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Abstract

In this thesis, we will introduce the simple random walk on the triangular
lattice. We first introduce the potential kernel function a(z) for x € Z2 We
conclude that a(x) ~ In||z|| as ||z|| — oco. Moreover, the rate of convergence is
discussed too. Besides, let S,, be the simple random walk on the triangular lattice.
We observe that a(.S,,) is a martingale without visiting the origin. We set our S,,
starting at the point between two circle, B(r) and B(R) with r < R. Using the
optional stopping theorem, we make the connection between a(-) and escaping
probability from two circle. Moreover, as & — oo, we find that the probability
that visiting B(R) first is O(1/In R). In the specific case, we can also find the
probability that escaping from the origin. Futhermore, compare triangular lattice
with the square lattice, we observe that there is no difference between them in the
behavior of escaping from circle. Finally, we introduce the concept of harmonic
measure and capacity. These can extend our results to calculate the probability of
escaping from any finite set. We also introduce some theorem to prove that the
harmonic measure is the probability of entrance point starting at infinity and also

discuss the rate of convergence.

Keywords: random walk, potential kernel , oscillatory integral, martingale,

optional stopping theorem, harmonic measure, capacity
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Chapter 1

Introduction

1.1 Random Walk

In 1905, the problem of random walk was first introduced by Karl Pearson [8]. He asked
that a man starts from a point O and walks randomly in a straight line and what’s the probability
that he is at a distance between r and r + dr from his starting point O. Nowadays, these topics
are still one part of the most interesting problems for the researchers in probability, physics and
finance. Random walks have been widely used to engineering and many scientific fields. It
explains the observed behaviors of many processes in these fields. For example, the simulation
of the path of a molecule as it travels in a liquid or gas or prediction of the price of a fluctuating
stock.

A well-known random walk model is a random walk on an integer lattice, where at each step
one jumps to another site according to some probability distribution. In a simple random walk,
one can only jump to neighboring sites of the lattice and the probabilities of jumping to each
one of its neighboring sites are the same. Besides, a simple random walk in one-dimensional
converges to a Brownian motion. This result was introduced by Monroe D. Donsker [2] in
1951. Brownian motion is the random motion of particles suspended in a medium. This motion
is named after Robert Brown, who first described the phenomenon in 1827 [1]. In 1905, the
theoretical physicist Albert Einstein published a paper [3] where he modeled the motion of the
pollen particles.

To discuss the proposition of random walk, we will use the well-known method, martingale.

The concept of martingale in probability theory was introduced by Paul Lévy in 1934 [7].
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Martingale referred to a class of betting strategies that was popular in 18th-century France. And
in probability theory, a martingale is a sequence of random variables for which the conditional
expectation of the next value is equal to the present value. It’s easy to see that a simple random
walk is a martingale. And we will use the theory of martingale to deal with the model.

As a general fact, a random walk may be recurrent (i.e., it returns to its starting point for
infinitely many times almost surely) or transient (i.e., it has a positive probability that one will
never return to its starting point). In 1912, a fundamental result about the simple random walk

is introduced by Geogre Polya [9].

Theorem 1.1.1. The simple random walk in dimension d is recurrent for d = 1,2 and transient

ford > 3.

Moreover, the recurrent case can be classified further as ”positive recurrent” in which case
the expected time of revisiting its starting point is finite and “null recurrent” in which case the
corresponding expected time is infinite. And both one-dimensional and two-dimensional simple
random walks are null recurrent.

We will focus on the recurrent random walks. It is easy to see that for the one-dimensional
simple random walk, the probability that one gets more than distance n away from its starting
point without revisiting it is % And for the two-dimensional simple random walk, the probability
is approximately (1.0293737 + % Inn)~!. The result above is not quiet easy to get, and it is
introduced by Serguei Popov [10]. Note that although both of these probabilities converge to
zero as n — oo , the two-dimensional case is much slower than the one-dimensional case. That
means that 2-dimensional case is not quite “recurrent” as we think.

In this thesis, we will focus on two-dimensional cases. Let G = (E, V) where V = Z? be
a graph in two-dimensional. Let X, X5, - - - be a sequence of G-valued i.i.d random variables.
Andlet S,, = Xo + X7 + - - - + X, be the sum of them with X, = 0. Then .S,, can be seen as a

random walk on two-dimensional integer lattice. We define potential kernel” as follow:

a(r) =Y P(S, =0)— P(S, = z)

The concept of this function is our knowledge that two-dimensional random walk is
recurrent. Hence, )~ , P(S, = 0) will be infinite. We want to observe how the difference

of two infinite numbers. There are many references analysing the potential kernel. Frank

2
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Spitzer [11] has shown that if the random walk satisfies some conditions, then a(z) ~ In ||z|| as
||z|| = oo. Moreover, Fukai, Yasunari, and K6hei Uchiyama [4] introduced more general cases
with the error terms. Gregory F. Lawler [6] applied the local central limit theorem to show the
same result. For the simple random walk case, a(z) = 2 In ||z + 2£28 + O(||z|| %) where ~

is Euler’s constant.

1.2 Triangular Lattice and Spread-out Model

In this thesis, we introduce the random walk on the triangular lattice. There are many kinds
of triangular lattices. The following figures show some usual kinds of triangular lattices. Note
that each of them can be transformed into each other. And we will focus on the equilateral

triangle case i.e. the model at the left side of the Fig(1.1).

1 V3 1 V3 .(071) (1,1) (-1,1) 0(0,1)
272 22
:(*1’0) ©9 =(1’0) . e (1,0) . °
(~1,0) (0,0) (-1,0) (0,0 (1,0)
1 V3 1 V3
T2 2 272 (-1,-1) *(0,-1) ®0,-1) -1

Figure 1.1: Different kinds of triangular lattice

(-1,1) (0,1) (1,1)

(-1,0) g (1,0)

(-1,-1) (0,-1) (1,-1)

Figure 1.2: Spread-out model
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In this model, we will assign the distribution by giving the same probability for going to
each way. We define it as the simple random walk on the triangualr lattice. And in this thesis we
discuss the potential kernel on it (see Theorem 2.1.1 in the next chapter). Moreover, our method
for dealing with potential kernel can be applied to any setting in which the distribution that is
symmetric with finite values and its fourth moment can be expressed as its quadratic form, such
as spread-out model which is shown in the Fig(1.2).

The rest of this thesis is organized as follows. The main results are presentd in Chapter
2. We give the proof of our main theorm of potential kenrel in Section 2.1, and apply our
main theorem to the triangualr lattice in Section 2.2. In Chapter 3, we describe the proposition
of potential kernel on triangualr lattice and discuss the escaping probability in Section 3.1.
Moreover, we discuss the restricted Green function in Section 3.2. In Chapter 4, we introduce

the concept of harmonic measure and capacity.

1.3 Notation

Here we list the notation recurrently used in this thesis

« Ly is the set of triangualr lattice generated by {(1,0), (3, %), (3, —%)};

e B(x,7) ={y: ||y — x| <r}is the ball in Z? or Ly ; B(r) stands for B(0,r);
* we write z ~ y if x and y are neighbours;

* 1icvenyy 18 the indicator function of event;

* P, and E, are probability and expectation for a process starting from z;

e 74 > 0and 7'1—\"_ > 1 are entrance and hitting times of A;
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Chapter 2

Main Result

2.1 Potential Kernel on Integer Lattice

Let G = (E,V) where V = Z? be a graph in two-dimensional space. Let X;, X5,--- bea
sequence of G-valued i.i.d random variables. And let .S, = X+ X; +- - -+ X, be the recurrent

random walk starting at the orgin on G, i.e. Xy = (0,0). We define the potential kernel a(-) by

a(z) =Y _(P(S, = (0,0)) — P(5, = z)) (2.1.1)

n=0
Let ¢x,(#) be the characteristic function of X;. Since {X,}, , are iid , ¢g,(0) =
Oxy1ax,(0) = (dx,(0))". Also our random variables are on Z?, we can use Inverse formula

and get

P(S, = 2) = # /[_M]Q(d)xl ()= 4

— S 1 n _6—1'9-96 2
o) = g [ en Oy i

= @ L D en O

n=0

1 / 1 —e 0= 9
= ——d°h 2.1.2
@2 ) T o (0) @12

To evaluate a(-), we consider a simpler case in which the random variable is symmetric with

finite values. That means that our random walk is on the integer lattice Z? and all of the even

5
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moments of X exist, and all of the odd moments are 0. Hence, the characteristic function of

X can be written as

oxa(0) = B[+ (9, x,) — O 0N g2

E <67 X1>2 +
2 6

=1 o(je).

Note that F (0, X;)*> = 07> 6, where 3 is the covariance matrix of X;. Since the covariance

matrix is symmetric and positive definite, i.e. there exists a matrix A so that >, = AAT, and

E0,X,)* = HAT9||2. Hence,

ATH
1= om0 = AL ooy, 213)

To estimate a(x), we consider the following formula and decompose it into five parts :

1 1 — e W=
alx) = d?0
( ) [—7m)? (le( )

dt —t(l ox,(0)) 1— —19-95 d29
27T / /[—71' 72 ( )

=h+DbL+L+ 1L+

where,

(2m)?

I, = L h dt [_t(1_¢X1(0)) _tHATQG”2] 1— —i0-x d29
‘e (27T)2 T [-m 71’}2 ‘ — e ( € )

1 - _tM —i0-x\ 72
b=y f, ) Lo T e

LT Lol

+ (2n)? dt i d2%0
1 [—71’771’]
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amell”

dt 1=0x0) _ =571 420

™ 7r]2

[-

dt —t(1-¢x,(9)) _ —t

(27T)2 /U /[—7r,7'r]2[e 1 ‘
17 [

— W/ dt/ G_t 2 e—z@-x d29
™ U [—m,m]?

where T ~ ||2?||,U =~ ||z|| whose values will be chosen later. First, we consider I3

[
_ 7]6—20&: d29

Is = -

> Ll
dt 1—e ") d“0
R2
> Ll
dt e = (1—e")d"0
R2\[—7,7]?
r o]
dt 7
R2
2
ol
dt d=0
o
Here, we let &' = AT, then § = (AT)~'4’, and ’det ‘ = |(detAT)7!| = d—tz . Also,
19~x:z<(AT) 6,x>:z<9, W)y =i(0", A~'z). We can get
cf of Gaussian distribution
1 arel” 11 1, ey a0
— —za:de___ 2 21 —i0 A"z det de
(2m)? /R26 A\ ) 2t Rz( 27r%) (e ) (89 )
11 [
= L[ i~ ~ ~ YA 2t 2.1.4
tQW\/detZ ( )
AT
[lamel® ik

Also, since A is symmetry and positive definite, there exists a & > 0 so that

for all # € R?. Hence,

2
[+
—

dt (1—e ") 42

> (Sl
< 2/ dt/ e e d%
T R2\[—7,7]?

]Rz\[fﬂ',ﬂ”]2

DOI:10.6814/NCCU202200379



By the same way as (2.1.5), we can get

1 T [[a7e||*
dt et d2%0
(2m)2 Sy R2\ [—r,7]2

1 [ el 1 [ Y 5
= — dt e z  df — dt e 2 d“f
(2m)% Jy R2\[—m,7]? (2m)% Jr R2\ [—7r,7]?

. 6J\AT;’HQ ) , )

_ —— 2 d?0+O(|z]|*) =1 + O(||lz| ?)
2 2/2 1AT o)
(2m)? Jeo\[omap?  JATOLD

Therefor, by (2.1.4) and (2.1.5)

SO S PO L S N -
h= [ omaqli- e it [ et — i+ O]
T 2my/detd> t 1 2my/det) 1

[
1 71— e N
[/ (=) du+InT] - ¢ + O(f|z]| )
0

N 2m/det u

RS
2

LetT = ~ ||z||°, we have

In || A~ 2" e + e + O(fla]| ) (2.1.6)

1
L= —
’ 2m/det >
[a%e]

1 e~ 1 1
h = 2 _ d’§andcy = ———[—In2 / d
e a (27T)2 /RQ\[—W,WP HAT@HZ e 2m detz[ 77" 0 u u]

2

|2

Next, we consider /5, and by using Taylor’s formula we get

T 2 T 2 T 2
o~ t1=6x,(9) _ e—tu _ eft(HA;H +0(1)||AT9||4) B e—tM
2
_ e—tHA d e tOM[ATe] ) _ )
N[5
=O0(L)te™ = ||AT4]] (2.1.7)
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Hence,

2" g0 _ - AL o
L<——— [ a =00 O) _ ot | g2
(27T) T [77r7r}2
(o.9] \/§7T
< O(l)/ dt e dr
T 0
=1 oa ]
<o) [ gt :(r) o+ (2.18)
T

= Er P L)
5 dt e 1 — e = |d=0
(2m)% Jr (=]

= ¢+ O(|lz]| ™) (2.1.9)
(- _[|aTe|”
1 e~ (1-6x,(0) ¢ [[a7e]|"
where ¢c; = —— > 2__1d%0
e e R

To estimate the rest of terms, we need to find the fourth moment of the characteristic function

Ole,

\ E<07X1>2 E<97X1>4

ox,(0) = o)

In the triangualr lattice case, we have

2
E (0, X,)" = HATQH = 92+92 (01+02)2]:§[0§+0§+9192]

2
E0,X)" = —[91‘ + 05 + (91 +05)4] = g[ef + 0y + 26030, + 30705 + 20,63

3
4 2
(E (0, X,)*)? = 5[(9;L + 03 + 2030, + 360262 + 26,63] = gE 0, x,)*

where 0 = (601, 0,). Hence,

E6, X)) = g( 0, X)) == HAT0|| (2.1.10)

DOI:10.6814/NCCU202200379



Note that the following method can also be adapted for the the random walk whose fourth
moment can be expressed as the quadratic forms. For convenience, we let F (9, X;)* =

3{|A”6)|" and this yields,

1 6x,(0) = 5 [AT0] ~ o [[A76]* + O(AT6])
Similarly as (2.1.7), we can get
e o ) M = te *tu HATHH +O(||ATo||)] (2.1.11)
Now, we consider I and let I = —I51 — I5 5, where

LT S
]5’1 = 53 dt e 2 e d-0
(27T) U [—m,7]?

L -y @) _ el i 2
I59 = —/ dt/ [e” o) — ™t T e T 47
(27T)2 U [—m,m]?

Consider I5 ;, we have

1 (7 Ao
Is1 = —— dt B
51 27‘(’ 2/ /R2€
|AT9||
/ / zeazd 0
27T RQ\ ﬂ.ﬂ.

Using the same argument of (2.1.5), we get

[[a7o||*
/ dt/ et 4%
R2\ [—r,7]?

T€—7rt €—7r2U )
< dt < <0 -
< [ S = <ol ™)

2
H e—i9~x d29

el

R —20:5 d20

R2\[-7 ﬂ']

10
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and use the way of (2.1.4)

/T 1 1 ]|
- ¢ 3 dt
R2 U tQW\/detZ
2U e U
/ —du
27r\/detz

o —Uu

e

=———— [ —du-— —du
ZW\/detZ/l u 27n/det / u
= e+ O(||z] )
Therefore,
L5y = ca+ O(||2[| ™) 2.1.12)

Consider /55 , by using (2.1.11) we have

ATl
[ A

L5y = v dt |AT0|" =0+ %0
ATy
’ H HATGH —i6-z d29
R2—[—7
T 2
L —tﬂ |AT0]|" e~ a0
—7,7]

and then by the same argument of (2.1.5), we get

el

T 00 2
< O0(1 )/ tdt/ e TS dr
U 27

T €—7r2t
gmn/ at < O(llz)| )
U t

HATQH fzexd 0

R2_

and by the same argument of (2.1.8), we get

—zO:cd 0

V2r 2
<O /tdt/ 50T dr
L/‘“ D _ o(lel?)

7T7T

11

DOI:10.6814/NCCU202200379



Now, consider

L5 R & 0 S
e 2 HA GH T d 9—4—2( e 2 e d (9)
o dt
d2 1 1 A lg 2
:4_2(__6|| oy
dt* *2my/det> t
1 Li__4HA*bﬂ2%_HA*Mm4 I

T dety ' Iz e G
Therefore,
T 4 aflAtl® At I .
fs,zz/[]m[t—g— o e dt 4 Ol )

AL
167n/det / [[A-1z)? 1:cH AT HA - H
B 2u 4 |[A e
+ ||A 1LUH4 ||A_ICL’||2 ) 22

e " du + O(||z]| )

1 T
= 8 — 16w+ Su)e “du + O(||z|| 2
16m/detz||Ala:||2/1 ( ) (=)

= O(||=[| ™) (2.1.13)

Note that for the square lattice or the spread-out models whose covariance matrice are diagonal

it’s much easier to estimate 5 5. In these cases, we let AT = [k 9] and @ = (21, 22),0 = (61, 02).

It’s not necessary to use (2.1.11), and we can just use (2.1.7). Then the part of I5 , will be
I
/ [e_t(1_¢X1 0) _ B_t s ]6—19~az d29
[77“7‘—}2

S M
- (1)t/ e || ATo|* a6
[_ﬁvﬂ}Q

:O(l)t(/ e_tkzglﬁjlcos(elxl)del)(/ e_t%%cos(egxg)d@g)

—r —T

Using integration by parts, we have

Tty
/e 2 0 cos(0121) db,

—Tr

1 tk 02

:x—le = 0fsin(0y2,)

™ 1 ™ 292
k% / e~ P sin(frx1) by

- T o

12
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Note that the first part above is 0, and using integration by parts again, we can get that the

integral above is O(|z1|~>). Therefore, we find that for the case in which the covariance matrix

is diagonal,

2
[+7]

/ [ t1=6x, @) _ e
[_7'(771—]2

Hence, by I5 ; and I » we get

Is = —cs + O(||z]| )

e—u
where ¢4 = —du
U

Finally, to estimate /;, we let I = I, ; — I; » where

1
/ dt e @)1 — e ) 40
0 [—,7)?

1 v / :
_ ~t(1—px, (0)) ,—i6-x 72
I 5 @y /1 dt /{mze 1) g—i0x 20

Consider

Je™d%0 = O(|Jer| " |z2| ) = O(|l2l| ™) (2.1.14)

(2.1.15)

1 1
I, = 1 / dt/ e~ t(1=9x,(0)) 729 _ 1 / dt/ o t1=0x,(9) ,—i6-x g2¢
, (27T)2 0 [—7,7]? (27T)2 0 [—m,m)
1

1 00 n
/ et dt/ Z Mt”e’ia'” d?6
0 [

(2m)? B e L
1 o tn
=5 — / e_tz —P(5, = x)dt
0 “— n!
And since
o0 tn o0 tn o t"
D qPGu=2)= > SPSi=0)< Y o
=0 =7 n=17]
=t M 1 te
and usin — < et < ——(—)M)e!,

13

(2.1.16)
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we have
/1 e—ti ﬁP(Sn —x)dt < O(1) /1( € )Hzll 1 izl gt
o ‘=l - o =l 2m |||

1 1 L
< O(||z
om ||| (ll]| + 1) (=)

(&

= O™

k4l
Then

Ly =cs+O(z]7%) 2.1.17)

To estimate ; 5, we use the same argument of (2.1.16)

U X in
[1’2 = / [t(ﬂj) dt where [t(x) = Z t—'P(Sn = .T)
1 .

=0

3

And we use the following Lemma which is referrd to [5]

Lemma 2.1.1. Foranyt > 1,z € Z* we have
I(z) < e—lleooth%

where * = 32, > P(Xy = ).

Using the lemma above, we have

U 2 2
Is S/ ot < (el )
1

Choose U = ng'LW ~ ||z||, we have
ha s e e <o) ) @118)

Hence, by I, ; and [ » we get
I =cs +O(||z]| %) (2.1.19)

1 1
where c5 = B )2/ dt/ e tl—9ox,(0)) 72¢
m 0 [—7r,7r]2

14
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So it suffices to show the lemma above
Proof. W.L.O.G. let ||z||_ = |z1| and define

n

wi(s) = Z e (z) = e Z ! ( Z e P(Xy =1))"

rEeZ? n=0 T€Z?

— explt e P(X, = )]
Y

4

3

= e_texp[tz P(X1 = y) cosh(sy1)]

= explt( ) P(X1 = y)(cosh(sy;) —1))]

Yy
Also, since ¢;(s) > e**1[;(x) forall s > 0. Hence
I() < exp[=s 2], + (D P(X1 = y)(cosh(syr) —1))]
Y

Besides, coshu < 1+ u?if |u] < 1. We have

ts?o?

Ii(z) < expl=s|lzll + =]

where 0% = 3 Ilyl|*> P(Xy = y) if|s| < 1. Take s = 1 we get

I(z) < e loletts

Finally, from all above, we have the following theorem

Theorem 2.1.2. Let Xy, X,,...be a sequence of i.i.d. Z*-valued symmetric random variables
with finite values, and its fourth moment can be expressed as its quadratic form, then as || x| —

oo its potential kernel will be

1

alw) = 2m/det >

n|[Az|* + C+ Oz ), zeZ?

where C' is a constant that depends on the distribution of X.
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Remark 2.1.3. For the square lattice or spread-out models, the above theorem also applies and

can be proved in a much easier way as (2.1.14) has shown.

2.2 Potential Kernel on Triangular Lattice

Next, we consider the triangualr lattice Ly generated by{(1,0), (1,*%2), (1, —%£*)}. Let

X1, X5, ... be asequence of i.i.d random variables that gives probability 1/6 to the following
vectors {#(1,0), £(2,%3), +(1, =)}, and let S, = Xo + X; + - - - + X,, with X, = 0, then
S, 1s the simple random walk on L starting from the origin. To estimate the potential kernel
on triangular lattice, we will use the Theorem 2.1.2. But note that the triangular lattice L is not

on the integer lattice, so we cannot apply Theorem 2.1.2 directly on it. Hence, we consider the

matrix

1 —1/V3
0 2//3

A—

The matrix A maps the triangular lattice Ly to Z? by sending {(1,0), (3, \/7‘5’), (3, —\/7‘5’)}

to {(1,0),(0,1),(1,—1)}, as figure ?? shows. In this new integer lattice, we will give

Figure 2.1: Triangular lattice to integer lattice

it the distribution by giving probability 1/6 to the movement to each of the following
vectors: {£(1,0),£(0,1),£(1,—1)}. We will call this new random walk on new integer lattice
AlL7. It’s easy to see that AL has the same potential kernel as simple random walk on triangular
lattice. And since it’s on integer lattice, we can apply Theorem 2.1.2 on ALy and help us to

estimate the potential kernel on triangular lattice. In ALy, its covariance matrix Y and A~! are

v 2/3 1/3 A (V3+1)/2 (V3 —1)/2

1/3 2/3 (V3—1)/2 (V3+1)/2

16
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Hence, by Theorem 2.1.2 as ||z|| — oo, the potential kernel a(-) on ALy is
V3 2 2 -2
a(x) = o In(2x7 + 22120 + 2235) + C + O(||z]| ), v = (21,22) € ALy (2.2.1)

Remark 2.2.1. By computer calculation, C = 0.8121600594636381 ...

Therefore, for z € Ly, to compute the potential kernel, we need to transfer it to AL first,

and then obtain 2.2.1. Note that ||[A~*Az||* = 2||z||>. We have the following result,

Remark 2.2.2. The potential kernel of simple random walk on triangular lattice

as ||x|| — oo will be

V3 V3

a(x) = In ||z|| +§ln2+C+O(HxH_2), x € Ly

3
The following table is the approximate values for a(-) on ALy as 0 < x = (21, x2) < 6 which

Table 2.1: Approximate values for a(-) on ALy

x1=0 1 2 3 4 5 6
x2=01] --- 1.003236 1.385388 1.608932 1.767540 1.890565 1.991084
1 1.306084 1.539654 1.710301 1.842502 1.949864 2.040065
1.688236 1.814913 1.921806 2.013149 2.092453
1.911781 1.998637 2.076072 2.145351
2.070388  2.136457 2.197065

AW

is compared to the table of real a(-).

Table 2.2: Values for a(-) on ALy

x1=0 1 2 3 4 5 6
x2=0 0 1 1.384053 1.608639 1.767455 1.890533 1.991069
1 1.307973 1.539866 1.710295 1.842485 1.949852 2.040058

1.688372 1.814955 1.921817 2.013151 2.092452
1.911807 1.998650 2.076077 2.145353
2.070396 2.136462 2.197067

AW
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Chapter 3

Proposition on Triangular Lattice

3.1 Escaping Probability

At first, we introduce the optional stopping theorem [10] which will be often used in the

following content.

Theorem 3.1.1. (Optional stopping theorem) Let X,, be a submartingale and T be a finite
stopping time. For a constant ¢ > 0, suppose that at least one of the following conditions

holds :

()T <ca.s;
(17). | Xpvr| < ca.s. for all n > 0;

(1i1).ET < 00 and E[| X141 = X,| | Fu] < ca.s. for all n > 0.

Then E, > Eq. If X,, is a martingale and at least one of the conditions (i) - (iit) holds, then
E, = E,.

For the following chapter, we will focus on the simple random walk on the triangualr lattice.
Let S, = Xo+ X3 +- - -+ X, be the simple random walk starting at X, on the triangualr lattice.

Denote a(-) be the potential kernel of it, and we have the following proposition.

Proposition 3.1.2. The process a(Synr,), where Ty is a stopping time to 0, is a martingale.

18
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Proof. First, we show that a(-) is harmonic outside the origin, i.e.

a(x)=5;a(y), 2 €Ly #0 (3.1.1)
Since, for z # 0, by (2.1.1)
N
=i, (2 (s ) =2 PS, =)
M1
= lim_ ZZ P )= D> <P(Su =)
n=0 y~x n=1 y~x
1 N-1
= lim P(Sy =0)+z)  lim O(P(Sn—(oﬁ))—P(Sn:y))
Y~ n=
1
=52_ 1) (3.1.2)
Y~

The harmonicity of a(-) outside the orgin implies the result.

Also, let N = £{(1,0), (1, ¥3), (3, —‘/73)} be the six neighbors of the origin. We can get that

1
2772
a(r) =1forallz e N (3.1.3)

To see this, first, note that by symmetry of the triangualr lattice, P(.S,, = «) takes the same value
for all z € N for any n, then similar to (2.1.2)

2

a((0,0)) = lim () P(S,=(0,0)) = > P(S, =(0,0)) — 1)

N—oo
1

n

2

= Jim (3PS, =0.0)- 33 éP(Sn_l = )

n=1 x~0

=

= lim () P(S,=(0,0)) = > P(S,_1 = (1,0)) — 1)

N—o0
n=1

= lim () P(S, = (0,0)) = P(S, = (1,0))) — lim (P(Sy = (1,0))) — 1

= a((1,0) -

Hence, a((1,0)) — 1 = a((0,0)) = 0, and we can obtain (3.1.3).
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In the forthcoming section, we will discuss Zye OB (xr) v(y)a(y) for any probability measure v
on 0B(x,r) with fixed z as r > ||z||. To simplify calculation, we consider for all z,y € Ly

with ||z|| > ||y, due to Remark 2.2.2, we have

oz +y) — a(z) = 1<1+|','y’,">+0<ux+yn—2+u 1) = o el (3.14)

Futhermore, we also define the function

a(r):\/—glnr—i—Q—\/gan—i—C, reR (3.1.5)
m m

to express the potential kernel for those points which have the same norm.

Therefor, by (3.1.4) and (3.1.5), we can get

S wwal) = Y e —sta) = S o) (alw— ) + 0<|”3“””_v )
y€OB(a,r) y€dB(x,r) yEOB(z,7) |y x
:a(r)—l-O(HxH V1)) as r— 0o (3.1.6)

We can obtain the following result by (3.1.6), Remark 2.2.2, Proposition 3.1.2, and the optional

stopping theorem :

Proposition 3.1.3. For all x € Ly and R >r >0 with x € B(y, R) — B(r), then

In lell | ol

P.ToB(y,R) > ToB(r)| =
[ToB(y.R) )] ln%—i—O(%— ylv1

Proof. Consider p = P,[Tap(y,r) > Topm))-

Letat= Ex(a(STBB(y R))|TaB(y R) < ToB(r ) al=E ( (STBB(T))|TBB(y»R) > TaB(ﬂ)'

Since Sy = = and a(S,ar, ) is @ martingale.

Also ’a(Sn/\TB(T) A5 (Y, R))| < Ma.s. for all n > 0, which satisfy the condition (i7) of Optional

stopping theorem. Hence, we can get

a(x) = a(So) = Ema(STB(r)/\TB(y,R)) =pal +(1—p)at,

20
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It shows that

_a(r)—at
- al —a?t

Note that by (3.1.6), we can simplify the a1 and a | to

Iyl v1
R

at=a(R) + O( ),al=a(r) + O(%)

By above and Remark 2.2.2, we finally get

For the specific case, we have the following lemma :

Lemma 3.1.4. For x € B(y, R) and x # 0, then

a(R) —a() + O(5")

a(R) + Oy

as R — oo

]P)x[TﬁB(y,R) > To] S

Proof. Letp = P,[1op(y,r) > To). Similarly to Proposition 3.1.3, again by the optional stopping

theorem,

CL(CC) = (1 _p)]Eiv(a(STBB(y,R))|TaB(va) < TO)

and by (3.1.6) we can get the lemma.
Note that Lemma 3.1.4 implies that :

1
a(R) + O(152)

Po[ronw,r) < 70) = (3.1.7)

which means the probability of escaping from circle before returning to origin.
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To get the next proposition, we need to first show a lemma here :

Lemma 3.1.5. For any finite set A C L, it holds that E, Ty < oo for all x.

Proof. Forany z € A,3 n, € Nso that P,(myc > n,) < 1. Let ng

po = max P, (7ac > ng). Hence,
xe

00 (k+1 no

E,TAc = io:]P’x(TAc >n) Z Z 2(Tae > n)
n=1

k=0 n=kng+1

Proposition 3.1.6. For all x € Ly and R >r >0 with v € B(R) —

LetT = min{Tg)B(R), TBB(T)}: then

EA(T) = 201+ 2)p+ RO+ 1)(1 ~ p)

= I;leaii{nm} and

S
Znoplg < 00
k=0

B(r).

= {l="]

where p = P[Top(r) > Tap(r)| that can be obtained by Proposition 3.1.3.

Proof. Note that ||S,,||” — n is a martingale. Also since B(R)

— B(r) is finite, by lemma 3.1.5,

it holds that E,7p(r)-p() < oo which satisfies the the condition (77i) of Optional stopping

theorem. Hence, we can get

15011” = llz[I* = Eo (| Szll* ~ T)

=E.(|Srl1® [Tonm) > To50))P + Eo(|IS7)1* |705(R) < Ton() (1 — p) — E4(T)

PO(1+ 1)p + RO+ £)(1 — p) ~ Eo(T)

and so

BIT) = PO(L+ 1p + RO(+ 1)1~ )

Note that if we fix r and let R — oo, then E,(T") — oc.

= [l=*]

Although (1 — p) — 0 as R — oo, R grows faster to infinity than that (1 — p) decays to 0.
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The following figures are the theoretical results compared to simulation. We simulate the
situation that the simple random walk on triangualr lattice starting at ||x|| ~ 100. Observe the
probability of visiting small circle first and the escaping expectation times. We fix the raidus of

a small circle » = 50 and change the raidus of a big circle to R = 150, 215, 500.

Start at ||x|] = 100 with r=50and R = 150

Probability of visiting small circle first Escaping expectation times
0.425 . .
——  simulate = 0.3342 . simulate = 5089.50
0.400 —— theoretical = 0.3393 3400 —— theoretical = 5038.15
03751 5200
8
2 0350 £
= = L
‘_D - TN, Q_[) _
8 0325 g 3000
:
0.300 - 2
4800
0275 A
0.250 - 4600
5000 10000 15000 20000 25000 30000 5000 10000 15000 20000 25000 30000
num_trials num_trials
Figure 3.1: Start at ||z|| ~ 100 with » = 50 and R = 150
Start at ||x|| = 100 with r =50 and R = 215
Probability of visiting small circle first Escaping expectation times
058 14500
——  simulate = 0.5007 simulate = 13666.81
0.56 —— theoretical = 0.5023 14250 1 —— theoretical = 13582.56
0.54 - 14000 -
£
2 0521 g 13750 1
= = L
2 0501 = & 135001
S £
= 5
2 048 2 13250
(0]
0.46 - 13000 -
0.4 - 12750
0.42 . : . . : 12500 . . . : .
5000 10000 15000 20000 25000 30000 5000 10000 15000 20000 25000 30000
num_trials num_trials

Figure 3.2: Start at ||x|| ~ 100 with » = 50 and R = 215
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probability

Start at ||x|] = 100 with r=50 and R = 500

Probability of visiting small circle first Escaping expectation times
0775 80000
) ——  simulate = 0.6812 simulate = 70387.20
0.750 —— theoretical = 0.6847 77500 —— theoretical = 69840.44
0725 75000 -
6
0.700 g 725001
=
S o _
0.675 & 70000
]
0,650 g 67500 4
0.625 - 65000 -
0.600 - 62500
. . . . . 60000 . . . . .
5000 10000 15000 20000 25000 30000 5000 10000 15000 20000 25000 30000
num_trials num_trials

Figure 3.3: Start at ||z|| ~ 100 with » = 50 and R = 500

Moreover, note that in our proposition 3.1.3 which is the probability of escaping from a
circle on triangualr lattice. There is no difference between triangualr lattice and simple random
walk on integer lattice(see [10]). The following table is the comparison of them. Again, we
start at ||«|| = 53 and fix the raidus of small circle » = 50 and change the raidus of big circle to

R =60, 100, 500.

Triangualr SRW

Theoretical ~Simulate | Theoretical Simulate
R=60 0.6804 0.6503 0.6804 0.6268
R=100 0.9159 0.9054 0.9159 0.8954
R=500 0.9746 0.9714 0.9746 0.9682

Table 3.1: Comparison between triangular lattice and simple random walk
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3.2 Green’s Function

Next, let A be a finite subset of L. For 2,y € A in Ly, we define the restricted Green’s

function
TAc—1

GA(xay) =E, Z ]—{Skzy}
k=0

to be the mean times of visits to y starting from x before escaping out of A. Note that
Ga(z,y) = Gp(y, z) forany z,y € A. (3.2.1)

To prove this, since our random walk is symmetry, we have

TAc—1 o)

Ga(z,y) =E, Z 1ig=y) = Ezz 15 =y e >k}
k=0 k=0

= PASk =y, 7ae > k} = Y P {Sk = 2,7 > k} = Ga(y, z)
k=0

k=0

Moreover, We have the following theorem connecting the restricted Green’s function to the

potential kernel :

Theorem 3.2.1. Assume that A is finite, then we have

GA(xv y) = Exa(STAc = y) - CL(I N y)

Proof. First, Proposition 3.1.2 and (3.1.3) imply that the process a(S,, — y) is a submartingale.
Since a(.S,,—y) is a martingale when S,, # y. However, for S,, = y, E[a(S,4+1—y) | a(0)] =1 >
a(0) = 0. Hence, by Doob’s decomposition, we know that there exits an unique decompostion

of a(S, — y) as the sum of a martingale and a predictable process. Here, we let

n—1
N =3 15—
k=0

to be the number of visiting to y up to time n — 1. Note that for N;fl) = 0. Also let

Y, =a(S, —vy) — Nén_l) will be a martingale. Again since for .S,, # vy,

Ela(Sni1 —y) — Ngfn) | Ful = a(S, —y) — N;n—l)
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And for S, = v,

Ela(Suer —y) = N | Fl = a(S, =) + 1= N — 1= a(S, —y) - Nj*Y

Moreover, because A is finite, by Lemma 3.1.5 we know that E,7h. < oo, which satisfing the
condition (#i7) of Optional stopping theorem. Hence, by Optional stopping theorem we can get

AC

- Etca(STAc - y) - GA('I7 y)

=E, (a(STAC —y) — NyTAC_l)

Thus, we prove the theorem.

Next, we will use Theorem 3.2.1 for the special case when A = B(R) with a large R. Let
z,y € B(R), and for any z € 0B(R), it satisfies that

lyll +1

alz=y) = a(R) + 0L

Since the triangle inequailty gives that ||z —y|| < |jy[| + R+ landIn|z —y| = In (R(1 +
W)) =InR+In(1+ W) =InR+ O(%). , we apply Theorem 3.2.1 for z,y €
B(R) and get

Gom(z,y) =Ex(alz —y)) —alz —y)
=E,(a(R) + O(w» —a(z —y)
_ V3, R [yl Aflell + 1 1
== 1 Tz o + O( I + iz _yHQ) (3.2.2)

Note that due to the symmetry property (3.2.1), we can choose the smaller one of ||z|| and ||y||

to prove the error term.
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Chapter 4

Harmonic Measure and Capacity

4.1 Harmonic Measure

In the previous chapter, we have discussed the probability for a simple random walk on
triangular lattice to escape from a circle. In this chapter, we will introduce the concept of
harmonic measure and capacity. First, we need to define some tools and notations. For a finite

set A\ C Ly and x € Lr, we define

qA(m) = CL($ - yO) - Exa(s‘n\ - yO) (411)

which y, is some dot of A. Later we will prove that the value of g5 (-) does not depend on y,. Note
that g5 (z) = 0 when & € A and ¢, () is invariant under translations, i.e., ga+.(z + 2) = qa(2)

for all z € L. We have the following proposition to describe what the g, () is.

Proposition 4.1.1. For any finite set A\ C Ly and any x,y € Ly

3
qr(z) = lim a(R)Py[Tpy.rc < TA] = £ lim In R P,[7p(, ryc < 7al (4.1.2)

R—o0 T R—ooo

Proof. Since our random walk is recurrent, P, [7p(, pyc < 7a] will decay to 0 as R — oo.
But note that by Proposition 3.1.3, we can observe that the decay rate of P,.[75(, gyc < Ta] is
O(1/1n R). Hence, the equation above makes sense.

Without loss of generality, we can assume that y, = 0. Again, since A is finite, we apply the
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optional stopping theorem to the martingale a(S,,-,) with the stopping time 7y A Tp(y,r)-

a(z) = Eya(So) = Eza(Sryary, ny)

T CICIR LTSRN S N (TE Y Ty

= Eu (0(Sry, ) Lrsymy<rn) ) + Ea (a(S0)(1 = Loy, gyem))
= Pl < e (a(Sry0) | Tawm) < 72) + Eea(Sh)

— Pu[7B(y,r) < TalEs (a(STA) | TB,R) < TA)
Hence, letb =1 + max ||z||, and we can get
TE

a(z) — Eza(Sr, )
]Ex <a‘(STB(y,R)) - a(‘STA) ‘ TB(y,R) < TA)

(using(3.1.6))

= (@) (4.1.3)

a(R) — O(Inb) + O(lult)

PolTB(y,my <Al =

and take R — oo we can get (4.1.2).

Since the limit in (4.1.2) does not depend on y, it shows that the definition (4.1.1) does not
depend on what vy is chosen to be. Later, We move y, to 0 for convenience.

Next, we define the harmonic measure in Ly :

Definition 4.1.2. For a finite set A\ C Ly andy € A, the harmonic measure is defined as follow:

hma(y) = & S an(z) = ¢ S (a(z) ~ E-a(S,,) (4.14)

z¢ A
We can observe that the harmonic measure is proportional to the escape probability. To see

this, by proposition 4.1.1 and following equation

Pylmarc < Ty ] Z]P’ TB(R)C < TA
65

z¢A
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then multiply both sides by a(R) and take limit. We can get

hma(y) = lim a(R)Py[tpr)c < ] (4.1.5)

R—o0

At this point, it’s easy to obvious that hm,(-) should be nonnegative (because of

Proposition 4.1.1). But why does it sum to 1 on JA. We will discuss it in next theorem.

Theorem 4.1.3. For all finite A\ C Ly and y € A, we have

hmy(y) = lim P,[S,, = 9] (4.1.6)

T—r00

Proof. First, without loss of generality, we can assume that (0,0) € A. Next, we define the

following notations:

-1 (Tj(—l)/\TB(R)C
b b
Nx 7 Z ]-{STAZx}? Nx,R = Z 1{STA:x}
k=0 k=0
TB(R)C TB(R)C
X b
Nip= > Usu=a)y Nepi=NogtNip= > lis, -
k:TI k=0

And we can write

P[S,, =yl=)Y P,J[S=2]=E,N,
k=0

(by Monotone Convergence Theorem)
= ngrgo EyNab;,R S }%EEO(Eny7R - EyNiR)

= ngrolo (Gom)(y, z) — ZIP’y[TX < Tp(r)C, St = 2)Gpr)(z,2))

zeA
(using(3.2.2))
= lim (a(R) —aly —2) + O(”y”TH)

_ ;Py[ﬁ{ < Tames S, = 2)(a(R) — a(z — x) + O(||2HR+ 1))
= lim a(R)(1 - ;RAT; < Ty, Syt = 2))

—aly —z)+ 262 Py[S+ = 2la(z — z)
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(Note that the first part above is P, [T > 75(g)c], then use(4.1.5))

=hmp(y) —aly — z) + ZPy[SﬂT = zla(z — x) (4.1.7)

zeN

Moreover, by (3.1.4) we can obtain that

zEA PN

which converges to 0 as x — oo, and the proof is concluded.

Hence, Theorem 4.1.3 shows that hm,(+) is indeed a probability measure. Next, for the

following theorem, we will give a much better estimate and show how fast the convergence is.

Theorem 4.1.4. Let A be a finite subset of L and assume that dist(x, A) > 3diam(A) + 1. Then

it holds that
diam(\)

Po[Sr, = y] = hma(y)(1 + O(m))

(4.1.8)

Proof. Again, without loss of generality, we can assume that (0,0) € Aand |A| > 2, so diam(A)

>1. Recall that in the above proof (4.1.7), we obtain that

P.[Sr = y] = hmp(y) = —a(y — ) + Z Py[S,+ = zla(z — ) (4.1.9)
z€EA
The goal is to estimate the right-hand side more precisely. Now, let V' = 0B(2diam(A)) be the

boundary ponit of a ball that contains A. Since they are all finite, there exists £ > 0 so that
a(v) —a(z) > k forallv € Vand z € A (4.1.10)

Next, we apply the optional stopping theorem to the martingale a(S

n/\‘rX ATy

— x) with the

stopping time 7, A 7y, for the walk that starts at y € OA. We have

aly —z) =Eya(S+,,, — ) =Ey(alS+ — o)1+ y) + Ey(alSr, — 2)1 o))
= Eya(STX - .T) + Ey((a(s‘rv - .ﬁE) - a(’STXL - x))l{TV<TXL})

= 3 "B,[S,: = Ha(z — 2) + Ey((a(Sy, — ) — alS,: —2))lrv < 7B, [r < 7]

z€A
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Hence, the equation above with (4.1.9) implies that

hima(y) — Pa[Sr, = ]
=Ey((a(Sr, —2) — a(S.+ — 2))|rv < 70)Py[rv < 7] 4.1.11)

Again, recall the expression (4.1.3) from the proof of Proposition 4.1.1, we have

IP’TV<TA ZIP’ Tv<TA
Z~y

z¢A

:_Z = qa(2)

z~y - a(STA))|TV < TA)
z¢A

(using(4.1.10))

< hmA(?J)
- k

We also obtain that for any v € V and z € A, we can get a(z — v) — a(x — z) = O((‘;f;r(n:c(//\\)) ).

Hence, the right hand side of (4.1.11) 1s indeed O((;h;r(r;(//\\))) X hmy(y). Therefore, we complete

the proof.

4.2 Capacity

Recall that the calculations in the Proposition 4.1.2, for a finite set A C Ly and yg € A we
defined g5 (x) in (4.1.1) as

qr(z) = a(x — yo) — Ea(Sr, — o), r € Ly 4.2.1)

and proved that g5 (x) does not depend on the choice of yy. Note that for the second term on the

right hand side. If x is far away from A, Theorem 4.1.4 implies that

E,a(Sr, —yo) = ZPI[STA = z]a(z — wo)

zEA
— ; hma (2)a(z — yo) (1 + O(%)) (4.2.2)

We can find that the main term in (4.2.2) does not depend on z. Therefore, we define
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capacity as follow:

Definition 4.2.1. For a finite set N C L with yy € A, we define its capacity by

cap(N) = Z a(x — yo)hmy () (4.2.3)
zEA
Again, we need to show that Definition 4.2.1 above does not depend on the choice of .
To show that, we also let y; € A, and we have gx(z) = a(z — y1) — E,a(S;, — y1). Then by
(4.2.2) we get

a(z = yo) — alz — y1) = (cap(A) = > hma(2)a(z — 1)) (1 + O<—di;t<x Ay

Since the left hand side converges to 0 as * — o0, the expression in the right hand side also
equal to 0.

Now, recall the calculation in (4.1.3), we can rewrite as

a(z) — cap(A)(1 + O((ilsir(r;(//\\)))

a(R) +O(R-Y) — cap(A)(1 + O(F5))

P.[TBy,r) < Tal = (4.2.4)

That means that if we know the capacity of A, we are able to compute the escape probability
with higher precision. Next, we discuss the simplest cases where the capacity can be calculated.
For the one-point sets, since a((0,0)) =0, it holds that cap({z}) = 0 for any = € L;. And for

two-point sets, by symmetry we have

a(y —x)

5 (4.2.5)

cap({x,y}) =
for any x,y € Ly, x # y. Moreover, for the capacity of a ball B(r), (3.1.6) implies that
cap(B(r)) = a(r) + O(r™) (4.2.6)

It’s remarkable to notice that the capacities of a two-point set {(0,0), x} with ||z|| = r and the

whole ball B(r) only differ by a factor of 2.
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