
How can an economic scenario
generation model cope with abrupt

changes in financial markets?
Yi-Hsi Lee

Department of Financial Engineering and Actuarial Mathematics,
Soochow University, Taipei, Taiwan

Ming-Hua Hsieh
Department of Risk Management and Insurance, National Chengchi University,

Taipei, Taiwan

Weiyu Kuo
Department of International Business, National Chengchi University,

Taipei, Taiwan, and

Chenghsien Jason Tsai
Department of Risk Management and Insurance, National Chengchi University,

Taipei, Taiwan

Abstract

Purpose – It is quite possible that financial institutions including life insurance companies would encounter
turbulent situations such as the COVID-19 pandemic before policies mature. Constructing models that can
generate scenarios for major assets to cover abrupt changes in financial markets is thus essential for the
financial institution’s risk management.
Design/methodology/approach –The key issues in suchmodeling include how tomanage the large number
of risk factors involved, how to model the dynamics of chosen or derived factors and how to incorporate
relations among these factors. The authors propose the orthogonal ARMA–GARCH (autoregressive moving-
average–generalized autoregressive conditional heteroskedasticity) approach to tackle these issues. The
constructed economic scenario generation (ESG) models pass the backtests covering the period from the
beginning of 2018 to the end of May 2020, which includes the turbulent situations caused by COVID-19.
Findings – The backtesting covering the turbulent period of COVID-19, along with fan charts and
comparisons on simulated and historical statistics, validates our approach.
Originality/value – This paper is the first one that attempts to generate complex long-term economic
scenarios for a large-scale portfolio from its large dimensional covariance matrix estimated by the orthogonal
ARMA–GARCH model.
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1. Introduction
The outbreak of the coronavirus disease 2019 (COVID-19) in early 2020 has changed the
return connectedness across asset classes (Bouri et al., 2021) and reduced the effectiveness of
many assets in playing the role of safe haven (Ji et al., 2020). Fund managers have been
drifting from high-risk strategies, sectors and countries to low-risk ones (Rizvi et al., 2020).
Their favors on the firmswith lower risk, higher financial flexibility and larger asset sizewere
later reversed, however (Jacob et al., 2021). COVID-19 has also shrunk the global energy
demand and reduced the investments in sustainable development goals (Yoshino et al., 2021).
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The resilience of financial institutions was challenged by COVID-19 as well. Many
financial institutions around the world took prompt actions to maintain their uninterrupted
operations and capital adequacy. The resilience of life insurance companies is particularly
important (to policyholders) since the protections offered by life insurers are usually not
realized until decades later. It is quite possible that life insurance companies would encounter
turbulent situations before their policies mature. Insurance regulators and other stakeholders
of life insurers have thus devised various methods to assess and safeguard the solvencies of
life insurers. For instance, regulators require insurers to establish sufficient reserves for
covering future liabilities and to maintain adequate capital to absorb any unexpected losses.

Assessing the adequacies of reserves and capital is, however, complicated because they
depend not only on the insurer’s investment and business strategies but also on exogenous
economic conditions. Actuarial professions and insurance supervisors have therefore
established models to generate potential economic scenarios of returns on major asset
classes for the usage in solvency assessment. This development could be traced back to the
Report of the Maturity Guarantees Working Party (1980) and subsequent studies by Wilkie
(1986a, 1986b, 1987, 1992, 1995). Similar modeling has been applied to economic variables (e.g.
interest rates and stock returns) in other countries, including Australia (Carter, 1991; Hua,
1994), Switzerland (Metz and Ort, 1993) and South Africa (Thomson, 1994). In 1999, the
AmericanAcademy ofActuaries (AAA) initiated the three-phase economic scenario generation
(ESG) models for reserve adequacy tests and the interest rate risk component (C-3) of the risk-
based capital (RBC) requirements. The Casualty Actuarial Society and the Society of Actuaries
also commissioned an ESG project (Ahlgrim et al., 2004). With the increasing usage of ESG
models, private-sector companies, such as Barrie and Hibbert, entered into the modeling
development. ESGmodels are now a key element of reserve and capital adequacy tests, as well
as an essential tool for measuring and managing market and credit risks (Varnell, 2011).

The key issues in establishing a comprehensive ESG model include how to handle the
large number of risk factors affecting life insurers’ assets and liabilities, how to model the
dynamics of the chosen or derived factors and how to incorporate relations among risk
factors. Tackling the first issue requires reducing themodeling dimension, that is, the number
of risk factors to be modeled. The significance of this issue increases with the number of
economic variables to be included in anESGmodel. Regarding the second issue, the dynamics
of the chosen factors should be able to account for their salient time-series properties, namely,
autocorrelation and volatility clustering. The choice of econometric methods also depends on
the number of factors to be modeled, because including more factors usually makes complex
methods less suitable. The third issue, namely relations among risk factors, may be dealt with
by using correlations or explicit functional relations, with the choice depending on whether
these relations are derived from correlated random shocks or are subject to common factors.

Take the Phase I models for the C-3 component of US RBC as an example. These models
were intended to cover the treasury yields with 10 different maturities (i.e. 10 risk factors)
ranging from three months to 30 years. To reduce the number of risk factors to be modeled,
the responsible task force assumed that the treasury curve was driven by two key rates: a
long-term interest rate and the spread between long- and short-term rates. Changes in these
rates and the volatility of the long rate [1] were thenmodeled, consideringmean reversion and
stochastic variance [2]. The two key rates were endogenous, with additional correlated
random shocks. In the last stage, interpolation formulas were applied to both long and short
rates to construct the yield curve (AAA, 1999).

In this paper, we extend the orthogonal generalized autoregressive conditional
heteroskedasticity (O-GARCH) model developed by Alexsander (2002) to generate extensive,
long-term economic scenarios. The ability of the O-GARCHmodel to estimate and forecast the
high-dimensional, short-term covariance matrix has been studied extensively by academics
and practitioners including Engle (2002), Bystrom (2004), Bredin and Hyde (2004),
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Pesaran et al. (2009) and Lam et al. (2009). However, they focused on estimating and forecasting
the short-term covariance matrix of a portfolio consisting of less than 20 assets [3]. Tomeet the
demand of generating 30 years of scenarios formore than a hundred risk factors for the reserve
and capital adequacy tests of life insurers that can be used by actuaries, regulators, rating
companies and institutional investors, [4] we extend the O-GARCH model to the orthogonal
autoregressive moving-average – generalized autoregressive conditional heteroskedasticity
(ARMA–GARCH) approach in which we employ the ARMA processes to model the dynamics
of the mean terms in addition to using the GARCH processes for those of volatility terms.
No existing literature, regulatory models or ESG papers have previously thought of extending
the O-GARCH method to generating long-term, large-scale economic scenarios.

To tackle the first issue of reducing the modeling dimensions, our orthogonal ARMA–
GARCH approach applies the principal components analysis (PCA) to individual asset
classes in order to extract the common risk factors that affect individual assets within each
class [5]. Factor analysis brings four major advantages. First, it may reduce the modeling
dimension significantly. One yield curve that contains 10 or more risk factors usually can be
represented by three common factors, with little loss in representing the original covariance
matrix. Second, the retrieved common factors are mutually orthogonal, thus avoiding the
multivariate modeling and affording greater flexibility in establishing the time-series models
for individual factors. Third, it enables relations among the risk factors within an asset class
to be captured through common factors. This represents a novelty in the ESG literature and
makes more economic sense than simply using correlated random shocks. Fourth, factor
analysis provides fitness statistics (particularly the percentage of variance explained). The
methods or assumptions of other studies (e.g. assuming yield curves to be driven by two key
rates) provide no such statistics for assessing the model risk.

Without the factor analysis component of our orthogonal ARMA–GARCH approach, the
ESG literature has to impose specific assumptions on individual types of risk factors (e.g. on
the interest rates of various maturities or the returns of individual stocks) to reduce the
modeling dimension. These assumptions are subjective and were not justified (rigorously).
On the other hand, factor analysis imposes no specific assumptions on individual types of
risk factors (at the cost of not being able to interpret the factor scores in many cases), and
renders the goodness-of-fit of the chosen factors (this has not yet been seen in the literature).

Regarding the second issue about modeling factors’ dynamics, we model the dynamics of
the retrieved common factors as the ARMA–GARCH processes.We use the ARMAprocesses
to model the dynamics of the mean terms and the GARCH processes for those of volatility
terms. These processes are widely used in both the literature and practice for their fitting and
forecasting capabilities, robustness in parameter estimation and ease of use. Another rationale
for using GARCH is to capture the “fat tails” of return distributions identified for many
financial time series, [6] which is essential for ESG models to sufficiently reflect tail risks in
simulated scenarios. Although the ARMA–GARCH is well recognized, no ESG papers (except
that someWilkie models employAR(1) modeling) employ this general modeling approach but
resort to specific functions without providing statistical justifications and goodness-of-fit.

The next step is constructing the covariance matrix of the common factors to incorporate
the correlations across asset classes into the ESG models. In particular, we let the simulated
common factors have the same correlation structure as historical ones. This can be achieved
by applying Cholesky or spectral decomposition to the sample covariance matrix of common
factors (see Glasserman, 2004). This step indicates that we model the relations among asset
classes by correlated random shocks after modeling the relations within asset classes by
common factors. In the last step, we utilize the factor loadingmatrices to recover the economic
variables from the simulated common factors.

To illustrate this concept, we apply the orthogonal ARMA–GARCH approach to
constructing one set of ESG models for the usage in assessing a life insurer’s long-term
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solvency. We also construct preliminary backtesting on representative risk factors of the
ESG models. The backtests cover the period from the beginning of 2018 to the end of May
2020 which includes the turbulent situations caused by COVID-19. The ESG models
constructed using the orthogonal ARMA–GARCH approach pass the backtest. Furthermore,
the fan charts of the representative risk factors demonstrate that our simulated scenarios
cover what happened in the backtesting period. Therefore, our proposedmethod is new to the
literature, capable of generating extensive economic scenarios, innovative in modeling
relations among vast economic variables and supported by backtesting.

The remainder of this paper is organized as follows. In Section 2, we delineate the
orthogonal ARMA–GARCH approach and relevant statistical methods such as PCA, ARMA
and GARCH. In Section 3, we provide an illustrative application of our approach to
constructing models for generating long-term economic scenarios. The case presented covers
four asset classes with 110 risk factors that have different sampling periods and frequencies.
To further validate the orthogonal ARMA–GARCH approach, we conduct backtesting over
the recent volatile period and report the results in Section 4, in addition to the comparisons
between historical and simulated descriptive statistics as well as the fan charts of
representative risk factors. Section 5 concludes this paper and discusses future extensions.

2. Orthogonal ARMA–GARCH approach
The idea of coupling factor models with GARCH has existed for three decades. For instance,
Engle et al. (1990) proposed a CAPM-based framework in which the volatilities and
correlations among individual asset returns were generated using the univariate GARCH
variance of market returns. This is essentially a one-factor model that reduces the modeling
dimensions from dozens to one. To overcome the difficulties in multivariate modeling, Ding
(1994) suggested the use of PCA with GARCH models but did not address the curse of
dimensionality, because he retained all retrieved factors. It was Alexander (2000, 2001, 2002)
who advocated retaining only a few components to reduce the number of risk factors to be
modeled. These papers fit the GARCH (1, 1) models to all retained components.

We generalize Alexander’s modeling to establish the ESG models for the long-term
solvency assessment and risk management of life insurers. First, the scenarios generated for
the long-term assessment should consider both the conditional means and conditional
volatilities of risk factors. Second, the ARMA(p, q)-GARCH(m, n) models are used to capture
the dynamics of retrieved common factors rather than imposing the universal GARCH(1, 1)
models. Third, we expand the modeling to broad asset classes covering the government
bonds of seven countries, eight equity indexes, seven exchange rates, rental incomes of office
buildings in three metropolitan areas and real estate price indices in six regions. Each type of
asset classes has its own sampling period and data frequency. Finally, we validate a part of
these ESG models through backtesting in addition to fan charts and comparing simulated
descriptive statistics with historical ones.

The first procedure is conducting the stationarity checks as in most time-series analyses.
We then perform the factor analysis on the resulted risk factors of individual asset classes [7]
to extract the common factors that represent the original set of risk factors with a predefined,
acceptable loss of information. Employing PCA to retrieve the common factors that are
mutually orthogonal enables us to apply univariateARMA–GARCHmodels to these retrieved
factors, and thus adequately capture the time-varying conditionalmeans and volatilities of the
individual components. The dynamics of these components characterize the changes in the
risk factors of an asset class that are driven by common, fundamental economic factors.
Relations among asset classes are incorporated at a later stage using a correlationmatrix of all
components, implying that the relations are caused by correlated random shocks. In the final
stage, we reconvert the simulated correlated common factors to risk factors so as to depict the
possible scenarios for future price changes in the major assets held by a life insurer.
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2.1 Stationarity checks on risk factors
Let xi;t denote an observed variable associated with asset i (e.g. stock price, interest rate,
foreign exchange rate, rental income and real estate price) at time t (t 5 1, 2, . . ., T). We
utilize the augmented Dickey-Fuller (ADF) test of unit root to test whether xi;t is stationary.
Since the distribution of ADF statistics depends on the assumptions about the underlying
process and the estimated regression, we consider the following alternative regressions for
each variable i:

Δxt ¼ αþ βt þ γxt−1 þ
Xp

i¼2

δi�1Δxt−iþ1 þ εt (1)

Δxt ¼ αþ γxt−1 þ
Xp

i¼2

δi�1Δxt−iþ1 þ εt (2)

Δxt ¼ γxt−1 þ
Xp

i¼2

δi�1Δxt−iþ1 þ εt (3)

where α is a constant, β denotes the coefficient on a time trend, γ represents the
autoregression coefficient and p indicates the lag order of the autoregressive process. Eqns
(1)–(3) differ from one another in the assumption about whether a deterministic time trend
or an intercept is included in the regression.

We employ the following procedure to conduct the ADF test (see Figure 1).
We first check whether we can reject the null hypothesis of γ 5 0 with regard to

Eqn (1). The rejection means the time series is stationary; otherwise we proceed to check
whether a time trend exists (i.e. whether β5 0). The rejection of the null hypothesis that β5 0
indicates non-stationary, and we need to take the first-order difference on x or calculate the
log return of x for further analyses. The non-rejection of the null hypothesis β5 0, on the other
hand, indicates that we need to delete the time trend term and proceed to Eqn (2).

For Eqn (2), we again check whether we can reject the null hypothesis of γ 5 0 first. The
rejection means that the time series is stationary, while a non-rejection calls for the test on
whether the intercept term differs from zero significantly or not (i.e. whether α 5 0). The
rejection of the null hypothesis that α5 0 implies non-stationarity; we need to take the first-
order difference on x or calculate the log return of x and start over the procedure. Otherwise,
we delete the intercept term and proceed to Eqn (3) for further hypothesis testing.

Then similarly, we check whether we can reject the null hypothesis of γ 5 0 for Eqn (3)
first. The rejection means the time series is stationary, while a non-rejection indicates the
necessity of rechecking the stationarity after taking the first-order difference on x or
calculating the log return of x. We repeat the above procedure and take higher orders of
differencing until the resulted time series is stationary.

2.2 Factor analysis
We conduct factor analysis on individual groups of the variables that have gone through the
above stationarity-check procedure. Factor analysis postulates that each observed variable
(i.e. risk factor) is linearly dependent on one or more common factors and one specific factor.
Common factors are unobservable drivers influencing more than one risk factor, whereas
specific factors are latent idiosyncratic drivers influencing individual risk factors.

Because our aim is to find the minimum number of common factors necessary to account
for the desired amount of variance in the original set of variables, we adopt PCA to obtain the
factor solutions [8]. PCA defines principal components as the linear combinations of the
original risk factors; conversely, the risk factors are also linear combinations of the principal
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components. The principal components can account for the total variance, or a part thereof,
when some components are removed. Another advantage of using PCA is that it requires
neither a distribution assumption for the data nor the advance determination of the number of
common factors (Tsay, 2005). Third, the extracted principal components are mutually
orthogonal, which is critical for modeling their dynamics individually.

LetXt be the vector of xi;t with mean μand covariance matrix Σ. Assume thatXt is linearly
dependent on m common factors ft and k specific factors εt (where m < k) as follows:

Xt � μ ¼ Lft þ εt;

where L is the ðk3mÞmatrix of factor loadings [9].

The underlying assumptions of the orthogonal factor model are: EðftÞ ¼ 0, Eðftf 0
t Þ ¼ Im,

Eðftε0tÞ ¼ 0 and εt is a multivariate normal distribution with Eðεtε0tÞ ¼ D, where Im is an
ðm3mÞ identity matrix and D is a diagonal matrix. Consequently, the ðk3kÞ covariance
matrix Σ of the observed variables can be expressed as follows:

Σ ¼ LL
0 þ D:

Figure 1.
Procedure to conduct

ADF tests
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We may thus regard LL
0
as an approximation of the original covariance matrix, namely,

Σ≈LL
0
:

The approximation may be justified by a high cumulative proportion of the total sample
variance explained by LL

0
such as 90% or 95%. Most statistics software packages can be

used to estimate Eqn (1) with the procedure described in the following.
2.2.1 Extracting factors through PCA.Let ðbλ1; be1Þ; . . . ; ðbλk; bekÞwithbλ1 ≥bλ2 ≥ . . . ≥bλk be

pairs of eigenvalues and eigenvectors of the sample covariance matrix bΣ. bΣ can be
decomposed through spectral decomposition as follows:

bΣ ¼
Xk

i¼1

bλibeie0i : (4)

Sorting the factors by eigenvalues and retaining the firstm factors, we can express thematrix
of estimated factor loadings as follows:

bL ¼ ½ ffiffiffiffibλ1q be1j ffiffiffiffibλ2q be2j . . . �� ffiffiffiffiffibλmq bem�:
Note that the dimension of modeling is reduced from k to m once we determine how many
factors to be retained.

2.2.2 Selecting factors. A critical decision in factor analysis is how many common factors
should be retained, which involves a trade-off between the model parsimony and plausibility
(Fabrigar et al., 1999). One well-known criterion is to retain the common factors with
eigenvalues greater than one. Another useful though informal guideline is to examine the
scree plot depicting the eigenvalues in descending order (Fabrigar et al., 1999; Johnson and
Wichern, 2007; Tsay, 2005). Formany, the bottom line in determining the number of factors to
retain is the cumulative proportion of the total sample variance explained by these factors.
Because ESGmodels should capture most of the variance in the observed variables to ensure
that the generated scenarios have a high probability of covering future scenarios, a high
threshold such as 95% is desirable.

2.2.3 Rotating factors. For any given solution with more than one factor, there exist an
infinite number of alternative representations of the factors that have the same ability to
explain the covariance (or correlation) matrix of the data. To see this, let P be any ðm3mÞ
orthogonal matrix satisfying PP

0 ¼ P
0
P ¼ I. Also let L* ¼ LP and f *t ¼ P

0
ft. Then the factor

model in Eqn (1) can be written as:

Xt � μ ¼ Lft þ εt ¼ LPP
0
ft þ εt ¼ L*f *t þ εt:

This means that L* and f *t can be used in place of L and ft to form another factor
representation for Xt, and the estimated covariance (or correlation) matrix remains
unaltered.

The non-uniqueness of the factor representation provides the underlying reason for the
factor rotation. The researcher may select a solution, with the common factors having
reasonable interpretations. More specifically, the original estimated factor loadings Lmay be
rotated to have a simpler structure in which each measured variable loads highly on a subset
of the common factors and has small to moderate loadings on the remaining factors.

There are two types of rotation. Orthogonal rotations constrain the factors to be
uncorrelated, while the oblique rotations permit the factors to be correlated with one another.
We adopt the popular varimax orthogonal rotation (Kaiser, 1958) that comes with most
statistics software packages in this paper.
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2.2.4 Calculating factor scores. A factor score represents a composite of all variables’
loadings on a given factor (Hair et al., 2010). More specifically, the tth factor score vector is
given by

bf t ¼ bL0bΣ−1ðXt � μÞ; t ¼ 1; 2; . . . ; T: (5)

The resulting factor scores can then be used to represent the factors in subsequent analyses.
Dimension reduction is largely accomplished by modeling with the factor scores

rather than the original risk factors. Note that the original risk factors Xt is a k-by-1 vector,
while factor scores bf t is m-by-1. The number of models to be constructed is thus reduced
from k to m. Take the US risk-free rate curve as an example; k is probably 30 but m is
usually 3 representing the level, slope and curvature factors. Another advantage of
modeling factor scores instead of the original risk factors is that common factors are
mutually orthogonal so that the modeling may proceed in a univariate setup for each
common factor rather than in a multivariate framework that is usually extremely difficult
with three or more variates.

2.3 ARMA–GARCH modeling
In the third stage of the O-GARCHmethodology, the time series of the estimated factor scores
aremodeled individually.We apply univariate ARMA–GARCHmodels to the factor scores of
individual common factors. For a common factor bf t, a general ARMA(p, q)–GARCH(m, n)
model takes the following form:

bf t ¼ cþ
Xp

i¼1

wi
bf t−i þ εt �

Xq

j¼1

θjεt−j; where εt ¼ σtzt; zt ∼Nð0; 1Þ; (6)

and

σ2
t ¼ α0 þ

Xm
k¼1

αkε2t−k þ
Xn

l¼1

βlσ
2
t−l ; where α0 > 0; αk; βl ≥ 0: (7)

This model captures the possible presence of serial correlations and conditional
heteroscedasticity of the factor scores. For the sake of stationarity, the coefficients of the
lagged factors in the mean equation must have the sum less than 1; the same applies to the
coefficients of lagged errors and lagged conditional variances in the variance equation.
We employ the maximum likelihood estimation in general; the least squares method is used
only when the conditional heteroscedasticity is absent [10].

For the estimation procedure, we first conduct the Ljung–Box Q and Ljung–Box Q2 tests
to determine whether the serial correlations and conditional heteroscedasticity, respectively,
are present. If they are detected, we use the partial autocorrelation function (PACF) to
determine the order of serial correlation and the PACF on the squared residuals to determine
the order of the variance equation. Third, we use the Ljung–Box statistics to verify the
specification suitability. If several models pass the Ljung–Box test, the Bayesian information
criterion (BIC) is used to select the “optimal” one, with the Akaike information criterion (AIC)
being used as an auxiliary [11]. We depict the above procedure in Figure 2.

2.4 Monte Carlo simulations
2.4.1 Simulating factor scores. The resulting O-GARCH models enable us to simulate factor
scores (~f t ; t ¼ T þ 1; T þ 2; . . . ; T þ H, whereH is the target simulation horizon) that can
then be converted back to risk factors:
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~Xt ¼ xþ bL~f t: (8)

where x is the estimated mean of the risk factors. These scenarios display essential asset risk
properties such as autocorrelations and volatility clustering. They also reflect the relations
among the risk factors within an asset class through the simulated scores of the common
factors associated with the asset class.

2.4.2 Incorporating a covariance matrix across asset classes into simulations. In addition to
capturing the relations within individual asset classes by common factors, we may capture
the relations among the risk factors across asset classes by using the covariance matrix of
historical factor scores. Assume that there are three groups k, l and m of risk factors, for
example, interest rates, stock returns and real estate returns. Let O ¼ ðO1 ; O2; . . . ; OxÞ,
P ¼ ðP1 ; P2; . . . ; PyÞ and Q ¼ ðQ1 ; Q2; . . . ; QzÞ be the common factors extracted
from groups 1, 2 and 3, respectively, where x, y and z indicate the number of common
factors within these three groups. Denote D ðx3yÞ the cross-covariance matrix between O

Note(s): The autocorrelation of residuals may be due to the covariance of residuals. Hence, we

may proceed with GARCH tests and fitting after fitting with ARMA with order T 

Yes

Start

Autocorrelation?

ACF/PACF/Q-stat

No

Yes

N = 0

Autocorrelated Residual2?

ACF/PACF/Q2-stat

Autocorrelated Residual and Residual2?
ACF/PACF/Q2-stat/Q-stat

No

YesAutocorrelated 

Residual?

End

Yes

No

ARMA Test

N = N+1

GARCH Test

N > T Note

Yes

No

No

End

The authors conduct ARMA tests first on factors themselves. The residuals of the resulted

ARMA models are then tested for GARCH

Figure 2.
Procedure to determine
the specification of
ARMA(p, q)-
GARCH(m, n)
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and P, E ðx3zÞ the cross-covariance matrix between O and Q and F ðy3zÞ the cross-
covariance matrix between P andQ. Then the covariance matrix of common factors (O, P, Q)
can be represented as

ΣC ¼
0
@ I D E

D
0

I F

E
0

F
0

I

1
A;

in which the transpose of a matrix is denoted with a single quote.
Further letAðk3xÞ, Bðl3yÞ and Cðm3zÞdenote the factor loading matrices of groups 1, 2

and 3, respectively. The full-dimension covariance matrix of the entire system can then be
represented as follows:

X
F
¼

0
@ AA

0
ADB

0
AEC

0

ðADB0 Þ0 BB
0

BFC
0

ðAEC 0 Þ0 ðBFC 0 Þ0 CC
0

1
A; (9)

where AA
0
, BB

0
and CC

0
are the within-group covariance matrices of groups 1, 2 and 3,

respectively; ADB
0
is the cross-group covariance matrix between groups 1 and 2; AEC

0
is the

cross-group covariance matrix between groups 1 and 3; and BFC
0
is the cross-group

covariance matrix between groups 2 and 3.
We use the historical time series of (O, P, Q) to estimate the covariance matrix ΣC as

delineated in the following. Let bΣC denote the estimated covariance matrix and bΣC ¼ GG
0

denote Cholesky decomposition of bΣC : Let Z be a vector of independent standard normal
variables of dimension xþ yþ z; then GZwill be a correlated random vector with covariance
matrix bΣC (Glasserman, 2004). Therefore,GZ has the same dependence structure as that of (O,
P, Q). We thus can generate desirable correlated common factors from Eqns (6) and (7).

2.5 Using a genetic algorithm (GA) to select simulated scenarios
Once we set up an ESG system, we may simulate a vast number of economic scenarios in
minutes. On the other hand, life insurance companies need to conduct company-wide
simulations involving millions of insurance policies. It usually takes two weeks or more for a
large insurer to finish one round of policy-by-policy simulations. We therefore need to
preserve the simulated distributions of risk factors with a much fewer number of scenarios.
For instance, the number of scenarios is indeed merely 200 in C3 Phase I of US RBC (AAA,
1999, p. 7). The number increases to 1,000 in phase II, and remains at 1,000 until now [12].

We adopt a GA to implement the scenario selection. Let fXigNi¼1 be the set of simulated
scenarios in which vector Xi represents the i-th scenario and N denotes the total number of
scenarios. To reduce N to n (e.g. 10,000 to 1,000), there are CN

n possible combinations. It will
take much time and computing power to pick up a smaller set of scenarios that is a good
representation of the original set asN grows and n approachesN=2. GA can be used to solve
such an optimization problem.

A GA uses reproduction and recombination to mimic the process of natural evolution. A
member of a species in the environment represents a solution of the problem, and a generation
of the species represents a population of solutions. The objective value of a solution indicates
the solution’s fitness to the environment. A better fitness will result in a higher probability for
the solution to be chosen as a parent to produce new solutions (offspring) for the next
population (generation). The chosen parents produce offspring through genetic operators
such as crossover and mutation. As this evolving process continues for generations, the
objective value of the solution decreases. The evolution stops when the fitness reaches the
prespecified value or when the evaluation reaches the maximum number of generations. We
depict the procedure of a GA in the following figure (see Figure 3).
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More specifically, Gk ¼ fXnk
i
gn
i¼1

denotes the k-th generation in selecting the set of n

scenarios. Further denote the fitness function f ðGkÞ and gðGkÞ as the operator to produce the
next generation. The algorithm proceeds as in the following steps:

(1) Randomly select n scenarios from the generated N scenarios as the beginning
generation and denote this generation as G0 ¼ fXn0

i
gn
i¼1

.

(2) Calculate the fitness value of the beginning generation and denote it as L0 ¼ f ðG0Þ.
(3) Start the evaluation and denote the evaluation by Gk ¼ gðG0Þ; in which

k ¼ 1; 2; 3; . . . ; K.

(4) Calculate the fitness value of the k-th generation: Lk ¼ f ðGkÞ.
(5) If Lk < L0, then set G0 ¼ Gk, make L0 ¼ Lk and repeat step 3 to produce the next

generation. If Lk > L0, then disregard this generation and use the beginning
generation G0 to produce the next generation by step 3. Repeat this procedure until
k 5 K and obtain G* ¼ arg min

G∈fG0; GKg
½f ðGÞ�.

We set the fitness function f as the accumulated aggregate return of all assets at the end of 30
years. The function of g is set to replace one scenario at a time. We generate 10 sets of G0

randomly as “initial values” and select the best set to avoid the GA being trapped into local
minimums. Although GAs are meta-heuristic and may not find the optimal solution, they
would usually find satisfactory results by experienced researchers.

3. Generating long-term economic scenarios
3.1 Data description
The risk factors to be modeled include eight stock indexes, eight yield curves of government
bonds, seven foreign exchange rates, rental incomes from three metropolitan areas and real
estate price indices in six regions. They reflect the risks faced by a life insurer with significant

Encoding

Initial Population

Selection Crossover Mutation

Optimal Solution

No

Yes

Calculate the Value of 

Fitness Function

Termination 
Condition

Note(s): From a population we calculate the value of the fitness function.  Whenever the value does not 

reach the reaches the pre-specified value, we select parents to perform crossover and mutation to produce 

offspring 

Figure 3.
Procedure of a
genetic algorithm
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international investments. Adequate international investments may improve the investment
efficiency (i.e. the risk–return tradeoff) that is particularly important during the current low
interest rate period. They are essential for the life insurer located in a countrywith inadequate
domestic investment objects, which is the case for many Pacific Basin countries.

Table 1 provides descriptions of these risk factors. All data except for those of real estate
were obtained fromBloomberg [13]. The data frequency of the financial variables is monthly,
while those associated with real estate is quarterly. Table 1 also lists the sampling period and
total number of observations for each risk factor. We further report stationarity test results
on risk factors in Appendix.

We apply the orthogonal ARMA–GARCH approach to the individual groups of stock
indices, exchange rates, real estate price indices and rental income indices. The interest rates

Asset class
Index/
Curve Sampling period (obs)

Number of risk
factors

Number of retained
common factors

Government bonds LIBOR 2001/1–2016/12 (192) 9 12
US 2001/1–2016/12 (192) 10
Euro 2001/1–2016/12 (192) 12
Australia 2001/1–2016/12 (192) 11
UK 2001/1–2016/12 (192) 12
Singapore 2001/1–2016/12 (192) 10
Japan 2001/1–2016/12 (192) 11
Taiwan 1999/3–2016/12 (214) 11 4

Stock index S&P 500 1986/12–2016/12 (361) 1 5
NASDAQ 1986/12–2016/12 (361) 1
EURDJ 50 1986/12–2016/12 (361) 1
Nikkei 225 1986/12–2016/12 (361) 1
KOSPI 1986/12–2016/12 (361) 1
HIS 1986/12–2016/12 (361) 1
TWSE 1986/12–2016/12 (361) 1
MSCI 1986/12–2016/12 (361) 1

Exchange rate (with
respect to USD)

TWD 1999/1–2016/12 (216) 1 5
JPY 1999/1–2016/12 (216) 1
SGD 1999/1–2016/12 (216) 1
KRW 1999/1–2016/12 (216) 1
EUR 1999/1–2016/12 (216) 1
GBP 1999/1–2016/12 (216) 1
AUD 1999/1–2016/12 (216) 1

Real estate price index Taipei 2000Q1–2016Q4 (68) 1 5
New Taipei 2000Q1–2016Q4 (68) 1
Tao Hsin 2000Q1–2016Q4 (68) 1
Taichung 2000Q1–2016Q4 (68) 1
Tainan 2000Q1–2016Q4 (68) 1
Kaohsiung 2000Q1–2016Q4 (68) 1

Rental income index Taipei A 2003Q3–2016Q4 (54) 1 2
Taipei B 2003Q3 – 2016Q4 (54) 1
New Taipei 2003Q3 – 2016Q4 (54) 1

Note(s): We consider four asset classes: government bonds, stock indexes, foreign exchanges and real estate.
Each asset class contains several investment objects such as US and Singapore government bonds or the index
portfolios of Korea’s and Japan’s stock markets. The sampling periods range from 13 years to 30 years with
either quarterly or monthly data. The sample size of the index or curve ranges from 54 to 361. The number of
risk factors is one for each index but greater than one for yield curves. “Number of Retained Common Factors”
indicates the number of retained factors after performing PCA on each asset class. We treat the yields of
Taiwan government bonds as an asset class of its own because of their special role in estimating insurance
policy reserves

Table 1.
Data used in

constructing ESG
models
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of Taiwan constitute a group, while all other interest rates are treated as one group when
applying the orthogonal ARMA–GARCH approach [14]. After conducting the stationarity
checks as depicted in Section 2.1, we model changes in interest rates and log returns of all
other indices [15, 16]. Grouping facilitates the best usage ofmarket data without trimming the
data across groupswhen performing time-seriesmodeling on the common factorswithin each
group. For instance, a large amount of stock data would have been discarded due to the much
less numerous and frequent real estate data if stock and real estate indices had to be modeled
simultaneously. By appropriately grouping risk factors, we need to trim data only in the last
stage of modeling when estimating the correlation matrix of the factor scores across groups.

3.2 Factor analysis results
Table 2 presents some of the results from the eigenvalue analysis. According to the criteria of
eigenvalue being larger than one, 12, two, and one common factors should be selected for the
groups of foreign interest rates, exchange rates and stock indices, respectively. Five common
factors of the stock index group are retained so that the factor models could explain at least
90% of the total (standardized) sample variance. A similar rationale led us to select a five-
factor model explaining 93.3% of the total sample variance for the exchange rate group. An
obvious advantage of adopting factor analysis is that the number of modeling dimensions for
the foreign interest rate group was reduced from 75 to 12. Although other groups have
smaller dimension reduction benefits, factor analysis transforms correlated risk factors into
orthogonal common factors and makes the ARMA–GARCH modeling feasible.

3.3 Time-series models of factor scores
Table 3 presents the estimated time-series models for the factor scores obtained from the
foreign interest rate and stock index groups. Factor 1 of the foreign interest rate group is
serially correlated and conditionally heteroskedastic, while factors 4 and 6 are conditionally
heteroskedastic. We thus model them using ARMA (0, 1)–GARCH(0, 1), GARCH(0, 1) and
GARCH(0, 1), respectively. Other factors are close to the white noise, and therefore no time-
series modeling is necessary. For the stock index group, we employ GARCH(1,1) and
GARCH(0, 2) for factors 1 and 4, respectively, based on the test results for serial correlations

Factor
The group of interest rates outside of Taiwan

1 2 3 4 5 6 7 8 9 10 11 12

Eigenvalue 34.00 8.12 5.46 4.57 3.17 2.81 2.60 1.96 1.83 1.47 1.28 1.15
Variance
explained (%)

45.3 10.8 7.29 6.10 4.22 3.75 3.46 2.61 2.44 1.96 1.71 1.53

Cumulative
variance
explained (%)

45.3 56.2 63.5 69.6 73.8 77.5 81.0 83.6 86.0 88.0 89.7 91.2

Factor
The group of exchange rates The group of stock indices

1 2 3 4 5 1 2 3 4 5

Eigenvalue 4.04 1.00 0.75 0.44 0.31 4.88 0.83 0.72 0.59 0.42
Variance explained (%) 57.8 14.2 10.7 6.28 4.38 61.0 10.4 8.98 7.41 5.21
Cumulative variance
explained (%)

57.8 72.0 82.7 89.0 93.3 61.0 71.3 80.3 87.7 92.9

Note(s): This table contains factor analysis results on foreign interest rates, exchange rates and stock indices.
The first row displays the eigenvalue associated with each retrieved orthogonal factor. The second row
indicates the variance explained by each factor, while the third row shows the accumulated variances of the
second row

Table 2.
Amount of variance
explained by factors
for the groups of
foreign interest rate
changes and log
returns of stock indices
and exchange rates
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and conditional heteroskedasticity. Conversely, factors 2 3, and 5 appear to be the
white noise.

The key property enabling the flexible modeling of individual factors is the mutual
orthogonality of the common factors. Without this property, we would have to employ
multivariate time-series modeling, which would be nearly impossible with four common
factors, not to mention that if factor analysis is not used to reduce the modeling dimension.

3.4 Covariance matrices across risk factor groups
We estimate the correlation matrix of common factors across groups as shown in Table 4.
More specifically, we estimate the correlation matrix ΣC in Section 2.4.2 by trimming
sampling periods and by matching the data frequencies across groups. The sampling period
and frequency are thus reduced to quarterly data from 2003Q3 to 2016Q4 when estimating
the correlation matrix.

Most correlation coefficients are small. Of the few medium-size ones (0.3–0.6), most
represent the correlations among the interest rate changes across countries. For instance,
the correlation coefficient for the first common factor of foreign interest rates and Taiwan
interest rates is 0.452. Some common factors of exchange rates have small to medium
correlation coefficients (�0.441 to 0.268) with common factors of interest rates, which seems
reasonable with regard to the parity relations between such rates. Common factors of
stocks are also correlated to some extent with some exchange rate factors (�0.454 to 0.187).
Real estate prices seem to be affected by local interest rates, and this probably reflects the
(expected) inflation and loan costs of owning real estate.

3.5 Simulation procedures
The first step is to generate correlated innovations across the common factors of different
asset groups using Cholesky decomposition of the estimated ΣC, as explained in Section 2.4.2.

Parameter

Foreign interest rateb Stock indexb

Factor 1 Factor 4 Factor 6 Factor 1 Factor 4
MA(1)-GARCH(0,1) GARCH(0,1) GARCH(0,1) GARCH(1,1) GARCH(0,2)

f1 – – – – –
f2 – – – – –
ψ1 0.1921 (0.0822) – – – –
ψ2 – – – – –
α0 26.5709 (3.7458) 2.6452 (0.3212) 1.5813 (0.2223) 0.3246 (0.1499) 0.3919 (0.0499)
α1 – – – 0.7719 (0.0487) –
α2 – – – – –
β1 0.1615 (0.090) 0.4272 (0.1311) 0.5528 (0.1443) 0.1773 (0.0448) 0.1221 (0.0603)
β2 – – – – 0.2164 (0.0905)
AIC 1202.42 805.51 711.97 1559.02 815.22
BIC 1208.92 808.76 715.23 1566.79 822.99

Note(s): aEach coefficient is shown with its associated t-statistic for the null hypothesis that the estimated
value equals zero
bAny factor not shown was identified as white noise through serial correlation and conditional
heteroskedasticity tests, except for the 11th factor of the foreign interest rate group

Ft ¼ cþPp
i¼1

fiFt−i þ εt þ
Pq
j¼1

ψ jεt−j ; εt−j ∼Nð0; σ2t−jÞ j ¼ 0; 1; . . . ; q

σ2t ¼ α0 þ
Pm
i¼1

αiε2t−i þ εt þ
Pn
j¼1

βjσ
2
t−j ; whereα0 > 0; α; β≥ 0

The above formulas are the general formula for ARMAandGARCH, respectively. The following tables display
the fitting results of ARMA–GARCH on three common factors retrieved from foreign interest rate risk factors
and from stock index risk factors

Table 3.
Estimated ARMA–
GARCH models for
groups of foreign

interest rates and stock
indicesa
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The second step is plugging the correlated innovations into Eqns (6) and (7). The initial values
used are the last observed values of the individual factors and their associated volatilities.
Substituting the resulting~f t into Eqn (8), where bL is obtained byEqn (4), renders ~Xt, the vector
of simulated variables associated with an asset class. We simulate 5,000 scenarios over
a 30-year horizon (i.e. H 5 360) [17].

4. Justifications of simulation results
4.1 Comparisons between historical and simulated statistics
We compare the descriptive statistics of the simulated risk factors with those of historical
values to assess how well our modeling captures the risk factor characteristics. Descriptive
statistics for historical values of a risk factor are estimated from its empirical time series; on
the other hand, we have a simulated risk factor value for each node of each simulated path.
Based on this simulated matrix, we can calculate descriptive statistics using the simulated
values across paths at a given point of time or for the entire matrix. However, neither
resembles a time series. Although a single lengthy series can be simulated, it is unsuitable for
practical solvency assessment. Considering that an ARMA–GARCH model converges to
theoretical means, we decided to compare the descriptive statistics of simulated values across
the 1,000 paths at the end of the simulation horizon with those of the historical series.

The historical and simulated means as well as some percentiles of the major risk factors are
as shown in Table 5. From Table 5a we see that the means of the simulated stock returns are
close to those of the historical returns, and so are the standard deviations. For instance, the
historical mean and standard deviation of the stock index’s annual log return in Taiwan and
Korea are (7.289%, 35.290%) and (6.687%, 27.556%), while the simulated counterparts are
(7.262%, 36.244%) and (6.764%, 28.563%), respectively. The tails of historical and simulated
distributions can also be regarded to be at equivalent levels, although both tails of our simulated
distribution seem to be larger than those of the historical distribution. For example, the 5- and 95-
percentiles of the historical distributions ofNASDAQandEURDJ50 are (�121.879%, 127.094%)
and (�122.001%, 93.266%), while those of simulated distributions are (�120.844%, 138.596%)
and (�99.643%, 108.156%); the 1- and 99-percentiles of the historical distributions versus those
of the simulated ones of S&P 500 and MSCI are (�139.861%, 110.482%) and (�153.159%,
117.923%) vs. (�136.909%, 152.212%) and (�142.125%, 153.213%).

Table 5b has the similar implications as Table 5a. The first two moments of the simulated
log changes of exchange rates are close to those of historical ones, but the simulated tail
percentiles are with smaller ranges than the historical ones. For instance, the 95-percentile
band of historical SGD’s log return is (�33.019%, 29.437%), while the simulated one is
(�31.116%, 29.425%); the 99-percentile band of historical vs. simulated JPY’s log return is
(�85.659%, 91.914%) vs. (�80.527%, 80.781%). We can also see from the two columns right
next toTable 5b that the simulated log changes of a real estate price index and a rental income
index are similar to the historical changes.

These above favorable properties disappear in the cases of interest rate changes. Tables
5c and 5d show that all statistics of simulated changes in interest rates are much smaller than
those of historical interest rate changes. We conjecture that the time-series models reflect the
recent downward trends of interest rates and low interest rate levels to some extent.
Simulated changes of interest rates in the last period of our simulation are thus smaller than
the historical ones.

4.2 Backtesting procedures
The above comparisons on the summary statistics, albeit intuitive, do not tell us whether the
differences between historical and simulated statistics are significant or not. We thus decide
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to apply the three standard backtesting methods to some simulated risk factors [18, 19]. The
methods include the unconditional coverage (UC), independence and conditional coverage
tests. Let rt(t 5 1, 2, . . ., T) be a series of monthly simulated risk factors. The monthly
conditional value at risk (VaR) of a risk factor at the (1�α) confidence level can then be
defined as the solution of Pr½rt < −VaRtjt−1ð1− αÞjFt−1� ¼ α, whereFt−1 stands for the set of
information available at time t-1. Then, ItðαÞ, the indication variable associated with ex post
observation of a (1�α)th percentile VaR exception at time t, may be defined as follows:

ItðαÞ ¼
�
1 if rt < �VaRtjt−1ðαÞ
0 else

:

Under the UC assumption, ItðαÞhas aBernoulli distributionwith probability α. Christoffersen
(1998) provided a likelihood ratio (LR) statistic for the UC test as follows:

LRuc ¼ −2ln
�ð1� αÞT−xαx

�þ 2ln

��
1� x

T

	T−x� x
T

	x


; (10)

where x ¼ PT

t¼1ItðαÞdenotes the number of times that losses exceed VaR. The distribution of
LRUC converges to χ2ð1Þ as T→∞.

For the independence test, we first produced the following table

We thus obtained a two-state Markov chain sample Π ¼
�
π_ 00 π_ 01

π
_

10 π
_

11

�
, where

π_ij ¼ Pr½ItðαÞ� ¼ jjIt−1ðαÞ ¼ i�. Christoffersen (1998) provided the LR statistic for the
independence test as follows.

LRIND ¼ −2ln

��
1� x

T

	T−x� x
T

	x


þ 2ln

�
π
_n00

00 3 π
_n01

01 3 π
_n10

10 3 π
_n11

11

�
; (11)

The distribution of LRIND converges to χ2ð1Þ as T→∞.
Christoffersen (1998) further established a joint test, whereby the tested VaR exhibited a

correct exceedance ratio x=T and the exceedent events were mutually independent. The LR
statistic was LRCC ¼ LRUC þ LRIND, and the distribution of LRCC converged to χ2ð2Þ
as T→∞.

We conducted these tests using the 41 monthly samples from the beginning of 2018 to the
end of May 2020 that are not used for model constructions. More specifically, the one-month
VaR of a risk factor was estimated using the data until the end of 2017, whereas the
exceedance event is verified using the market outcomes starting from the beginning of 2018.
The backtests cover all stock indices, foreign exchange rates and some key rates listed in
Table 1. Rental incomes and real estate prices are not tested because merely nine-quarters of
data can be used for out-of-sample tests.

4.3 Backtesting results
The backtesting results are as shown in Table 6. These demonstrate that the VaRs of risk
factors estimated using the scenarios generated by the orthogonal ARMA–GARCH approach

It ¼ 0 It ¼ 1 Total

It−1 ¼ 0 n00 n01 n00 þ n01
It−1 ¼ 1 n10 n11 n10 þ n11
Total n00 þ n10 n01 þ n11
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11,3

392



Risk factor 1-α (%) T Number of exceptions Consecutive exceptions
UC-test
p-Value

IND-test
p-Value

CC-test
p-Value

S&P500 95 41 4 1 0.2136 0.3449 0.2954
99 41 0 0 0.3640 1.0000 0.6623

NASDAQ 95 41 2 0 0.9713 0.6505 0.9019
99 41 0 0 0.3640 1.0000 0.6623

EURDJ50 95 41 1 0 0.4054 0.8231 0.6899
99 41 1 0 0.4341 0.8231 0.7183

NKY 95 41 2 0 0.9713 0.6505 0.9019
99 41 0 0 0.3640 1.0000 0.6623

KOSPI 95 41 1 0 0.4054 0.8231 0.6899
99 41 0 0 0.3640 1.0000 0.6623

HIS 95 41 0 0 0.0403 1.0000 0.1221
99 41 0 0 0.3640 1.0000 0.6623

TWSE 95 41 0 0 0.0403 1.0000 0.1221
99 41 0 0 0.3640 1.0000 0.6623

MSCI 95 41 4 1 0.2136 0.3449 0.2954
99 41 1 0 0.4341 0.8231 0.7183

NTD 95 41 3 1 0.5230 0.1599 0.3038
99 41 1 0 0.4341 0.8231 0.7183

JPY 95 41 0 0 0.0403 1.0000 0.1221
99 41 0 0 0.3640 1.0000 0.6623

SGD 95 41 1 0 0.4054 0.8231 0.6899
99 41 0 0 0.3640 1.0000 0.6623

KRW 95 41 0 0 0.0403 1.0000 0.1221
99 41 0 0 0.3640 1.0000 0.6623

EUR 95 41 1 0 0.4054 0.8231 0.6899
99 41 0 0 0.3640 1.0000 0.6623

GBP 95 41 2 0 0.9713 0.6505 0.9019
99 41 0 0 0.3640 1.0000 0.6623

AUD 95 41 0 0 0.0403 1.0000 0.1221
99 41 0 0 0.3640 1.0000 0.6623

US3M 95 41 1 0 0.4054 0.8231 0.6899
99 41 1 0 0.4341 0.8231 0.7183

US1Y 95 41 1 0 0.4054 0.8231 0.6899
99 41 0 0 0.3640 1.0000 0.6623

US5Y 95 41 1 0 0.4054 0.8231 0.6899
99 41 0 0 0.3640 1.0000 0.6623

US10Y 95 41 0 0 0.0403 1.0000 0.1221
99 41 0 0 0.3640 1.0000 0.6623

LIBSPT 95 41 1 0 0.4054 0.8231 0.6899
99 41 0 0 0.3640 1.0000 0.6623

AU1Y 95 41 1 0 0.4054 0.8231 0.6899
99 41 0 0 0.3640 1.0000 0.6623

SG1Y 95 41 2 1 0.9713 0.0480 0.1416
99 41 0 0 0.3640 1.0000 0.6623

JP1Y 95 41 3 1 0.5230 0.1599 0.3038
99 41 0 0 0.3640 1.0000 0.6623

TW1Y 95 41 0 0 0.0403 1.0000 0.1221
99 41 0 0 0.3640 1.0000 0.6623

TW5Y 95 41 0 0 0.0403 1.0000 0.1221
99 41 0 0 0.3640 1.0000 0.6623

TW10Y 95 41 0 0 0.0403 1.0000 0.1221
99 41 0 0 0.3640 1.0000 0.6623

Note(s): This table contains the results about unconditional, independence and conditional coverage tests at
95% and 99% significance levels. T indicates the number of backtesting rounds. The number of exceptions
indicates how many times the realized risk factor exceeds the value at risk. Consecutive exceptions indicate
how many times of exceptions happen consecutively

Table 6.
Backtesting results
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pass the backtesting. All nice cases out of 52 cases that do not pass the UC tests are because
the models are too stringent so that exceptions occur. There is merely one case, the one-year
treasury rate of Singapore, that has one consecutive exception out of two exceptions and fails
to pass the independence test at the 5% significance level. All 52 risk factors pass the
conditional coverage tests.
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There are 16 out of 32 exceptions that happened in March 2020, when the worldwide
pandemics caused by coronavirus broke out. The exceptions happened in the 99% VaR of
S&P 500, EURODJ 50, MSCI and 3-month US Treasury rate; the exceptions also occur to the
95%VaR of S&P 500, NASDAQ, EURO STOXX 50, Nikkei 225, MSCI, 3-month US Treasury
rate, 1-year USTreasury rate, 5-year USTreasury rate, 10-year USTreasury rate, LIBOR spot
rate, 1-year Australia Treasury rate and 1-year Singapore Treasury rate. The emergence of
the coronavirus pandemic in February 2020 also caused two exceptions in S&P 500 and
MSCI, which further result in two consecutive exceptions of these two stock indices; one more
exception happened to the 1-year Singapore Treasury rate in April 2020. These results imply
that the capital requirement set at the 95-percentile confidence level may be inadequate, while
the 99.5-percentile should be adequate.

4.4 Fan charts
To further illustrate how our simulated scenarios can cover tail events, we produce the
following fan charts of some stock indices, foreign exchange rates and treasury rates. The
confidence bands produced by our scenarios look to be able to cover out-of-sample
realizations of risk factors (including the pandemic of COVID-19). Such results imply that the
capital requirements based on the high percentiles of our simulated scenarios may be
adequate to cover the potential losses of life insurers resulting from tail events in the future
(see Figures 4 and 5).

Figure 6 also provides explanations for the seemingly poor results of Table 5c. The
treasury rates of the sampled countries during the sampling period exhibit significant to
moderate downward trends. Our time-series models capture such trends, and thus project
the interest rates to be going down. Such with-trends projections work for now, but a to-
be-considered alternative is inserting a mean-reversion component to the interest rate
process.

5. Conclusions and remarks
The resilience of life insurance companies is important to policyholders since the protections
offered by life insurers are usually not realized until decades later. It is quite possible that the
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life insurance companies would encounter turbulent situations such as the COVID-19
pandemic before policiesmature. Since the adequacy of reserves and capital depends not only
on the insurer’s strategies but also on exogenous economic conditions, constructing models
that can generate possible economic scenarios for how major asset prices may change is
essential.
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The key issues in establishing comprehensive ESG models include how to manage the
large number of risk factors involved, how to model the dynamics of the chosen factors
and how to account for the relations among these factors. We propose combining factor
analysis with ARMA–GARCH to address these issues. We apply factor analysis to
individual asset classes to reduce the dimensions (i.e. the number of factors) to be
modeled. This enables us to model the relations among the risk factors within an asset
class by means of common factors, which represents an innovation in the ESG-related
literature and makes more economic sense than the models that merely employ
correlated random shocks. Another benefit of using factor analysis is the availability
of fitness statistics. Moreover, the retrieved common factors are mutually orthogonal,
thus affording great flexibility in establishing the time-series models for individual
factors.

By combining factor analysis with ARMA–GARCH, we can construct the ESG models
that satisfactorily capture the characteristics of numerous risk factors as shown in
Section 3. Therefore, the orthogonal ARMA–GARCH approach is computationally
efficient (modeling fewer factors), econometrically appropriate (providing fitness statistics
as well as using general time-series models) and economically sound (using both common
factors and random shocks). The backtesting performed in Section 4, along with the fan
charts and the comparisons on simulated and historical statistics, further validates our
approach.

We suggest the insurers who adopt our orthogonal ARMA–GARCH approach or others
should reestimate their models periodically and/or after major changes in the market
conditions to maintain the models’ abilities in capturing underlying risks. More specifically,
one should rebuild the ESG models with the considerations of the financial market outcomes
resulting from COVID-19. An automated modeling package can accomplish such updating
timely with low costs.

The orthogonal ARMA–GARCH approach has a greater potential. It can easily
be extended to various asset classes, including alternative investments. It can even
incorporate insurance liability risk factors and facilitate the calculation of economic capital
in a unified framework. It may also be applied to a correlation matrix to better model
correlation dynamics. Many other extensions promise improved risk management of the life
insurer.
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Notes

1. The variance of the spread was assumed to be constant.

2 Therefore, the number of dynamic models was three.

3. The only exception is Lam et al. (2009) in which they use a portfolio of 63 assets. The forecasting
horizons are short-term though: one-quarter and one year.

4. Please note that the asset portfolio held by a life insurer is easily exposed to dozens or hundreds of
risk factors. The number of risk factors for uncertainties about risk-free rates and credit risk
spreads can number up to 50. The number of risk factors underlying a stock portfolio ranges from
one (in a single-factor model such as the capital asset pricing model (CAPM)), three to five (Fama–
Frenchmodels), dozens (when treating the index of each industry as a risk factor), to hundreds (as in
many historical simulation methods used to calculate the VaR). For insurers with major
international investments, the number of risk factors multiplies further.

5. We use PCA and factor analysis interchangeably in this paper.

6. See Poon and Granger (2003) and the studies cited therein.

7. Defining an appropriate asset class for factor analysis involves careful consideration. Asset classes
are usually defined by distinct risk types, such as stock return (price changes and dividend yields),
interest rate (bonds), credit (corporate bonds), foreign exchange rate and real estate return risks
(price changes and rental yields). They may also be defined by geographic areas. Researchers must
examine the characteristics of samples to determine the appropriate classifications.

8. The most widely used methods to estimate parameters are maximum likelihood and principal
component (Johnson and Wichern, 2007).

9. To prevent the factor loading estimates from being influenced by variables with large variances,
one may choose to normalize observed variables first before conducting factor analysis (Johnson
and Wichern, 2007).

10. When there is no conditional heteroskedasticity, both the maximum likelihood estimation and the
least squares methods produce the same estimates, with the latter being much easier to implement.

11. The model with the best BIC value tends to have simpler specifications than the one with the best
AIC, since BIC imposes “penalties” for having more parameters; it is for this reason that we prefer
BIC to AIC.

12. NAIC, https://www.naic.org/documents/cmte_jt_e_a_c3_ag43_exposure_lr027_v190206.pdf.

13. The real estate data were obtained from Cathay Real Estate Company (http://www.cathay-red.com.
tw/about_house.asp).
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14. Our orthogonal ARMA–GARCH approach was initiated in Taiwan and thus pays special attention
to local interest rates.

15. These indices are calculated in terms of local currencies using their month-end closing prices.

16. We consider real estate prices and rents in one country only because insurance regulators usually
impose severe restrictions on overseas real estate investments. They tend to regard the real estate
market to be less efficient than financial markets in terms of liquidity, transaction costs, information
asymmetry and so on.

17. The number “1,000” for the long-term applications refers to the US regulation. In C3 Phase I, the
number of scenarios is indeed merely 200. The number increases to 1,000 in phase II and remains at
1,000 until now. The reason for the seemingly low number of scenarios is the simulation time that
life insurers need to conduct company-wide, policy-by-policy simulations. It usually takes 2 weeks
or more for a large insurer to finish a single round of policy-by-policy simulations.

18. Backtesting is usually done on the value of a portfolio. Since we do not have detailed compositions
about a life insurer’s asset portfolio, we are unable to conduct regular backtesting. Backtesting on
underlying risk factors may signify how our modeling accommodates tail events though.

19. All papers that we cite from page 1 to page 4 do not conduct tests either. Even the most
updated version of ICS 2.0 does not disclose justifications from empirical tests on the shocks
corresponding to a 1-year, 99.5% VaR for individual types of risks. Furthermore, no literature,
regulatorymodels or business models have ever backtested the long-term ESGmodels to the best of
our knowledge.
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Appendix
ADF test results
The following table contains the results of the augmented Dickey-Fuller (ADF) tests on all risk factors.
The test procedure is plotted as in Figure 1 and descriptions of the procedure are in Section 2.1.

Asset class Index/Curve Dif β α p

Government bonds LIBOR LIBSPT 0 0 0 2
LIB3M 1 0 0 0
LIB6M 1 0 0 0
LIB1Y 1 0 0 1
LIB2Y 1 0 0 0
LIB3Y 1 0 0 0
LIB5Y 1 0 0 0
LIB7Y 1 0 0 0
LIB10Y 1 1 1 0

US US3M 1 0 0 1
US6M 1 0 0 1
US1Y 1 0 0 1
US2Y 1 0 0 0
US5Y 1 0 0 0
US7Y 1 0 0 0
US10Y 1 1 1 1
US15Y 1 1 1 1
US20Y 0 1 1 0
US30Y 0 1 1 0

Euro EU3M 0 0 0 2
EU6M 0 0 0 1
EU1Y 0 0 0 1
EU2Y 1 1 1 3
EU3Y 1 1 1 0
EU4Y 1 0 0 0
EU5Y 1 1 1 0
EU7Y 1 1 1 0
EU10Y 1 1 1 0
EU15Y 1 1 1 0
EU20Y 1 1 1 0
EU30Y 1 1 1 0

Australia AU3M 1 1 1 0
AU6M 1 1 1 0
AU1Y 1 1 1 0
AU2Y 1 1 1 0
AU3Y 1 1 1 0
AU5Y 1 1 1 0
AU7Y 1 1 1 0
AU10Y 1 1 1 0
AU15Y 1 1 1 0
AU20Y 1 1 1 0
AU30Y 1 1 1 0

UK GB3M 1 0 0 3
GB6M 1 0 0 3
GB1Y 1 0 0 0

(continued )
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Asset class Index/Curve Dif β α p

GB2Y 1 0 0 0
GB3Y 1 0 0 0
GB4Y 1 1 1 0
GB5Y 1 1 1 0
GB7Y 1 1 1 0
GB10Y 1 1 1 0
GB15Y 1 1 1 0
GB20Y 1 1 1 0
GB30Y 1 1 1 0

Singapore SG3M 1 0 0 1
SG6M 1 0 0 0
SG1Y 1 0 0 0
SG2Y 1 0 0 0
SG5Y 1 0 0 0
SG7Y 1 0 1 0
SG10Y 0 1 1 1
SG15Y 0 1 1 1
SG20Y 0 1 1 0
SG30Y 0 1 1 1

Japan TW3M 1 0 0 0
JP6M 1 0 0 1
JP1Y 1 0 0 0
JP2Y 1 0 0 0
JP3Y 1 0 0 0
JP5Y 1 0 0 0
JP7Y 1 1 1 0
JP10Y 1 1 1 0
JP15Y 1 1 1 0
JP20Y 1 1 1 0
JP30Y 1 1 1 0

Taiwan TW3M 1 0 0 0
TW6M 1 0 0 0
TW1Y 1 0 0 0
TW2Y 1 0 0 1
TW3Y 1 0 0 1
TW5Y 1 1 1 1
TW7Y 1 1 1 1
TW10Y 1 1 1 0
TW15Y 1 1 1 0
TW20Y 1 1 1 0
TW30Y 1 1 1 1

Exchange rate (with respect to USD) NTD 1 0 1 0
JPY 1 0 0 0
SGD 1 0 0 0
KRW 0 0 1 0
EUR 1 0 0 0
GBP 1 0 0 0
AUD 1 0 0 0

(continued )
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Asset class Index/Curve Dif β α p

Stock index SP500 1 0 0 0
NASDAQ 1 0 0 0
EURDJ50 1 0 0 0
NKY 1 0 0 0
KOSPI 1 1 1 0
HIS 0 1 1 0
TWSE 0 1 1 0
MSCI 1 1 1 0

Real estate Price index Taipei 1 1 1 0
NEWTAIPEI 1 0 0 0
TAOHSIN 1 1 1 0
TAICHUNG 1 1 1 0
TAINAN 1 1 1 3
KAOHSIUNG 1 1 1 0

Rental income index TAIPEIA 1 0 0 0
TAIPEIB 2 0 0 7
NEWTAIPEI 1 0 0 0

Note(s): Dif.: difference order
β: indicator function. 1: β≠ 0; 0: β ¼ 0
α: indicator function. 1: α≠ 0; 0: α ¼ 0
p: the optimized lag of Eqns (1)–(3) via SIC (Schwarz information criterion, also known as Bayesian information
criterion (BIC))
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