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This article proposes frequentist multiple-equation least-squares averaging

approaches for multistep forecasting with vector autoregressive (VAR) models.

The proposed VAR forecast averaging methods are based on the multivariate

Mallows model averaging (MMMA) and multivariate leave-h-out cross-validation

averaging (MCVAh) criteria (with h denoting the forecast horizon), which are

valid for iterative and direct multistep forecast averaging, respectively. Under the

framework of stationary VAR processes of infinite order, we provide theoretical

justifications by establishing asymptotic unbiasedness and asymptotic optimality

of the proposed forecast averaging approaches. Specifically, MMMA exhibits

asymptotic optimality for one-step-ahead forecast averaging, whereas for direct

multistep forecast averaging, the asymptotically optimal combination weights are

determined separately for each forecast horizon based on the MCVAh procedure. To

present our methodology, we investigate the finite-sample behavior of the proposed

averaging procedures under model misspecification via simulation experiments.

1. INTRODUCTION

As a technique to characterize the joint dynamic behavior of economic vari-

ables, the vector autoregressive (VAR) model has gained widespread use in

theoretical and applied macroeconomic and financial economic research since

being introduced by Sims (1980), with primary applications to forecasting and

policy analysis. A key practical question of using VAR models is the number

of lagged terms to be introduced into the VAR analysis.1 This kind of model

*This article was previously circulated under the title “Multivariate Least Squares Forecasting Averaging by Vector

AutoregressiveModels.”We thank the Editor Peter Phillips, the Co-Editor Robert Taylor, and two anonymous referees

for their constructive comments on earlier versions of this article. We appreciate helpful comments and suggestions

from Le-Yu Chen, Yi-Ting Chen, Graham Elliott, Bruce Hansen, Chu-An Liu, Chor-Yiu (CY) Sin, and participants of

the 2016 Cross-Strait Dialogue III, the 2016 Taiwan Economics Research workshop, IAAE 2017, SETA 2019, CMES

2019, and econometrics seminars at several universities. We appreciate research support from Institute of Economics

at Academia Sinica. We assume responsibility for any errors in the article. Address correspondence to Jen-Che Liao,

Department of Economics, Fu Jen Catholic University, 510 Zhongzheng Road, Xinzhuang, New Taipei City 24205,

Taiwan; e-mail: jccepd@gmail.com.

1As pointed out by Elliott and Timmermann (2016), what makes VARs a popular forecasting tool is their relative

simplicity, whereby only the variables to be forecast and the lag length of variables need to be chosen for the forecaster

to construct forecasts.
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uncertainty arising from the choice of lag length may considerably impact the

performance of any VAR-based estimation, inference, forecasting, and other

analysis. This article addresses the issue of VAR model specification via a fre-

quentist model averaging approach under iterated and direct multistep forecasting

frameworks.

To examine the issue of model specification, a great deal of attention has been

paid to model selection and model averaging in the statistics and econometrics

literature. Model selection and model averaging are appealing, because they result

in a lower mean squared error (MSE) by trading off bias and variance, which is

a standard problem with such a large strand of the literature. As a more general

approach versus model selection, model averagingmethods are introduced in order

to lower variability in model selection and thus increase estimation accuracy.

In fact, the application of model averaging techniques has focused largely on

either single-equation forecasting procedures or multivariate forecasting based on

Bayesian model averaging (e.g., Andersson and Karlsson, 2007 and Clark and

McCracken, 2010). For the former, Hansen (2008), among others, proposes a

least-squares forecast averaging method based on Mallows model averaging for

stationary time series observations. Cheng and Hansen (2015) consider forecast

averaging with factor-augmented regression models. Zhang, Wan, and Zou (2013)

and Cheng, Ing, and Yu (2015) suggest a jackknife averaging approach and an

autocorrelation-robust averaging method under the time series framework, respec-

tively. Gao et al. (2016) propose a leave-subject-out model averaging procedure for

longitudinal datamodels and time seriesmodels with heteroskedastic errors. Under

a known finite-order VAR with coefficients assumed to be local to the restrictions,

Hansen (2016b) introduces the Stein combination shrinkage for VARs in which

unrestricted least-squares estimates are shrunk toward multiple restricted least-

squares estimates.

The main contribution of the article lies in the focus on both iterated and direct

multistep-ahead forecast averaging problems. We propose two multistep VAR

forecast averaging procedures based on the multivariate Mallows model averag-

ing (MMMA) and multivariate leave-h-out cross-validation averaging (MCVAh)

criteria (with h denoting the forecast horizon). These two criteria have not yet

been introduced or investigated either theoretically or empirically in multistep

VAR forecasting settings. Our VAR forecast averaging methods allow for multiple

response variables and include iterative and direct forecasting schemes; and

their properties of asymptotic optimality are investigated in multistep forecasting

settings.

This article offers several contributions to the literature. First, we propose an

easy-to-implement multivariate forecast combination procedure based on the

MMMA criterion that extends the frequentist forecast/model averaging to the

time series setting of multivariate response variables. In the single-equation

forecasting as a special case, our MMMA procedure reduces to Hansen’s

(2008) Mallows averaging. The implementation involves an ordinary least-

squares (OLS) estimation and solving for quadratic programming problems.
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The proposed MMMA method is designed for one-step forecast averaging,

from which one can obtain the averaging multistep forecasts via the iterative

strategy.

A second contribution is that we further extend the VAR forecast averaging to

the direct forecasting framework, where serial correlations in h-step errors arise

due to overlaps in the data when a forecast horizon of more than a single period

(i.e., h> 1) is considered. To address this issue, we propose a new direct multistep

VAR forecast averaging method based on the idea of leave-h-out cross-validation.

Moreover, the main distinction of our two multivariate averaging criteria with

the single-equation version (e.g., Hansen, 2008) lies in the use of the inverse

of the estimated forecast error covariance matrix. This employment is motivated

by the aim to scale each response variable to have equal importance and to

incorporate potential correlations across equations in the VAR system, thereby

likely improving forecast accuracy.

Theoretical and empirical investigations of iterative and direct multistep fore-

casting with time series models based on a fixed lag or lag selection have

been widely studied in statistics and econometrics, for example, Kunitomo and

Yamamoto (1985), Bhansali (1996, 1997, 1999), Ing (2003), Chen, Yang, and

Hafner (2004), Schorfheide (2005), Chevillon and Hendry (2005), Marcellino,

Stock, and Watson (2006), Chevillon (2007), and Pesaran, Pick, and Timmermann

(2011), among others. However, to the best of our knowledge, no efforts have been

made for iterative and direct VAR forecast averaging problems (in a non-Bayesian

sense). This article offers theoretical and empirical contributions by filling this gap

in the literature.

Our main theoretical justifications hinge, on the one hand, upon a demonstra-

tion of the asymptotic optimality of the proposed VAR averaging methods for

multistep forecasting. For one-step-ahead forecasting problems, Shibata (1980,

1981), and Shibata (1983) establishes the asymptotic optimality of the Akaike

information criterion (AIC) and its variants, and while there are considerable

views about the optimality theory for model selection under various circumstances

(such as finite- versus infinite-dimensional models, cross-section versus time-

series models, independent- versus same-realization predictions, homoskedastic

versus heteroskedastic errors, and one- versus multistep forecasting),2 there is very

little theory in the time series context, even for single-equation model averaging

problems. Most of the theory for model averaging applies to the cross-sectional

case, for example, Hansen (2007), Wan, Zhang, and Zou (2010), Hansen and

Racine (2012), and Liu, Okui, and Yoshimura (2016). For dependent data, Zhang

et al. (2013) generalize Hansen and Racine’s (2012) jackknife averaging criterion

to two time series cases: serially correlated errors and lagged dependent variables.

Cheng et al. (2015) propose an autocorrelation-robust Mallows criterion under

time series errors.

2See Shao (1997) and Leeb and Pötscher (2009) for an excellent review of the pointwise asymptotic optimality (or

loss-efficiency) results in the model selection literature.
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Our optimality theory extends these existing asymptotic optimality results in

the (frequentist) model averaging literature to a setting of multistep VAR forecast

averaging, including iterative and direct forecasting strategies. In particular, our

optimality results show that the proposed MMMA and MCVAh are asymptotically

efficient for one-step-ahead forecast averaging. As pointed out by an anonymous

referee, for one-step-ahead forecasting, our proposed approaches, which gen-

eralize single-equation Mallows selection/averaging to multiple-equation model

averaging, lie in a broad class of forecast selection (e.g., AIC and its variants

[Shibata, 1980, Li, 1987, and Ing and Wei, 2005, among others]) and forecast

averaging (e.g., Mallows averaging [Hansen, 2008]) methods that share the similar

asymptotic optimality property.3

A different picture emerges when it comes to multistep-ahead forecasting,

which is the main focus of this article. Unlike the case of one-step-ahead fore-

casting, our proposed MCVAh method is shown to be theoretically preferred

over MMMA as well as better than the other usual selection methods mentioned

above for multistep forecasting under an infinite-order VAR setting, due to its

asymptotic optimality for each forecast horizon h > 1. Namely, for multistep-

ahead forecast averaging, the asymptotically optimal combination weights are

determined separately for each forecast horizon by the direct method based on

our proposed MCVAh criterion. Our results appear to be the first demonstration

that investigates the validity of MMMA and MCVAh in multistep VAR forecast

averaging settings.

From an empirical perspective, we illustrate the proposed methods through

Monte Carlo simulations and highlight the importance of the misspecification

bias when comparing iterative versus direct VAR forecast averaging methods.

Specifically, our simulation results reveal that the iterative MMMA tends to be

preferable when the candidate model set contains VAR models with sufficiently

long lags and when the candidate models are not highly misspecified; conversely,

the direct MCVAh exhibits substantial advantages when model misspecification is

severe. On the other hand, the direct MCVAh deteriorates as the forecast horizon

lengthens under correct model specification or mild misspecification. Generally

speaking, as the forecast horizon and maximum lag order increase, the robustness

of the direct MCVAh tends to be outweighed by its efficiency loss.

This article is related to the large and growing literature on forecast combination.

The development of forecast combination dates back to the seminal works of Reid

(1968, 1969), and Bates and Granger (1969). Since then, forecast combination

methods have been investigated in numerous studies, for example, Granger (1989),

Clemen (1989), Diebold and Lopez (1996), Hendry and Clements (2004), Timmer-

mann (2006), and Stock and Watson (2006), among others. More recent studies,

including Hansen (2008), Zhang et al. (2013), Cheng and Hansen (2015), and

3In this view, asymptotic optimality is a weak property, and it would thus call for establishing a more meaningful

optimality property that is able to further distinguish these similarly optimal methods for one-step-ahead forecasting.

We leave this important issue for future research.
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Gao et al. (2016), extend the forecast combination literature by developing fre-

quentist model averagingmethods for univariate time series forecast combinations.

The rest of the article is organized as follows. Section 2 sets out the framework

of multivariate time series forecasting with VAR models. Section 3 suggests an

iterative multistep forecast averaging procedure based on the MMMA criterion.

Section 4 further proposes an MCVAh procedure to address the serial correlation

problem that arises under the direct multistep forecasting scheme. Built upon

asymptotic unbiasedness and asymptotic optimality, Section 5 provides the the-

oretical validity of our methods. Sections 6 presents the numerical performance

of our methodology via finite-sample simulation experiments. We conclude the

article in Section 7. Mathematical proofs of the theorems, additional simulation

results, and an empirical application to a three-variable monetary VAR based on

U.S. data can be found online, in the SupplementaryMaterial section of this article.

2. FORECASTING PROBLEMS BY FITTING VAR(p) MODELS

Consider a stationary K-dimensional moving average (MA) process {yt},

yt =
∞∑

j=0

8jεt−j, (2.1)

where yt = (y1t,y2t, . . . ,yKt )
′, εt = (ε1t,ε2t, . . . ,εKt )

′, t = 0, ± 1, ± 2, . . ., is a

sequence of i.i.d. random vectors with E(yt ) = 0 and E(εtε
′
t ) = 6, and 8j are

MA coefficients with 80 set to the K × K identity matrix, denoted by IK . The

intercept term has been dropped in (2.1) by assuming without loss of generality

that the mean E(yt) is already subtracted out.

We assume that
∑∞

j=0‖8j‖ < ∞ and det(8(z)) 6= 0 for |z| ≤ 1, where ‖8j‖ =√
tr(8′

j8j ),8(z) =
∑∞

j=08jz
j , and det(A) and tr(A) denote the determinant and

trace of a matrix A, respectively. Thus, (2.1) can be expressed as an infinite-order

vector autoregression process, that is,

yt =
∞∑

i=1

π iyt−i +εt, (2.2)

where πi’s are VAR coefficient matrices satisfying
∑∞

i=1‖π i‖ < ∞. We note that

any stationary invertible finite-order ARMA(p, q) models are included as special

cases of (2.2).

For the purpose of forecasting, let yt+h be the future value of y at time t +h. It

is known that the minimum MSE predictor for the h-step ahead forecast of yt+h at

origin t is the conditional expectationE(yt+h|Ft ) ≡ y∗
t+h|t , whereFt = σ(ys : s ≤ t)

denotes the σ -algebra built from the past of the process {ys}s≤t, representing the

information up to time t.

Fixing the finite lag-order p, we consider the linear h-step ahead forecast of yt+h

by employing an approximating K-dimensional VAR model of the finite-order p
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fitted to a realization y1, y2, . . ., yT of length T. Specifically, let yt+h|t (p) denote

the minimum MSE linear predictor of yt+h based on Ft :

yt+h|t (p) = π1(p)yt+h−1|t +π2(p)yt+h−2|t +·· ·+πp(p)yt+h−p|t, (2.3)

where yt+j |t = yt+j for j ≤ 0, and πi(p), i = 1, . . . ,p, are K ×K autoregressive

coefficient matrices for a VAR(p) model.

To construct the one-step-ahead forecast (i.e., h = 1), in matrix notation we

write

Y = Z(p)5(p)+ε(p), (2.4)

where Y = (Y1Y2 . . . YK) is the (T −p)×K matrix with Yk = (yk,p+1, . . . ,ykT )′

being the (T −p)×1 vector of observations on the kth equation of the VAR(p) sys-

tem, Z(p) is the (T −p)×m matrix with m = Kp and the (t −p+1)th row given

by zt (p)′ = (y′
t, . . . ,y

′
t−p+1) for t = p,. . . ,T − 1, 5(p)′ = (π1(p), . . . ,πp(p)) is

the K × m coefficient matrix, and ε(p) is the (T − p) × K matrix with the kth

column being (εk,p+1(p), . . . ,εkT (p))′.
We use the OLS method to estimate the VAR(p) model. It is known, as first

shown by Zellner (1962), that the OLS and generalized least-squares methods

produce the same estimates when applied to a VAR(p) model, as every equation

in a VAR(p) model contains the same set of right-hand-side variables Z(p).

Specifically, the OLS estimator 5̂(p) = (π̂1(p), . . . ,π̂p(p))′ is given by

5̂(p) = (Z(p)′Z(p))−1Z(p)′Y.

Using estimated parameters π̂ i(p) in a fitted (one-step) VAR(p) model with

unknown future values replaced with their own forecasts, the h-step ahead pre-

dictor of yt+h at the origin t can be iteratively computed as follows:

ŷI
t+h|t (p) =

p∑

i=1

π̂ i(p)̂yI
t+h−i|t (p), (2.5)

where ŷI
t+j |t (p) = yt+j if j≤ 0, and the superscript “I ” indicates indirect multistep

forecasts. The direct h-step ahead predictor of yt+h based on a fitted h-step VAR(p)

model will be discussed in Section 4.

In practice, one must determine the lag length p to proceed with VAR forecast-

ing. For a VAR(p) model, we follow the common standard that all lags are included

up to the lag order p, that is, no gaps in the lags are allowed. Two approaches to

select the lag order p have been studied in the literature. The first approach uses

the sequential likelihood ratio tests suggested by Tiao and Box (1981). The second

approach selects the VAR order based on information criteria. Let p̄ denote the

maximum lag order. We specifically let

6̂(p) = 1

T − p̄

T −1∑

t=p̄

ε̂t+1(p)ε̂t+1(p)′ (2.6)
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be the residual covariance matrix without the adjustment for degrees of freedom

from a VAR(p) model, where ε̂t+1(p)′, t = p̄, . . . ,T −1, are the 1×K row vectors

of the OLS residual matrix ε̂(p) = Y− Z(p)5̂(p). Based on 6̂(p), the three

commonly used criteria for VAR lag selection are AIC, Bayesian information

criterion (BIC), and Hannan–Quinn (HQ). Other selection criteria include final

prediction error and some variants of AIC and BIC that are designed to correct for

overfitting in VAR models.4

Instead of using lag selection methods, this article considers combining fore-

casts generated from candidate VAR models using different lags. In general, given

a prespecified p̄,5 constructing a combined multistep forecast involves a sequence

of choices and several potential alternatives that may exist for these choices:6

(i) estimate each of the candidate VAR models by some estimation method and

produce the resulting forecasts based on the fitted models; (ii) seek a combination

scheme that aggregates individual VAR forecasts;7 (iii) estimate the combination

weights by minimizing some criterion for h ≥ 1; and (iv) combine the multistep

forecasts using the estimated weights. For (i), both of our proposed multistep VAR

forecast averaging methods are based on OLS estimation. The main focus of the

article lies in (iii) and (iv). Specifically, our proposed MMMA (MCVAh) approach

estimates the combination weights by minimizing a multivariate Mallows (leave-

h-out cross-validation) averaging criterion and constructs the combined multistep

forecasts in an iterative (a direct) manner. These two averaging methods are

discussed in detail in Sections 3 and 4, with their theoretical justifications provided

in Section 5.

It is known that the number of VAR parameters increases quadratically with

the number of variables. As a consequence, instead of the unrestricted OLS

estimation in a frequentist setting considered here for (i), under high-dimensional

settings, it might be beneficial to consider Bayesian VARs (established in the

seminal papers of Litterman, 1986 and Doan, Litterman, and Sims, 1984) that use

shrinkage priors on the model parameters, as suggested by an anonymous referee.

Existing related literature also covers automated data-based model determination

methods (Phillips, 1995, 1996) that use optimized information criteria that are

specifically suited to forecast model selection (e.g., the determination of lag length

or cointegrating rank in a VAR, or hyperparameters in Bayesian VAR settings).

Moreover, the Bayesian VAR offers a natural way to combine with Bayesianmodel

4Interested readers may refer to Lütkepohl (2005) and McQuarrie and Tsai (1998, Ch. 5) for detailed discussions.

5The choice of p̄ is a common issue encountered in classical VAR lag determination methods, such as sequential

testing procedures or model selection criteria. To keep our presentation focused, our analysis simply proceeds with a

prespecified p̄. To take into account the uncertainty from selecting p̄, we examine in the simulation experiments the

sensitivity of the forecast performance of the proposed methods to the choice of p̄, using the normalized maximum

regret based on mean squared forecast errors (MSFEs) over different values of p̄; see Section 6 for details.

6We thank an anonymous referee for drawing our attention to this point.

7This article focuses on the family of linear forecast combinations, which are more commonly used in practice. Other

possibilities for (ii) are nonlinear and time-varying combination schemes; for which we refer the interested reader to

Timmermann (2006, Sect. 4).
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averaging, as an alternative for (iii), to deal with model uncertainty. Another class

of the shrinkage type of estimators (i.e., penalized least-squares methods such as

Lasso and its variants) also makes it possible to address the dimensionality issue.

These potential directions, especially various comparisons of these alternative

methods against our VAR forecast averaging approaches, are certainly worth

investigating in future research.

3. ITERATIVE MULTISTEP VAR FORECAST AVERAGING

This section proposes a new MMMA criterion for one-step-ahead VAR forecast

averaging based on a set of VAR candidate models fitted to the single period

horizon, that is, h = 1. The averaging multistep forecasts are then obtained by

iterating forward for multiple periods.

Consider the following multivariate Mallows criterion for VAR model

selection:

C̄T (p) = (T − p̄) · tr
(
6̃(p̄)−16̂(p)

)
+2pK2, (3.1)

where 6̂(p) is given by (2.6) and

6̃(p̄) = 1

T − p̄ − m̄

T −1∑

t=p̄

ε̂t+1(p̄)ε̂t+1(p̄)′ (3.2)

is a bias-corrected residual covariance matrix from the largest model VAR(p̄) with

m̄ = Kp̄. The multivariate Mallows selection criterion (3.1) has been employed

by Sparks, Coutsourides, and Troskie (1983) and Fujikoshi and Satoh (1997) for

selecting multivariate regression models. The weighted sum of squared residuals,

as in the first component of (3.1), has been recently employed in several studies

(e.g., Lee and Liu, 2012 and Basu and Michailidis, 2015) on shrinkage estimation

of sparse large VAR models to incorporate information on possible correlations

among variables. The weighted criterion considered here is based on the underly-

ing weighted loss or risk function; see Section 5 for a related discussion.

For valid comparison, the sample is set to be of equal size across different

candidate models. To be explicit, we fix the effective sample with T − p̄ obser-

vations (yt+1,zt (p)), t = p̄, . . . ,T − 1, and then estimate all VAR(p) models

and compute 6̂(p) using the same T − p̄ observations. Using this effective sample,

Z(p) becomes a (T − p̄)×m matrix with the (t − p̄ +1)th row given by zt (p)′ =
(y′

t, . . . ,y
′
t−p+1) for t = p̄, . . . ,T −1.

We now turn to the method of VAR forecast averaging based on the Mallows

criterion. To begin with, letw= (w(1), . . . ,w(p̄))′ be the weight vector associated
with candidate models, and 5̂

∗
(w) =

∑p̄

p=1w(p)5(p) be the weighted VAR

coefficient matrix, where 5(p) is a m̄ × K matrix satisfying that for the (i, j)th

element 5ij (p) = 5̂ij (p) for 1 ≤ i ≤ Kp and 1 ≤ j ≤ K, and 5ij (p) = 0

elsewhere, that is,5(p)′ =
(
5̂(p)′ 0K×K(p̄−p)

)
, where 0r×s is a r × s zero matrix.
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The combination residuals ε̂
∗
t+1(w) can be expressed as

ε̂
∗
t+1(w) = yt+1 − 5̂∗

(w)′zt (p̄) = yt+1 −
p̄∑

p=1

w(p)5(p)′zt (p̄)

=
p̄∑

p=1

w(p)
(
yt+1 − 5̂(p)′zt (p)

)
=

p̄∑

p=1

w(p)ε̂t+1(p), (3.3)

where for the third equality, we assume
∑p̄

p=1w(p) = 1.

Weight estimation. Armed with ε̂
∗
t+1(w), t = p̄, . . . ,T − 1, given in (3.3), the

proposed MMMA criterion takes the following form:

CT (w) = (T − p̄) · tr
(
6̃(p̄)−16̂

∗
(w)

)
+2

p̄∑

p=1

w(p)pK2

= (T − p̄) · tr
(
6̃(p̄)−16̂

∗
(w)

)
+2K2p′w, (3.4)

where we denote p = (1, . . . ,p̄)′, p′w =
∑p̄

p=1w(p)p, and

6̂
∗
(w) = 1

T − p̄

T −1∑

t=p̄

ε̂
∗
t+1(w)ε̂

∗
t+1(w)′.

Consider the first term of the right-hand side of (3.4):

(T − p̄) · tr
(
6̃(p̄)−16̂

∗
(w)

)

= tr


6̃(p̄)−1

T −1∑

t=p̄

ε̂
∗
t+1(w)ε̂

∗
t+1(w)′




=
T −1∑

t=p̄

tr


6̃(p̄)−1




p̄∑

p=1

w(p)ε̂t+1(p)







p̄∑

p=1

w(p)ε̂t+1(p)



′


=
T −1∑

t=p̄

p̄∑

i=1

p̄∑

j=1

ε̃t+1,ijw(i)w(j)

= w′̂Sw, (3.5)

where Ŝ is a p̄ × p̄ matrix whose (i, j)th element is Ŝij =
∑T −1

t=p̄ ε̃t+1,ij with:

ε̃t+1,ij =
K∑

k=1

K∑

ℓ=1

σ̃kℓε̂k,t+1(i)ε̂ℓ,t+1(j),
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and σ̃kℓ is the (k, ℓ)th element of 6̃(p̄)−1. For the derivation of the last equality

in (3.5) and, in particular, the more detailed construction of the matrix Ŝ, see

Appendix A in the online supplementary material available at Cambridge Journals

Online (journals.cambridge.org/ect). As also shown there, in the univariate case

(i.e., K = 1) the MMMA criterion (3.4) reduces to a Hansen’s (2007) single-

equation Mallows averaging criterion.

Equation (3.5) shows that the term (T − p̄)tr
(
6̃(p̄)−16̂

∗
(w)

)
has a quadratic

form, leading the CT (w) criterion to be linear-quadratic in w:

CT (w) = w′ Ŝw+2K2p′w. (3.6)

The Mallows weight vector ŵ is defined by

ŵ = arg min
w∈HT

CT (w), (3.7)

where HT is a unit simplex of Rp̄T that allows the weights to be continuous,

namely,

HT =



w ∈ [0,1]p̄T :

p̄T∑

p=1

w(p) = 1



 .

As in single-equationmodel averaging problems, the quadratic programming prob-

lem in (3.7) can be solved via several types of widely used statistical programming

software, such as the Guass function “qprog,” Matlab function “quadprog,”

and R package “quadprog.”

Lastly, the averaging iterative h-step ahead forecast at origin t based onMallows

weights ŵ is obtained by

ŷI∗
t+h|t (ŵ) =

p̄∑

p=1

ŵ(p)̂yI
t+h|t (p), (3.8)

where ŷI
t+h|t (p) is given by (2.5).

4. DIRECT MULTISTEP VAR FORECAST AVERAGING

We first note that the VAR(∞) model in (2.2) can be recursively represented as a

h-step forecasting model

yt+h =
∞∑

i=1

ψhiyt−i+1 + ǫt+h ≡ µh
t + ǫt+h, (4.1)

where µh
t = (µh

1t,µ
h
2t, . . . ,µ

h
Kt )

′, ψhi is the VAR coefficient matrix in the linear

least-squared predictor based on regressing yt+h on the infinite past {yj}j≤t, and
ǫt+h is the associated h-step error with E(ǫt+hǫ

′
t+h) =6h and can be expressed as

ǫt+h =
∑h−1

i=0 8iεt+h−i , which is known to follow a MA process of order h−1.
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The direct h-step forecast for K-dimensional time series can be generated from

the following h-step ahead VAR(p) forecasting model:

yt+h = ψh1(p)yt +ψh2(p)yt−1 +·· ·+ψhp(p)yt−p+1 + ǫt+h(p), (4.2)

where the dependent variable yt+h is the h-step ahead value being forecasted and

ǫt+h(p) =
∑∞

i=p+1ψhiyt−i+1 +ǫt+h. The subscript h in (4.2) reflects the fact that,

in contrast to Section 3, where the iterated forecasts are made using a one-step-

ahead VAR(p) model and then iterated forward, a separate VAR(p) model is fitted

here for each forecast horizon h.

Let µh = (µh
p̄, . . . ,µ

h
T −h)

′. In the matrix notation, for the full effective sam-

ple {yt+h,zt (p)}T −h
t=p̄ , we can write Yh = µh + eh and Yh = Zh(p)9h(p) +

eh(p), where Yh = (Yh
1Y

h
2 . . .Y

h
K) is the (T − p̄ − h + 1) × K matrix with

Yh
k = (yk,p̄+h, . . . ,ykT )′, eh = (ǫp̄+h, . . . ,ǫT )′, Zh(p) is the (T − p̄ − h + 1) × m

matrix with the (t − p̄ + 1)th row given by zt (p)′ = (y′
t, . . . ,y

′
t−p+1) for t =

p̄, . . . ,T −h, 9h(p)′ = (ψh1(p), . . . ,ψhp(p)) is a K ×m coefficient matrix, and

eh(p) = (ǫp̄+h(p), . . . ,ǫT (p))′. The full-sample OLS coefficient estimate 9̂h(p)

of 9h(p) is given by 9̂h(p) = (Zh(p)′Zh(p))−1Zh(p)′Yh, and the residual matrix

is êh(p) = Yh −Zh(p)9̂h(p). The resulting direct h-step-ahead forecast is then

formed by

ŷD
t+h|t (p) = 9̂h(p)′zt (p), (4.3)

where the superscript D stands for the direct method.

We now introduce more notation for the leave-h-out OLS estimation for the

construction of the MCVAh criterion. For a particular observation t (t = p̄, . . . ,T −
h) and forecast horizon h, we denote by ℓht = max(p̄,t − (h− 1)) and by ℓ̄ht =
min(t + (h− 1),T −h) the left- and right-end points of the observation window

that is deleted, respectively, and hence, ℓht = ℓ̄ht − ℓht + 1 is the number of

observations deleted. Note that ℓht = 2h− 1 for p̄ +h− 1 ≤ t ≤ T − 2h+ 1. We

also denote by ℓh =
∑T −h

t=p̄ ℓht , the total number of observations deleted. Taking

h = 2, for example, for the first (t = p̄) and second (t = p̄ + 1) observations in

the effective sample, their corresponding deleted observation windows have size

ℓht = 2 (from ℓht = p̄ to ℓ̄ht = p̄ +1) and ℓht = 3 (from ℓht = p̄ to ℓ̄ht = p̄ +2),

respectively.

Let ǫ̃t+h(p) = (̃ǫ1,t+h(p),ǫ̃2,t+h(p), . . . ,ǫ̃K,t+h(p))′, where ǫ̃k,t+h(p) is the

OLS residual from the regression of yk,t+h on zt(p) with ℓht observations

{yk,j+h,zj (p)}ℓ̄ht
j=ℓht

deleted. Specifically, ǫ̃t+h(p) is then obtained by

ǫ̃t+h(p) = yt+h − 9̃h,t (p)′zt (p), (4.4)

where

9̃h,t (p) = (Z̃h,t (p)′Z̃h,t (p))−1Z̃h,t (p)′Ỹh,t
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is the m × K matrix of the leave-h-out OLS estimates of VAR(p) coefficients

for observation t, and Z̃h,t (p) and Ỹh,t are the resulting data matrices with ℓht
observations removed from Zh(p) and Yh, respectively.

Weight estimation. Similar to (3.3), let ǫ̃∗
t+h(w) =

∑p̄

p=1w(p)̃ǫt+h(p) denote

the weighted average of the leave-h-out residual matrices. The proposed MCVAh

criterion for the weight estimation that is used to combine direct h-step forecasts

is given by

CVT ,h(w) = (T − p̄ −h+1) · tr
(
6̃h(p̄)−16̃

∗
h(w)

)

= tr


6̃h(p̄)−1

T −h∑

t=p̄

ǫ̃∗
t+h(w)̃ǫ∗

t+h(w)′




=
T −h∑

t=p̄

tr


6̃h(p̄)−1




p̄∑

p=1

w(p)̃ǫt+h(p)







p̄∑

p=1

w(p)̃ǫt+h(p)



′ 


=
T −h∑

t=p̄

p̄∑

i=1

p̄∑

j=1

ǫ̃t+h,ijw(i)w(j)

= w′̃Shw, (4.5)

where

6̃h(p̄) = 1

T − p̄ −h− m̄+1

T −h∑

t=p̄

ǫ̃t+h(p̄)̃ǫt+h(p̄)′, (4.6)

and S̃h is a p̄ × p̄ matrix with the (i, j)th element S̃hij =
∑T −h

t=p̄ ǫ̃t+h,ij , ǫ̃t+h,ij =∑K
k=1

∑K
ℓ=1 σ̃ h

kℓ̃ǫk,t+h(i)̃ǫℓ,t+h(j), and σ̃ h
kℓ being the (k, ℓ)th element of 6̃h(p̄)−1.

The estimated MCVAh weight vector for direct VAR forecast averaging is

defined by

ŵcv,h = arg min
w∈HT

CVT ,h(w), (4.7)

whereHT is defined as before. The estimated weight vector ŵcv,h is indexed by h

to reflect the fact that ŵcv,h is selected anew for each h by minimizing the MCVAh

criterion. Similar to (3.7), (4.7) also takes the form of quadratic programming

problems, without the need to specify the linear component of the criterion.

The resulting averaging direct h-step ahead forecast at origin t based on leave-

h-out cross-validation is produced by

ŷD∗
t+h|t (ŵcv,h) =

p̄∑

p=1

ŵcv,h(p)̂yD
t+h|t (p), (4.8)

where ŵcv,h = (ŵcv,h(1), . . . ,ŵcv,h(p̄))′ and ŷD
t+h|t (p) is given by (4.3).
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Efficient computation of CVT, h(w). Computing the CVT, h(w) criterion is known

to be computationally expensive; specifically, its computation is on the order of T2.

In Section B in the online supplementary material, we discuss how to efficiently

compute the leave-h-out residual vector ǫ̃t+h(p).

5. ASYMPTOTIC THEORY

This section provides theoretical justifications of ourmethods proposed in Sections

3 and 4, including the relation of the proposed iterative and direct VAR forecast

averaging criteria to MSE and MSFE in multistep forecast settings and the

asymptotic unbiasedness and asymptotic optimality of the proposed averaging

procedures.

5.1. MSFE of MultiStep Forecast Averaging

In this subsection, we simply denote by ŷT +h|T (p) = ŷD
T +h|T (p) the h-step ahead

forecast at the origin T produced by a fitted direct h-step VAR(p) model using the

full effective sample. For any forecast combination w, the h-step-ahead forecast

combination is given by

ŷ∗
T +h|T (w) =

p̄∑

p=1

w(p)̂yT +h|T (p)

with the associated forecast error

yT +h − ŷ∗
T +h|T (w) = (yT +h −y∗

T +h|T )+ (y∗
T +h|T − ŷ∗

T +h|T (w))

= ǫT +h + (y∗
T +h|T − ŷ∗

T +h|T (w)). (5.1)

Let µ̂h(p) = (µ̂h
p̄(p), . . . ,µ̂h

T −h(p))′ denote the matrix of fitted values of Yh

based on a fitted VAR(p) with µ̂h
t (p) = (µ̂h

1t (p),µ̂h
2t (p), . . . ,µ̂h

Kt (p))′, and anal-

ogously, µ̂∗
h(w) = (µ̂h∗

p̄ (w), . . . ,µ̂h∗
T −h(w))′ with µ̂h∗

t (w) = (µ̂h∗
1t (w), . . . ,µ̂h∗

Kt (w))′

and µ̂h∗
kt (w) =

∑p̄

p=1w(p)µ̂h
kt (p). Define

MSFEh(w) = E
(
tr

(
6−1

h (yT +h − ŷ∗
T +h|T (w))(yT +h − ŷ∗

T +h|T (w))′
))

= E
(
tr(6−1

h ǫT +hǫ
′
T +h)

)
+E

(
tr
(
6−1

h (µh
T − µ̂h∗

T (w))(µh
T − µ̂h∗

T (w))′
))

≃ K +E

(
tr

(
1

T − p̄ −h+1
6−1

h (µh − µ̂∗
h(w))′(µh − µ̂∗

h(w))

))

≡ K + (T − p̄ −h+1)E(LT ,h(w)), (5.2)

where the approximation follows from the assumed stationarity of yt and

E(tr(6−1
h ǫT +hǫ

′
T +h)) = tr(6−1

h E(ǫT +hǫ
′
T +h)) = tr(IK) = K and LT, h(w) is

defined as the in-sample average squared error from the h-step ahead forecast
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combination

LT ,h(w) = 1

T − p̄ −h+1
tr

(
6−1

h (µh − µ̂∗
h(w))′(µh − µ̂∗

h(w))
)

= 1

(T − p̄ −h+1)

T −h∑

t=p̄

K∑

ℓ=1

K∑

k=1

(µh
kt − µ̂h∗

kt (w))σ h
kℓ(µ

h
ℓt − µ̂h∗

ℓt (w)), (5.3)

and E(LT, h(w)) is the associated expected in-sample squared error.

It is worth emphasizing that MSFEh(w) defined in (5.2) is weighted by the

inverted true error covariancematrix6−1
h , which contrasts with the single-equation

model selection/averaging problem.8 The use of the weightedMSFEs here has two

motivations. First, weighted by6−1
h makes the MSFE criterion scale-independent,

so that the individual MSFE for each response variable is scaled to be of equal

importance. Second, it incorporates the potential interrelationships among forecast

errors and thus may make better use of the information the data contains, thereby

likely improving forecast accuracy.

5.2. Asymptotic Unbiasedness

Let LT (w) be the in-sample average squared error from one-step-ahead forecast

averaging, as defined by (5.3) when h = 1. For this case of h = 1, we simply remove

the superscript/subscript h in corresponding notations defined before by denot-

ing P(p) = Z(p)(Z(p)′Z(p))−1Z(p)′, µ̂(p) = (µ̂p̄(p), . . . ,µ̂T −1(p))′ = P(p)Y

with µ̂t (p) = (µ̂1t (p), . . . ,µ̂Kt (p))′, µ̂∗(w) =
∑p̄

p=1w(p)µ̂(p), and MSFE(w)

≡MSFEh(w) defined in (5.2) when h = 1. To establish the property that the CT (w)

criterion is an asymptotically unbiased estimator of LT (w), we make the following

assumptions.

Assumption 1. (a) The multivariate time series yt = (y1t,y2t, . . . ,yKt )
′ sat-

isfies (2.1) and (2.2) and conditions therein, where the error term vector

εt = (ε1t,ε2t, . . . ,εKt )
′ is aK-dimensional i.i.d. white noise process, satisfying

E(εt |Ft ) = 0 with a nonsingular variance–covariance matrix E(εtε
′
t ) = 6.

(b) εt is assumed to have a finite fourth moment in the sense that for some finite

constant C, E|εutεvtεwtεxt| ≤ C for u,v,w,x = 1, . . . ,K and all t.

(c) The VAR maximum length-order p̄ depends on the sample size T such that as

T → ∞, p̄ = p̄T → ∞, p̄ = o
(
T 1/3

)
.

Assumption 1 collects the standard assumptions in multivariate regression to

ensure that the suitable law of large numbers and the central limit theorem are both

8TheMSFEh(w) defined in (5.2) can be viewed as a type of the Mahalanobis distance that accounts for the covariance

structure (Varmuza and Filzmoser, 2009, p. 46). The weighted loss or risk functions have been considered in the

literature, for example, Andrews (1991, Sect. 6) and Hansen (2016a, Sect. 2.2); Fujikoshi and Satoh (1997) and

Yanagihara and Satoh (2010) in multivariate regression settings. Moreover, in the context of VAR forecasting using

Lasso, Hsu, Hung, and Chang (2008), Ren and Zhang (2010), and Ren, Xiao, and Zhang (2013) use the normalized

MSFE to evaluate forecast accuracy in their simulation work and empirical examples.
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satisfied. Assumption 1(c) is standard for the multivariate OLS estimator of fitting

a finite-order VAR(p) model to potentially infinite-order processes, for example,

Lewis and Reinsel (1985). The condition p̄ = p̄T = o
(
T 1/3

)
imposes an upper

bound on the rate at which the maximum lag order p̄ goes to infinity. Theorem 1

below formally summarizes the arguments presenting the asymptotic unbiasedness

of CT (w).

THEOREM 1. Suppose that Assumption 1 holds. For the maximum lag order

p̄ = p̄T and the fixed weight vector w, the proposed MMMA criterion CT(w) given

by (3.4) can be expressed as

CT (w) = (T − p̄)LT (w)+ (T − p̄)K + r1T (w)+ r2T (w)+2K2p′w, (5.4)

where LT(w) is the in-sample average squared error defined by (5.3) when h = 1,

and

r1T (w) = 2vec(µ′)′
(
(IT −p̄ −P(w))′ ⊗ IK

)(
IT −p̄ ⊗6−1

)
vec(e′),

and

r2T (w) = −2vec(e′)′(P(w)′ ⊗ IK)
(
IT −p ⊗6−1

)
vec(e′),

satisfying E(r1T (w)) = 0 and E(r2T (w)) = −2K2p′w as T → ∞.

Remark 1. Similar to the univariate case, Theorem 1 implies that the leading

term of CT (w) is a downward-biased estimator of the expected loss E(LT (w)), and

this downward bias arises as we use Y to replace the unknown µ in E(LT (w)),

while µ̂(w) is also estimated based on Y. The source of the downward bias is

r2T (w), and built on Lewis and Reinsel (1985), its expected value can be shown to

be −2K2p′w, or the negative of the penalty term.

We next turn to the CVT, h(w) criterion. Let µ̃
∗
h(w) =

∑p̄

p=1w(p)µ̃h(p), where

µ̃h(p) = P̃h(p)Yh, as given in Lemma 1 (presented in the online supplementary

material). We also denote P̃
∗
h(w) =

∑p̄

p=1w(p)̃Ph(p). Define L̃T ,h(w) as the in-

sample average squared errors of the averaging h-step ahead forecast produced

from the MCVAh procedure, that is,

L̃T ,h(w) = 1

T − p̄ −h+1
tr

(
6−1

h (µh − µ̃∗
h(w))′(µh − µ̃∗

h(w))
)

= 1

(T − p̄ −h+1)

T −h∑

t=p̄

K∑

ℓ=1

K∑

k=1

(µh
kt − µ̃h∗

kt (w))σ h
kℓ(µ

h
ℓt − µ̃h∗

ℓt (w)), (5.5)

and ṼT ,h(w) = E(L̃T ,h(w)) is the expected in-sample squared error of the averag-

ing h-step-ahead forecast based on leave-h-out cross-validation.

THEOREM 2. Suppose that Assumption 1 holds. For the maximum lag order

p̄ = p̄T and the fixed weight vector w, the proposed MCVAh criterion CVT, h(w)

given by (4.5) can be expressed as
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1114 JEN-CHE LIAO AND WEN-JEN TSAY

CVT ,h(w) = (T − p̄ −h+1)L̃T ,h(w)+ (T − p̄ −h+1)K

+ r̃1T h(w)+ r̃2T h(w), (5.6)

where r̃1T h(w) = 2vec(µh
′)′

(
(IT −p̄−h+1 − P̃∗

h(w))′ ⊗ IK
)(
IT −p̄−h+1 ⊗6−1

)

vec(eh
′) and r̃2T h(w) = −2vec(eh

′)′(̃P∗
h(w)′ ⊗IK)

(
IT −p̄−h+1 ⊗ 6̃h(p̄)−1

)
vec(eh

′),
satisfying E(̃r1T h(w)) = 0 as T → ∞ and E(̃r2T h(w)) = 0.

Remark 2. The asymptotic unbiasedness of the MCVAh criterion in Theorem

2 essentially builds on the argument that E(̃r2T h(w)) = E(tr(̃P
∗
h(w)ehe

′
h)) = 0,

which is based on the observations that the matrix E(ehe
′
h) has an exactly opposite

nonzero/zero structure to the matrix P̃
∗
h(w); E(ehe

′
h) is symmetric, and as a result,

the element-wise multiplication of the same rows of P̃
∗
h(w) and E(ehe

′
h) is always

zero.

5.3. Asymptotic Optimality

This section shows that our MMMA and MCVAh procedures proposed in Sections

3 and 4, respectively, are asymptotically optimal, in the sense that asymptotically,

our procedures with the estimated combination weights perform as well as the

infeasible procedures with the optimal weights. To begin with, the MMMA

procedure is said to be asymptotically optimal with respect to the criterion

LT (w) if

(OPT 1):
LT (ŵ)

infw∈HT
LT (w)

p−→ 1 as T → ∞ (5.7)

is satisfied, where ŵ is the estimated Mallows weight vector obtained from (3.7).

Define C∗
T (w) = CT (w)/(T − p̄). To establish (5.7), the key is to show

sup
w∈HT

∣∣∣∣
C∗

T (w)−LT (w)

LT (w)

∣∣∣∣
p−→ 0. (5.8)

Let Z≡ Z(p̄) be the (T − p̄)×Kp̄ regressor matrix using the maximum lag order

p̄; P = Z
(
Z′Z

)−1
Z′ is the associated projection matrix. Denote A∗(w) = IT −p̄ −

P∗(w) and define

VT (w) = E(LT (w)) = 1

T − p̄
E

(
tr

(
6−1(µ− µ̂∗(w))′(µ− µ̂∗(w))

))

= 1

T − p̄
tr

(
A∗(w)µ6−1µ′A∗(w)

)

+E
(
tr

(
P∗(w)e6−1e′P∗(w))

))
, (5.9)

and ξ ∗
T = infw∈HT

(T − p̄)VT (w). It is implicitly assumed that ξ ∗
T → ∞ as T → ∞

since in our VAR framework, there is nonzero approximation error for all candidate

models VAR(p) of finite order.
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If the estimation loss LT (w) and the resulting estimation risk VT (w) are shown

to be asymptotically equivalent to each other, that is,

sup
w∈HT

∣∣∣∣
LT (w)

VT (w)
−1

∣∣∣∣
p−→ 0, (5.10)

then the goal (5.8) to prove asymptotic optimality becomes

sup
w∈HT

∣∣∣∣
C∗

T (w)−LT (w)

VT (w)

∣∣∣∣
p−→ 0. (5.11)

We make the following assumptions to prove (5.10) and (5.11), and the optimality

result is stated in Theorem 3 below.

Assumption 2. (a) As T → ∞, p̄ξ∗
T

−1 = op(1), and p̄ξ∗
T

−2vec(µ′)′
(
P⊗ IK

)

vec(µ′) = op(1).

(b) Let S denote the set of all real K-vectors α of euclidean length one, and P(E)

denotes the probability of the event E. The innovation vector εt is uniformly

Lipschitz over all directions in the sense that there exist positive constantsM,

δ, and ρ such that for all u, v satisfying 0 < u− v ≤ δ, supα∈SP(v < α′εt <

u) ≤ M(u−v)ρ holds for all t.

(c) Denote Ŵ̂T (p̄) = (T − p̄)−1
∑T −1

t=p̄ zt (p̄)zt (p̄)′ = (T − p̄)−1Z′Z. Assume that

E‖Ŵ̂−1
T (p̄)‖1 = O(p̄2+θ ) for all large T and any θ > 0, where ‖A‖21 =

λmax(A
′A) is the maximum eigenvalue of thematrixA′A and ‖A‖21 = λ2max(A)

if the matrix A is symmetric.

(d) p̄6+δ1 = O(T ) for some δ1 > 0.

(e) p̄2+δ1 = O(T ) for some δ1 > 0 and sup−∞<t<∞E|εk1t · · ·εks t | < ∞ for s =
1,2, . . . and k1, . . . ,ks = 1, . . . ,K .

Assumption 2(a)p̄ξ ∗
T

−1 = op(1) places a restriction on the growth rate of the

maximum lag order p̄, that is, p̄ must diverge slower than ξ ∗
T → ∞. On the other

hand, the requirement p̄ξ ∗
T

−2vec(µ′)′
(
P⊗ IK

)
vec(µ′) = op(1) can sometimes be

viewed as a weaker condition than the convergence condition (21) of Zhang et al.

(2013) and the similar condition (8) of Wan et al. (2010); see detailed discussions

therein. Assumption 2(b) is directly from Findley and Wei (2002), which is a

multivariate generalization of Condition (K.2) of Ing andWei (2003) and condition

(C.3) of Zhang et al. (2013). This so-called uniform Lipschitz condition on the

distributions of the independent process of εt is required to obtain the moment

bound of the inverse regressor matrix, as shown in Thm. 4.1 of Findley and Wei

(2002).

As discussed in Findley and Wei (2002), a rich class of distributions has

the uniform Lipschitz property. Similar to Ing and Wei (2003, eqn. (2.16)),

Assumption 2(c) places an upper bound that goes to infinity as p̄ = p̄T increases

to infinity. As shown in Lemma 2 in the Appendix, this condition plays a key role
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in further improving the upper bound on ‖Ŵ̂−1

T (p̄)‖. Moreover, the conditions in

Assumption 2(d) and (e) are the same as the conditions in Thm. 2 of Ing and Wei

(2003) and condition (C.4) of Zhang et al. (2013). These two sets of assumptions

provide alternative restrictions on and a trade-off between the growth rate of p̄ and

the existence of moments of εt.

THEOREM 3. If either Assumptions 1(a) and (b) and 2(a)–(d), or Assumptions

1(a) and 2(a)–(c) and (e) are satisfied, then our MMMA procedure is asymptoti-

cally optimal in the sense that the optimality condition (5.7) holds.

Remark 3. Theorem 3 extends the existing asymptotic optimality results for

model averaging to the multivariate Mallows criterion in the context of VAR fore-

cast averaging. This result shows that LT (w) and henceMSFE(w) can be uniformly

approximated by C∗
T (w) (and thus by CT (w)), implying that from a forecasting

point of view, the estimated weight obtained from ŵ = argminw∈HT
CT (w) can

be viewed as the optimal weight for the one-step-ahead forecast combination.

Remark 4. It is essential to note that in general, the asymptotic optimality

of the MMMA for one-step-ahead forecast averaging, as stated in Theorem 3,

does not carry over to multistep-ahead forecasting (i.e., h > 1) in either a direct

or an iterative scheme. For the former, one straightforward aspect to see the

asymptotic nonoptimality of the direct MMMA for h > 1 is through its invalidity

under serial correlations. Specifically, it is not hard to show that the asymptotic

unbiasedness (and, hence, asymptotic optimality) of the h-step version of the

MMMA criterionCT (w) in (3.4) does not hold under the direct method based on h-

stepVARmodels, where the serial correlation problem arises naturally; for detailed

discussions, see Section D in the online supplementary material. For the iterative

MMMA, we note that a formal investigation of the nonoptimality of the MMMA

when used iteratively for multistep forecasting requires extending Bhansali’s

(1996) analysis to the general forecast averaging; see Remark 7 for further

discussions.

To address the aforementioned limitation of Theorem 3, our next focus is

on exploring the possibility of the h-step-ahead generalization of asymptotic

optimality for multistep VAR forecast averaging, where the combination weights

are selected for each h by our direct MCVAh procedure.

To begin with, similar to (5.7), the asymptotic optimality condition for the

MCVAh procedure with respect to the criterion LT, h(w) (5.3) is given by

(OPT 2):
LT ,h(ŵcv,h)

inf
w∈HT

LT ,h(w)

p−→ 1 as T → ∞, (5.12)

where ŵcv,h is the estimated weight vector obtained from (4.7).

Let VT ,h(w) = E(LT ,h(w)) and ṼT ,h(w) = E(L̃T ,h(w)) be the associated

estimation risk of the averaging h-step ahead forecasts formed by full-sample and
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leave-h-out estimators, respectively. We also define ξ ∗
T ,h = infw∈HT

(T − p̄ −h+
1)VT ,h(w) and CV ∗

T ,h(w) = CVT ,h(w)/(T − p̄ −h+1), where CVT, h(w) is given

by (4.5).

Analogous to (5.8), (5.10), and (5.11), the asymptotic optimality conditions we

wish to show are

sup
w∈HT

∣∣∣∣∣
CV ∗

T ,h(w)− L̃T ,h(w)

ṼT ,h(w)

∣∣∣∣∣
p−→ 0 and sup

w∈HT

∣∣∣∣
L̃T ,h(w)

ṼT ,h(w)
−1

∣∣∣∣
p−→ 0,

(5.13)

establishing

L̃T ,h(ŵcv,h)

inf
w∈HT

L̃T ,h(w)

p−→ 1 as T → ∞, (5.14)

which is the asymptotic optimality of ŵcv,h with respect to the criterion L̃T ,h(w).

Lastly, combining (5.14) with

sup
w∈HT

∣∣∣∣
L̃T ,h(w)

LT ,h(w)
−1

∣∣∣∣
p−→ 0 (5.15)

yields (5.12), as desired. To establish (5.12), we make the following conditions.

Assumption 3. (a) As T → ∞, p̄T ξ∗−1
T ,h = op(1), and p̄T ξ∗−2

T ,h vec(µh
′)′(

Ph ⊗ IK
)
vec(µh

′) = op(1), where Ph = Zh(Z
′
hZh)

−1Z
′
h and Zh = Zh(p̄).

(b) Let q∗
h = max1≤p≤p̄ maxp̄≤t≤T −h maxℓht−p̄+1≤j≤ℓ̄ht−p̄+1 (Ph(p))t−p̄+1,j ,

where (A)ij denotes the (i, j)th element of matrix A. Assume that q∗
h satisfies

q∗
hp̄−1

T T → 0 almost surely as T → ∞.

Assumption 3(a) is analogous to Assumption 2(a) for the MMMA case. Denote

Ŵ̂T ,h(p̄) = (T − p̄−h+1)−1
∑T −h

t=p̄ zt (p̄)zt (p̄)′ = (T − p̄−h+1)−1Z
′
hZh. Under

the condition E‖Ŵ̂−1

T ,h(p̄)‖1 = O(p̄2+θ ) for all large T and any θ > 0, which is

implied by Assumptions 1, 2(b), and 3, and using similar arguments to those

employed to prove (C.15) and (C.16) in the online supplementary material, it

is not difficult to establish the leave-h-out version of (C.15) and (C.16), that

is, E‖Ŵ̂−1

T ,h(p̄)‖1 = O(1) and for every h, E(tr(e′
hZhZ

′
heh))/(T − p̄ + h − 1) =

O(p̄T ). On the other hand, combined with the fact that εh,t+h =
∑h−1

i=0 8iεt+h−i , it

can be shown that the uniform Lipschitz condition for the disturbance εt imposed

in Assumption 2(b) implies that the h-step error εh, t is also uniformly Lipschitz in

the sense of Assumption 2(b). Assumption 3(b) is the leave-h-out generalization of

the conditions that are commonly used in the literature on asymptotic optimality of

leave-one-out cross-validation, for example, Li (1987), Andrews (1991), Hansen

and Racine (2012), and Zhang et al. (2013). This assumption requires that for a

particular t, the contributions of ℓht omitted observations, {yj+h,zj (p)}ℓ̄ht
j=ℓht

, to the

fitted value of yt+h are asymptotically negligible for all candidate models.
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1118 JEN-CHE LIAO AND WEN-JEN TSAY

Theorem 4 below states that the direct h-step combination weight estimator

ŵcv,h determined by minimizing the criterion CVT, h(w) are asymptotically effi-

cient for all fixed h ≥ 1.

THEOREM 4. Suppose that either Assumptions 1(a) and (b), 2(b)–(d), and 3(a)

and (b); or Assumptions 1(a), and 2(b),(c),(e), and 3(a) and (b) are satisfied; for all

fixed h≥ 1, the proposed direct MCVAh procedure based on the criterion CVT, h(w)

is then asymptotically optimal in the sense that the optimality condition (5.12)

holds.

Remark 5. From a theoretical perspective, Theorem 4 extends the fore-

cast/model averaging optimality results based on leave-one-out cross-validation

(e.g., Hansen and Racine, 2012 and Zhang et al., 2013) to VAR forecasting

for forecast horizons h > 1. It also addresses the limitation of Theorem

3, where the MMMA weight estimator ŵ is shown to be asymptotically

efficient for only one-step-ahead forecast averaging. Namely, for each forecast

horizon h ≥ 1, the asymptotically optimality for multistep VAR forecast

averaging can still be achieved by selecting ŵcv,h from the direct MCVAh

procedure.

Remark 6. It is worth emphasizing that our asymptotic optimality established

in Shibata’s sense is somewhat weak and that it would therefore be desirable

to call for more meaningful optimality properties. In particular, the notion of

Shibata’s asymptotic optimality is only a pointwise property and does not hold

uniformly in the parameter space, which may yield inefficient small-sample

performance for asymptotically optimal selection procedures, as demonstrated

in Kabaila (2002); see also Leeb and Pötscher (2009, Sect. 3) for a related

discussion.

Remark 7. It is worth emphasizing that further investigation is still needed

to formally show the nonoptimality of the MMMA when used iteratively for

multistep forecasting for h> 1. Here, we briefly describe the heuristics as follows.

Analogous to MSFEh(w) defined in (5.2), we can define the weighted MSFE for

the iterative averaging method as

MSFEI
h(w) = E

(
tr(6−1

h (yT +h − ŷI∗
T +h|T (w))(yT +h − ŷI∗

T +h|T (w))′)
)
, (5.16)

where ŷI∗
T +h|T (w)) is given by (3.8) at forecast origin T. It is then useful to establish

that for each h≥ 1, the second-orderMSFE,MSFEI
h(w)−K , of the iterative h-step

averaging forecast ŷI∗
T +h|T (w)) can be uniformly approximated in w by

LI
T ,h(w) = ‖9∗

h(w)−9h‖2R +p′wK/T , (5.17)

where ‖A‖B = ‖A′BA‖1/2 for amatrixA and a positive definitematrixB,9∗
h(w) =∑p̄

p=1w(p)9̄h(p), 9̄h(p) = (9h(p)′ 0K×K(p̄−p))
′, 9h = (ψh1ψh2 . . .)′,

and R = [Ŵ(u − v)] for u,v = 1,2, . . . with Ŵ(u) = E(yty
′
t+u). In (5.17),

9̄h(p) is understood as an infinite-dimensional matrix with elements 9h(p)′,
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p = 1,2, . . .. Lastly, wewish to show that for h≥ 1 and theMMMAweight estimate

ŵ = argminw∈HT
CT (w):

lim
T →∞

MSFEI
h(ŵ)−K

minw∈HT
LI

T ,h(w)
≥ 1, (5.18)

with the equality holding when h = 1. Equation (5.18) implies that if the MMMA

weight estimate ŵ is used iteratively for multistep forecasting, then the result-

ing second-order MSFE for h > 1 is ultimately greater than the lower bound

minw∈HT
LI

T ,h(w). In fact, we conjecture that the nonattainability of the lower

bound for the iterative method, as previously claimed by Bhansali (1996), should

carry over to the averaging setting under an infinite-order VAR process.

To establish (5.17) and (5.18), it is necessary to extend Lewis and Reinsel

(1985), Bhansali (1996), and Ing and Wei (2003, 2005) to the general averaging

case for VAR multistep forecasting. We do not pursue such an extension in the

present paper and leave it for future research.

6. SIMULATION

This section presents the finite-sample forecast performance of our proposed

approaches under correct specification and misspecification of forecasting models

to shed some light on the relative merits of our iterative and direct forecast

averaging methods.

6.1. Simulation Design

The data-generating process (DGP) we consider is the drifting bivariate

ARMA(1,10) process, as previously considered by Schorfheide (2005):

yt −81yt−1 = εt +
α√
T

10∑

i=1

θ iεt−i,

where

81 =
[
0.754 0.146

0.254 0.646

]
, θ1 =

[
0.87 0.69

−1.37 −0.03

]
, θ2 =

[
−0.05 0.85

−0.81 0.14

]
,

θ3 =
[
0.30 0.30

0.27 −0.10

]
, θ4 =

[
0.11 −0.10

−0.20 −0.12

]
, θ5 =

[
0.24 −0.17

−0.19 0.33

]
,

θ6 =
[
−0.24 −0.18

−0.15 −0.29

]
, θ7 =

[
0.08 0.15

−0.17 0.13

]
, θ8 =

[
0.01 −0.05

−0.14 0.06

]
,

θ9 =
[
−0.50 −0.12

−0.21 0.03

]
, θ10 =

[
0.15 −0.03

0.24 0.01

]
, 6 =

[
1.00 0.80

0.80 4.00

]
.

We set α = 0,2,5,10 to allow for different degrees of (local) misspecification. It is

noted that when α = 0, DGP reduces to a pure VAR process of order one.
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We set the maximum lag order p̄ = 3,4, . . . ,15. The sample sizes T = 100,

200, and 500 are considered. We examine h-step-ahead forecast errors up to h =
12 in our simulation experiment. The number of simulation repetitions is R =
2,500. The computation in simulations and the empirical application in the online

supplementary material is carried out with R programming.

We compare the forecasting performance of our forecasting combination

approach based on VAR model averaging with those of existing VAR lag

selection/averaging methods, including the AIC, BIC, HQ, smoothed AIC (SAIC),

smoothed BIC (SBIC), and equal-weight (EQ) approaches. We also incorporate

OLS using the fixed lag p̄ as a benchmark. The SAIC weights are specified to be

proportional to exp(−AIC(p)/2), where AIC(p) is the AIC score for candidate

model p, that is,wAIC(p) = exp(−AIC(p)/2)/
∑p̄

j=1 exp(−AIC(j)/2). The SBIC

weight specification is given in a similar form to wAIC(p), with BIC scores in place

of AIC scores. The EQ weights are simply the uniform weight given to each

candidate model. We also compare forecast performance with the VAR Stein

combination shrinkage estimator (Stein) proposed by Hansen (2016b).

Given the selected and combined iterative and direct h-step ahead forecasts, we

then compute and report the average of their weighted MSFE values, that is, using

the inverse of 6̃h(p̄) given in (4.6) as weights, across R = 2,500 random samples

from the DGP under investigation

M̂SFEh(p̄;M) = 1

2500

2500∑

r=1

[
tr

(
6̃

(r)

h (p̄)−1
(
y

(r)
T +h − ŷ

(r)
T +h|T (p̄;M)

)

×
(
y

(r)
T +h − ŷ

(r)
T +h|T (p̄;M)

)
′
)]

,

where ŷ
(r)
T +h|T (p̄;M) is the h-step ahead forecast computed by the iterative or direct

VAR forecast selection/averaging method M based on the maximum lag order p̄,

and the superscript “(r)” indicates the rth simulation repetition.

6.2. Simulation Results

Figure 1 presents the iterative and direct multistep VAR forecast performance

(measured by the relative MSFE to OLS(I)), where “D” and “I” in parentheses

refer to direct and iterative multistep forecasts, respectively. To save space, we

report here the results for T = 100 only; for the cases of T = 200 and T = 500,

see Figures A2 and A3, respectively, in the online supplementary material. Several

findings from our simulation results are summarized as follows.9

It can be seen from Figure 1 that in the absence of misspecification (i.e.,

α = 0), the iterative multistep methods generally outperform the direct multistep

methods. For example, the relative MSFEs of OLS(D) are greater than those of

OLS(I), and OLS(D) deteriorates as h increases. This result is expected, as there

9More simulation results and discussions are provided in Section E in the online supplementary material.
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Figure 1. Multistep forecast performance under bivariate drifting ARMA(1,10): T = 100.

is no misspecification bias and the bias advantage of the direct multistep forecast

methods thus does not appear to outweigh their variance disadvantage. Moreover,

in the absence of model misspecification, it is clear that among all the iterative

and direct methods considered, MMMA(I) performs best. On the other hand,

MCVAh(D) is dominated by Stein(I) when p̄ = 3 and as the forecast horizon

lengthens. However, a greater improvement of MCVAh(D) and MMMA(I) upon

Stein(I), OLS(I), and OLS(D) can be seen as p̄ increases. For example, in the

case of p̄ = 15, MMMA(I) and MCVAh(D) are superior to Stein(I), OLS(I), and

OLS(D) uniformly over all forecast horizons. The above findings apply to the case

when α = 2, that is, the misspecification is mild.

Under the DGP with α ≥ 5, the outperformance of the iterative multistep

forecast selection/averaging methods may not necessarily hold. In such cases,

the misspecification is large and the quality of approximating the generated

processes depends crucially on the prespecified maximum lag order p̄. When the
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approximating VAR models using small p̄, say p̄ = 3, are fitted, MCVAh(D) and

OLS(D) substantially dominate the iterative counterparts for h = 7 ∼ 10 (α = 5)

and for h = 5∼ 11 (α = 10), while for other forecast horizons, direct and iterative

methods are comparable to each other. Taking α = 10, the relative MSFEs of

MCVAh(D) are smaller by as much as 30.1% and 31.2% than those of Stein(I) and

MMMA(I), respectively. As p̄ increases to 10, MCVAh(D) outperforms Stein(I) in

all horizons and is superior to MMMA(I) except for h = 11 and 12. This finding

appears to be consistent with a previous finding (e.g., Bhansali, 1997, 1999) that

in the presence of model misspecification, under-parameterization may benefit the

direct methods.We also find that the forecast performance ofMMMA(I) relative to

other methods tends to improve as sufficiently long VARs in the candidate model

set are fitted, that is, when p̄ is large enough. For example, as p̄ further grows from

10 to 15, while the dominance of MCVAh(D) over Stein(I) remains, MMMA(I) is

reversely and slightly preferable to MCVAh(D), except for h = 1. This finding

indicates that as forecast horizons and autoregressions lengthen, the robustness of

MCVAh(D) is likely to be outweighed by the efficiency of MMMA(I).

We next investigate the effect of errors introduced by estimation of the combi-

nation weights on the forecast performance by comparing our averaging methods

with the simple (equal) averaging (denoted by EQ(I)).10 We find from Figure

1 (for T = 100) that in our simulation settings MMMA(I) is comparable to

EQ(I) and both of them dominate MCVAh(D) when no (α = 0) or mild (α =
2) misspecification is present and the number of candidate models is small

(p̄ ≤ 5). The dominance of MMMA(I) and EQ(I) over MCVAh(D) vanishes as

the sample size increases (Figures A2 (T = 200) and A3 (T = 500) in the online

supplementary material). It can also be seen that MMMA(I) tends to outperform

EQ(I) as p̄ increases, that is, the number of candidatemodels becomes large. This is

expected becausewhenmisspecification is not severe, unlike EQ(I) imposing equal

weights, MMMA(I) places zero or small weights on large (over-specified) VAR

models that lead to poor performance (Figures A4–A6 in the online supplementary

material). On the other hand, MCVAh(D) appears to dominate MMMA(I) and

EQ(I) in most cases when α = 5 and 10. Similar to Cheng and Hansen’s (2015)

simulation results, we also find overall that relative to our averaging methods,

EQ(I) is somewhat sensitive to p̄, particularly for h = 1 and α = 5 and 10 (Table A1

in the online supplementary material). We note that these findings may not apply

to more complicated DGPs that can generate large estimation errors of estimated

weights.

We also compare the unweighted MSFEs (i.e., a simple sum of the MSFEs

associated with individual response variables) for the entire VAR system (which

are not reported here to save space and are available upon request). From there, we

find that in most cases, the relative forecast performances of our methods when

compared with other competitors are qualitatively similar to those based on the

weighted MSFEs discussed above.

10We thank an anonymous referee for drawing our attention to this important issue.
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As our simulation results reveal, the ranking of the competing methods based

on MSFEs may vary with the prespecified maximum lag order p̄. To address

uncertainty arising from the choice of p̄, the last row of Figure 1 presents the

normalized maximum regret based on MSFEs over different values of p̄. This

maximum regret criterion allows a unique ranking across maximum lag orders.

The regret of the different forecast selection/averaging methods is defined as the

gap between their MSFEs for a given p̄ and the best possible MSFE across all

methods (collected in the set M) under consideration for that p̄, namely,

R̂h(p̄;M) = M̂SFEh(p̄;M)− min
M∈M

M̂SFEh(p̄;M). (6.1)

Given R̂h(p̄;M), the maximum regret, which is the worst-case regret, is then taken

over all p̄’s and then normalized by the maximum regret of OLS(I)—here, a value

of normalized maximum regret smaller than 1 implies that the method considered

is superior to OLS(I). The results in the last row of Figure 1 reveal a clearer

dominance of MMMA(I) (MCVAh(D)) over other competing methods under no

or mild (large) model misspecification when the uncertainty from the choice of p̄

is taken into account.

7. CONCLUSION

This article has employed a frequentist multiple-equation model averaging

approach based on the MMMA and MCVAh criteria for combinations of multistep

forecasts with VARmodels. The former criterion is designed for iterative multistep

VAR forecast averaging, while the latter aims to deal with the issue of the serial

correlation that is due to overlapping data under the direct multistep forecasting

framework. The proposed methods are straightforward to implement because our

procedures are based on least-squares estimation and quadratic programming

to obtain the combination weights. We have also shown that our approaches

are theoretically grounded by the properties of asymptotic unbiasedness and

asymptotic optimality. We have further investigated the numerical performances

of our methods and have compared them to other competing methods in a Monte

Carlo simulation and an empirical application to U.S. macroeconomic variables

(reported in the online supplementary material), illustrating the usefulness of our

methods as econometric tools for multistep VAR forecast combinations.

Several directions built on this article are worth exploring in future research. For

example, it would be useful to introduce dimension reduction techniques, such as

shrinkage or factors, into the framework of VAR forecast averaging. It would also

be interesting to extend our methodology to nonstationary processes.

8.SUPPLEMENTARY MATERIAL

To view supplementary material for this article, please visit http://dx.doi.org/10.

1017/S0266466619000434 . We provide proofs of the theoretical results, addi-
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tional simulation results, and an empirical application to a prototypical monetary

VAR model for three U.S. macroeconomic time series of GDP, the GDP deflator,

and the federal funds rate.
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