were 
excluded. Patient characteristics are listed in Table 1.
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Due to the lack of MRI in experimental institutions, the 
standard practice during the acute period is a baseline NCCT 
accompanied by multiphase CT angiography (CTA) for diag-
nosis. Acute status means that the patients presented within 
6 h after the onset of stroke symptoms. This period was 
chosen because NCCT is performed quickly to provide sug-
gestions for appropriate treatment and triage. A multiphase 
CTA interpretation was then used for rapid identification 
and vessel evaluation before treatment. Thus, only patients 
with acute ischemic stroke with intracranial internal carotid 
artery (ICA) occlusion or middle cerebral artery (MCA) ter-
ritory occlusion on CTA were included. All CTA scans were 
performed from the beginning of the aortic arch to the vertex 
of the arterial phase. The remaining two phases are from 
the skull base to the vertex in the equilibrium venous and 
late venous phases in the whole brain. Assessment of pial 
arterial filling in multiphase CTA was used as the reference 
standard (Fig. 2c) and to aid in planning for endovascular 
revascularization (Fig. 2d).

Multislice CT scanners were obtained from two manu-
facturers with a tube voltage of 120 kVp and automatic tube 
current modulation. The Siemens scanner (Somatom Defini-
tion AS) had a slice thickness = 5 mm, helical pitch = 1.0, 
and gantry rotation time = 1.00 s. The Toshiba scanner 
(Aquilion Prime) had a slice thickness = 4 mm, helical 
pitch = 0.6, and gantry rotation time = 0.75 s. The coverage 

range was from the skull base to the vertex with continuous 
axial slices parallel to the orbitomeatal line. According to 
the multiphase CTA and reperfusion therapy observations, 
each NCCT image was assigned a standard diagnosis based 
on consensus of stroke findings by two certified neuroradi-
ologists. Figure 2e shows NCCT examples from the different 
scanners accompanied by multiphase CTA.

DCNN Architectures

Recent advances in deep learning have garnered attention 
with respect to pattern recognition of images. DCNN builds 
on deep learning using multiple network layers to increase 
performance, such as AlexNet [26], which consists of five 
convolutional layers, three max pooling layers, and two 
fully connected layers. As a brief overview of the mechan-
ics behind DCNNs (Fig. 3a), convolutional layers are the 
processes that featurize images, thereby converting raw input 
images into useful parameters that can be used to train sub-
sequent models. This process is fully automated and cul-
minates in an output layer that can be used to formulate a 
prediction. Each convolutional layer uses a rectified linear 
unit activation function to achieve faster convergence. Max 
pooling layers partition feature maps and extract maximal 
values. To prevent overfitting, a dropout layer is also used. 
The last fully connected layer with a softmax classifier 

Fig. 1  The flowchart and data-
sets used in the experiments for 
the establishment and evalua-
tion of DCNN models
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classifies the slices into normal or stroke. Constructing an 
effective DCNN from scratch requires a large training data-
set. With limited training data, transfer learning retains the 
initial pretrained model weights and extracts image features 
via fine-tuning of the network layers (Fig. 3b). Transferred 
DCNNs have been used in medical diagnosis, such as the 
assessment of wrist fractures and shoulder lesions, with 

AUCs of 0.95 and 0.96, respectively [27, 28]. Other stud-
ies classified pneumonia in chest radiographs and obtained 
an AUC between 0.853 and 0.931 [29, 30]. More DCNN 
architectures were developed to obtain higher accuracy or 
efficiency, including Inception-v3 [31] and ResNet101 [32]. 
Inception-v3 is a modification of GoogLeNet. The proposed 
inception blocks have a multipath structure for the generous 

Fig. 2  Illustrative example of NCCT and accompanying imag-
ing examinations. NCCT images from two examinations showing 
two patients who had no structural abnormalities, indicating normal 
brain parenchyma density, normal ventricular system, and centrally 
located midline structures from a a Siemens and b Toshiba scanner, 
respectively. c Schematic of collateral circulations. Left to right (a–d) 
shows the site of occlusion (arrow), arterial, equilibrium venous, and 
late venous phase, with rows (I–III) showing good collaterals, inter-
mediate collaterals, and poor collaterals. d  A 73-year-old man with 
acute infarcts presented within 3  h. Pial arterial filling is moder-
ate, with a delay of two phases indicating intermediate filling com-
pared with the contralateral side. After administration of intravenous 
recombinant tissue plasminogen activator (rt-PA), the patient had no 
neurologic improvement, and therefore was taken for endovascular 

intervention. Due to the right ICA with the occlusion site around the 
distal cavernous to the supraclinoid segment (arrow), intra-arterial 
thrombectomy was performed under the impression of focal throm-
bus to achieve revascularization (arrows). e The top row shows NCCT 
obtained within 4.5  h in a 68-year-old woman with left hemiplegia 
that was diagnosed by a hyperdense vessel sign in the right proximal 
MCA (arrow). The arterial phase showed the apparent absence of a 
right M1 segment embolic occlusion (arrow). The bottom row shows 
NCCT (5-h evolution) in a 54-year-old man with right-sided weak-
ness diagnosed with the dot sign in the left MCA territory (arrow), 
loss of left-sided gray–white matter differentiation, and obscuration 
of the left basal ganglia. The arterial phase showed a filling defect of 
the left proximal M2 segment thrombus occlusion (arrow)
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use of dimensional reduction and parallel structures of the 
inception modules, resulting in a decrease in computational 
complexity. ResNet-101 uses skip connections by fitting 
residual blocks instead of full feature transformation. Add-
ing skip connections where the gradients can skip and flow 
better throughout the network. To assess the performances 
of different architectures for stroke diagnosis, the AlexNet, 
transferred AlexNet, transferred Inception-v3, and trans-
ferred ResNet-101 models were compared. Stochastic gra-
dient descent with a momentum optimizer was used. Output 
data were compared with the training data, and the error was 
back-propagated to update parameters in the DCNN so that 
the error between the output data and training data was mini-
mal. The minimum batch size was 64, the learning rate was 
0.001, and 100 epochs were used in the cross-entropy loss 
function as training batches reached a low plateau toward 
the end of training (Fig. 4). The performances were quanti-
tatively determined via the accuracy, sensitivity, specificity, 
and AUC.

Results

The performances of the four DCNN models using the data-
set from institution A are listed in Table 2. Ten-fold cross-
validation was applied to evaluate how the model could be 
generalized to an independent dataset. With tenfold cross-
validation, the dataset was first randomly partitioned into 
10 equal folds. Then, 10 iterations of training and validation 
were performed, where in each iteration, nine folds were 
used for training and a different fold of data was held out 
for validation.

AlexNet achieved an accuracy of 97.12%, a sensitivity 
of 98.11%, and a specificity of 96.08%, which were better 
than those of the transferred AlexNet: 90.49%, 96.98%, and 
83.73%, respectively. Regarding transferred Inception-v3 
and transferred ResNet-101, the accuracy, sensitivity, and 

specificity were 94.62%, 93.98%, and 95.29%, and 95.49%, 
94.36%, and 96.67%, respectively. With respect to the trade-
offs between the sensitivity and specificity, the observed 
AUC of AlexNet was 0.9927, which was also higher than 
transferred AlexNet (0.9895), transferred Inception-v3 
(0.9889), and transferred ResNet-101 (0.9897) (Fig. 5).

Table 3 shows the independent test results regarding the 
dataset from institution B. AlexNet showed 60.89% accu-
racy, 18.52% sensitivity, and 100% specificity. Transferred 
AlexNet achieved 81.77% accuracy, 62.04% sensitivity, and 
100% specificity. Transferred Inception-v3 achieved 85.78% 
accuracy, 75% sensitivity, and 95.73% specificity. Trans-
ferred ResNet-101 achieved 80.89% accuracy, 61.11% sensi-
tivity, and 99.15% specificity. With respect to the example of 
misclassified cases in Fig. 6, tissues suffering from ischemia 
have complex anatomical structures and the pathologic find-
ings may confuse the DCNNs.

Discussion

NCCT is used to rapidly identify parenchymal findings of 
ischemic stroke in the acute stage. When ischemia occurs, 
cytotoxic edema (intracellular) in the affected parenchyma 
can lead to tissue hypoattenuation on NCCT. NCCT signs 
may be subtle to the human eye, especially in the hypera-
cute stage, and there is substantial interrater variability in 
diagnosing early ischemic changes, ranging from 20 to 69% 
sensitivity with a very restricted time window [33, 34]. The 
reliability of an imaging finding is a critical parameter that 
determines its clinical utility.

In addition, these early signs are not useful for  
distinguishing between an ischemic penumbra and a core 
infarction. The Alberta Stroke Program Early CT Score 
(ASPECTS), an objective method to evaluate the extent of 
ischemia and prognosis that is widely used, was developed 
to standardize the analysis of early ischemic signs with 

Table 1  Stroke findings in 
different examinations for 
emergent management of acute 
ischemic stroke

N/A not applicable, NCCT  non-contrast CT, CTA  CT angiography, ICA internal carotid artery, MCA middle 
cerebral artery

No. patient NCCT(lesion laterality) Multiphase CTA(pial arte-
rial filling evaluation)

Dataset from institution A

Normal 121 N/A N/A
Intracranial ICA occlusion 40 39 right side

51 left side
6 bilateral side

18 Good collaterals
55 Intermediate collaterals
23 Poor collaterals

MCA territory 56

Dataset from institution B
Normal 58 N/A N/A
Intracranial ICA occlusion 23 21 right side

25 left side
4 bilateral side

9 Good collaterals
28 Intermediate collaterals
13 Poor collaterals

MCA territory 27
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excellent interobserver reliability, but is too time-consuming  
for radiologists to perform in clinical settings [35]. The 
interobserver reproducibility of ASPECTS varies depending  
on the reader’s experience, the amount of reader training, 
stroke knowledge, and stroke onset-to-imaging time. Reader 
inexperience and a lack of rigorous ASPECTS training were 
highlighted as potential causes of suboptimal interobserver 
agreement. Yong et al. [36] reported limits of ASPECTS 

as a predictor, such as small hypodensities (lacunar infarct)  
and age-related white matter hypodensities. Prior reports 
described that ischemic stroke detection within 12  h  
varied with pretreatment NCCT ASPECTS, including the 
location of the arterial occlusion, the time of stroke onset, 
and image acquisition [37, 38]. Furthermore, reperfusion 
therapy in ischemic stroke increases the risk of intracerebral  
hemorrhage. Symptomatic intracerebral hemorrhage occurs 

Fig. 3  Illustration of the basic DCNN for acute ischemic stroke image 
classification. a A schematic representation of a convolutional neural 
network. b Layer structures of the modified AlexNet architectures and 

transfer learning (dotted line) used in the experiment. C convolutional 
layer, FC fully connected layer, SM softmax loss function
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in 2.4~10% of patients within 24~36 h after thrombolysis 
and is associated with an increased risk of subsequent death 
or disability [39], so the timely recognition of early ischemic 
changes on NCCT is critical for improving stroke outcomes.

In this study, all NCCT images in the stroke group 
were obtained within 6 h after symptom onset. Using 
DCNN on the stroke classification achieved higher than 

90% accuracy in the model training and test using the 
institution A dataset, as shown in Table 2. Considering 
that AlexNet without transfer learning still achieved high 
accuracy, although more training time was necessary, the 
accuracy implied that the collected dataset was enough to 
establish the acute ischemic stroke classification model 
from a specific scanner. Comparing AlexNet and trans-
ferred AlexNet, the transferred parameters were learned 
from color natural images in ImageNet, which may not 
be optimized for grayscale NCCT images. Tested by a 
dataset from institution B (Table 3), although AlexNet 
trained from scratch had only 60% accuracy, the trans-
ferred DCNNs achieved substantial performance (80–85%) 
and have potential clinical use. The experimental results 
demonstrate that training DCNN from scratch can be cus-
tomized for a specific scanner. For example, a system is 
only applied in a single institution or for a scanner. In 
another way, if a CAD is used for general purposes, the 

Fig. 4  Training progress of deep learning based on NCCT. The red 
and black lines indicate the course of training and validation, respec-
tively. The validation accuracy of 98.08% over epoch 100 was used, 

and the cross-entropy loss curve represents the good fit between a 
prediction and the ground truth

Table 2  Performance comparisons of different DCNNs using training 
and test datasets from institution A

AUC  area under the receiver operating characteristic curve

AlexNet Transferred 
AlexNet

Transferred 
Inception-v3

Transferred 
ResNet101

Accuracy 97.12% 90.49% 94.62% 95.49%
Sensitivity 98.11% 96.98% 93.98% 94.36%
Specificity 96.08% 83.73% 95.29% 96.67%
AUC 0.9927 0.9895 0.9889 0.9897
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parameters learned from large datasets such as ImageNet 
would provide more consistent accuracy. The accuracy dif-
ferences between a customized model and a general model 
were presented in the experiments. The results show that 
the highest accuracy and the highest generalizability can-
not be obtained simultaneously. To us a DCNN for various 
scanners, we suggest training a customized model for each 
scanner. In clinical use, accuracy is the first priority rather 
than convenience.

In comparison with other CAD systems based on seg-
mentation, edge detection, and feature extraction, previ-
ous studies only achieved accuracies and sensitivities of 
80~95% [40–42]. RAPID, as an automated ASPECTS in 
acute MCA stroke, provides an easy, reproducible, and 
structured method for CT reading [43]. Rutczy’nska et al. 
[44] proposed a Gaussian mixture model of regional 
growth for finding the stroke region, but the method was 
only effective for large lesions and failed to effectively 
detect early stroke signs. Wu et  al. [45] developed an 

image patch classification-based method to detect ischemic 
regions using a radiomics-based patch model in CT, and 
those designs were handcrafted features. Choosing fea-
tures is time-consuming and operator dependent. The pro-
posed model, which learns relevant features by the train-
ing process in DCNN, aids radiologists in focusing on the 
diagnosis of the ischemic area and subsequent treatment 
rather than a complicated feature design. Promising results 
would be helpful in providing diagnostic suggestions in an 
automatic and consistent way. In particular, the proposed 
CAD system equipped with an Intel i7-9700 processor, an 
NVIDIA GeForce GTX 1080 TI graphics card, and 64-GB 
system memory only spends 0.1 s to determine whether an 
NCCT slice has stroke. In seconds, a series of brain slices 
can be evaluated for clinical use. By means of parallel-
izing and optimizing the implementation, the proposed 
CAD system will accelerate its practicality. Compared to 
Food and Drug Administration (FDA)-approved products, 
StrokeViewer does not provide accuracy or detect lesions 
for acute ischemic stroke. The use of neural networks for 
the evaluation model demonstrates that the power and effi-
ciency of DCNNs are undoubted.

This study has some limitations. Although a customized 
model can be made for a specific scanner, one general-
ized model is most convenient to use to handle datasets 
from various scanners. Collecting many datasets remains 
a challenge. In future studies, we may consider establish-
ing a database with representative images from various 

Fig. 5  Comparisons of the 
receiver operating characteristic 
curves for each model building 
including AlexNet (0.9927, 
red line), transferred AlexNet 
(0.9895, black line), trans-
ferred Inception-v3 (0.9889, 
green line), and transferred 
ResNet-101 (0.9897, blue line)

Table 3  Performance comparisons of different DCNNs using an inde-
pendent test dataset from institution B

AlexNet Transferred 
AlexNet

Transferred 
Inception-v3

Transferred 
ResNet101

Accuracy 60.89% 81.77% 85.78% 80.89%
Sensitivity 18.52% 62.04% 75% 61.11%
Specificity 100% 100% 95.73% 99.15%
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scanners and patients. Size number is an issue only if as 
the number increases, diversity also increases. Increasing 
cases similar to the existing training set is not helpful. As 
long as the dataset is representative, the amount is less 
important. In addition, more radiologists with substantial 
clinical experience should be recruited, and whether sug-
gestions from CAD results can improve their accuracy 
in diagnosing acute ischemic stroke could be explored. 
To date, the proposed AlexNet model and the transferred 
DCNN models have performed well in the retrospective 
diagnosis of acute ischemic stroke using NCCT images.

Conclusion

Based on the developed scheme with DCNN architecture, 
acute ischemic stroke in NCCT images can be accurately 
diagnosed with an AUC of > 0.98 for a specific scanner. The 
accuracy differences between a customized model and a gen-
eral model were presented. In clinical use, the accuracy of a 
customized model is more important than its generalizabil-
ity. Rapid triage and treatment in emergency settings can be 
achieved with CAD suggestions to radiologists, which will 
improve treatment quality and result in better patient care.
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