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前言

譜系網路是演化生物學當中的一個重要工具，它們提供一個操作分類

單元（operational taxonomic units）間關係的圖像化表示法，特別是演化歷

史。在近年的研究當中，許多組合相關的問題諸如：實際數量的計算與漸

近行為的估計已經慢慢被理解，在這篇論文當中，我們將探討在應用上常

見的兩大主要譜系網路：galled trees與 tree­child networks.

首先是 galled trees的部分，在 [BGM20]中，Bouvel等人對 galled trees

實際數量的計算與漸近行為的估計有詳細的討論，然而，在實務上有兩

個常見子類別 ─有 normal與 one­component性質的 galled trees─在這篇研

究當中沒有被探討；在另外一篇研究當中 ( [CZ20])，Cardona跟 Zhang對

galled trees以及上述的兩個子類別在實際數量上都做了詳細的計算，惟漸

近估計的部分有所缺乏。我們將會提出三個類別 galled trees數量的計算公

式並討論他們的漸近表現，對這兩篇研究做出結合與延伸，此外，我們也

會多考慮網點數量，給予漸近分布的結果。

計算具少量網點的 Tree­child networks 已經在許多研究中藉由不同

的方法討論過，舉例來說，tree­child networks 的漸近表現在 [FGM19] 與

[FGM21]二篇論文中已被解出，當葉子數 n趨近於無限大時，具 k個網點

的 tree­child networks的數量會逼近

ck

(
2

e

)n

nn+2k−1.

另一方面，在 [CZ20] 中所提出透過 component graphs 來計算 tree­child

networks 的方式也是有效的，我們延伸這個計算方式來得到更多網點

時的計算公式，並比較先前以不同方式計算出來的結果，此外，透過

component graph的方法也對上述漸近行為提供了更直觀的證明，更進一步

的，透過這個方法可以取得常數 ck 的一般式，即 ck = 2k−1
√
2/k!。

關鍵詞：譜系網路、元件圖、漸近估計
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Preface
Phylogenetic networks have become an important tool in evolutionary bi­

ology; they provide a graphical representation of the relationships between the

operational taxonomic units and thus can be used for visualizing the evolutionary

process. In recent years, many studies on combinatorial questions such as exact

enumeration and asymptotic counting problems have been published for them. In

this thesis, we investigate galled trees and tree­child networks, two classes of phy­

logenetic networks that are important in applications.

For galled trees, exact and asymptotic enumeration has been studied in [BGM20].

However, there are two important subclasses, namely normal and one­component

galled trees which frequently occur in practice and which were not treated in

[BGM20]. On the other hand, in [CZ20], the authors discussed galled trees as

well as normal and one­component galled trees from an enumerative perspective

but provided little asymptotic information. We will combine and continue the two

works by giving for all three classes of galled trees exact formulas and derive the

first order asymptotics of their numbers. Moreover, distributional results of the

number of reticulation nodes will also be considered.

The enumeration of tree­child networks with few reticulation nodes has been

studied in many papers through different approaches. For instance, the asymptotic

counting problem was solved in [FGM19] and [FGM21] where it was shown that

their number has the first order asymptotics:

ck

(
2

e

)n

nn+2k−1,

as the number of leaves n tends to∞, where k is the number of reticulation nodes

and ck > 0 is a constant. Counting tree­child networks via component graphs is

an effective way which was proposed in [CZ20]. We will extend this approach to

ii
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obtain formulas for the number of tree­child networks withmore reticulation nodes

and compare them with the results from previous papers (where such results were

derived with different methods). Moreover, the counting method via component

graphs also gives a more straightforward proof of the above asymptotic result; in

addition, it yields an easy expression for ck, namely, ck = 2k−1
√
2/k!.

Keywords: Phylogenetic networks, component graphs, asymptotic estimate

iii
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Chapter 1

Introduction

1.1 Phylogenetic Trees

Phylogenetic trees are one of the widely­used tools in evolutionary biology

and their combinatorial properties are well­understood; see Figure 1.1 for an exam­

ple. Although this thesis will focus on phylogenetic networks, phylogenetic trees

still play an important role in the following chapters. Thus, we give a rigorous

definition.

Definition 1.1 (Phylogenetic trees). A phylogenetic tree is a planted, binary tree

whose leaves are bijectively labelled by {1, . . . , n}. The set of all phylogenetic

trees with n leaves is denoted by PT n.

Note that phylogenetic trees can be defined more generally, for example, they

can be m­ary or unrooted. However, in this thesis, we use the above definition

since we discuss only rooted, binary trees.

Theorem 1.2. Let Tn be the number of phylogenetic trees with n leaves. Then,

Tn = (2n− 3)!! =
(2n− 2)!

2n−1(n− 1)!
.

1
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1 4 23

Figure 1.1: An example of a phylogenetic tree with n = 4.

Proof. Using the fact that each phylogenetic tree with n leaves has 2n− 1 edges,

one can insert one other leaf into any edge and therefore generate 2n − 1 phy­

logenetic trees with n + 1 leaves. Hence, a phylogenetic tree with n − 1 leaves

generates 2n− 3 different phylogenetic trees with n leaves. Thus,

Tn = (2n− 3)!! =
(2n− 2)!

2n−1(n− 1)!
.

This proves the theorem.

1.2 Rooted Phylogenetic Networks

Rooted phylogenetic networks, or RPNs for short, generalize phylogenetic

trees. More specifically, they contain reticulation nodes that can represent hori­

zontal gene transfer or hybridization in evolutionary biology.

A rooted phylogenetic network is a directed acyclic graph (DAG) without

double edges and the direction of all edges from a unique root to leaves; moreover,

the vertices of such a network can be classified into four types by the in­degree

and out­degree of each node:

(1) A (unique) root with in­degree 0 and out­degree 1;

(2) Tree nodes with in­degree 1 and out­degree 2;

(3) Reticulation nodes with in­degree 2 and out­degree 1;

2
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(4) Leaveswith in­degree 1 and out­degree 0which are bijectively labelled with

labels from the set {1, . . . , n}.

Moreover, an edge (a, b) is a tree edge if b is either a tree node or a leaf and

a reticulation edge if b is a reticulation node.

From the definition, we have a simple result about the relationship of different

types of nodes and edges:

Proposition 1.3. Let N be a rooted phylogenetic network with n leaves and k

reticulation nodes. N has k + n − 1 tree nodes, k + 2n − 1 tree edges and 2k

reticulation edges.

Proof. Let t be the number of tree nodes. By definition, we have t+ n tree edges

and 2k reticulation edges. Observe that a tree node increases the number of leaves

by 1 and a reticulation node decreases the number of leaves by 1; therefore, we

have that 1 + t− k = n from which the result follows.

Clearly, if the number of reticulation nodes of a network equals 0, it is a phy­

logenetic tree. However, the counting problem of networks is much more difficult

compared to the one for phylogenetic trees. To simplify such questions, topologi­

cal constraints are needed which lead to the definition of many subclasses of rooted

phylogenetic networks. In this thesis, we discuss the following two:

Galled trees: A rooted phylogenetic network is called a galled tree if each

biconnected component has at most 1 reticulation node; see Figure 1.2 (a) for an

example. We call the biconnected components with at least three vertices reticu­

lation cycles. For convenience, we use GT n,k to denote the set of all galled tree

with n leaves and k reticulation nodes.

Tree­child networks: A rooted phylogenetic network is called a tree­child

network if every non­leaf node has a child that is not a reticulation node; see Figure

3
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(a)
4 6 5 1 2 3

(b)
3 5 4 2 1 6

Figure 1.2: (a) A one­component galled tree having n = 6 leaves and k = 2
reticulation nodes which is not normal. (b) A normal tree­child network which is
not one­component where n = 6 and k = 2.

1.2 (b) for an example. We use T Cn,k to denote the set of all tree­child networks

with n leaves and k reticulation nodes. Note that GT n,k ⊆ T Cn,k.

Apart from the two network classes above, we use two more constraints that

we found useful in this thesis:

One­component networks: A rooted phylogenetic network is called a one­

component network if the child of each reticulation node is a leaf; see Figure 1.2

(a) for an example. We denote the set of all one­component networks of a class S

of rooted phylogenetic networks by OS .

Normal networks: A rooted phylogenetic network is called a normal net­

work if it is a tree­child network and the two parents of each reticulation node are

incomparable; see Figure 1.2 (b) for an example. We denote the set of all normal

networks of a class S of tree­child networks by NS .

1.3 Previous Results and Purpose of This Work

Phylogenetic trees were already used by Charles Darwin to visualize the

ancestor­descendent relationship among species which was seen as the founda­

tion of evolutionary biology. As our understanding of genes became more clear,

4
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tree­like structures are no longer enough to give an illustration of the evolution­

ary process. As a result, phylogenetic networks became more and more popular

since they allow for a more flexible modeling. Consequently, in addition to their

biological properties, algorithmic, combinatorial and probabilistic properties of

phylogenetic networks have been extensively studied in recent years.

In the paper [BGM20], Bouvel et al. focused on two families of phyloge­

netic networks, namely, level­1 networks (galled trees) and level­2 networks, in

both rooted and unrooted cases. They provided closed formulas of such networks

together with asymptotic estimates of the number of the networks and they fur­

ther gave distributional results of some parameters. Unlike [BGM20] who used

analytic combinatorial tools, Cardona and Zhang counted galled trees in [CZ20]

through an enumerative approach. Moreover, they also considered one­component

and normal galled trees giving closed formula for these two subfamilies of galled

trees, too.

Apart from galled trees, tree­child networks were also discussed in [CZ20].

Cardona and Zhang utilized component graphs and gave an efficient algorithmic

way for computing the number of tree­child networks when the number of leaves

and reticulation nodes are small. They also computed an exact formula for the

number of tree­child networks with 2 reticulation nodes. As for analytic combi­

natorial tools, [FGM19] studied tree­child and normal networks. Fuchs et al. ob­

tained an asymptotic expansion of the number of these two families of networks.

Further in [FGM21], they gave explicit expressions for the exponential generat­

ing functions with a fixed number of reticulation nodes, k, and also computed the

numbers of the two classes of networks for fixed k, where k = 1, 2, 3.

We are interested in both enumerative and asymptotic results for galled trees

and tree­child networks. More precisely, for galled trees, we will review the results

for one­component galled trees and normal galled trees from [CZ20] and then

5
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use similar tools as in [BGM20] to prove asymptotic results and distributional

results for parameters. Next, we will use the approach from [CZ20] to give an

exact formula for the number of tree­child networks with 3 reticulation nodes and

compare it with the one obtained in [FGM21]. Finally, we will show that the

approach from [CZ20] can be used to re­derive the main result in [FGM19]. This

new method will allow us to solve an open problem from [FGM19].

We conclude by giving an outline of this thesis. First, in Chapter 2, we will

explain the methods and theorems which are needed in this thesis; all topics are

accompanied by examples. In Chapter 3, we present our results for galled trees and

its subclasses. In Chapter 4, we focus on tree­child networks. We will show our

enumerative results with few reticulation nodes and then present our proof of their

first­order asymptotics. Finally, we summarize our results and give a conclusion

in Chapter 5.

6
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Chapter 2

Methods

In this chapter, we summarize the methods used in this thesis; the topics are

organized in the following order: some basics on symbolic combinatorics, exact

and asymptotic enumeration, component graphs and Laplace method.

More precisely, symbolic methods for combinatorial objects are discussed in

Section 2.1; they aim to find the relationship between the combinatorial structures

and generating functions that encode their counting sequence. Next in Section 2.2,

we will explain the exact and asymptotic Lagrange inversion formulas, powerful

tools for dealing with generating functions, and combinatorial limit theorems for

discrete sequences of random variables. Then, in Section 2.3 we will describe

the concept of component graphs which was used to count tree­child networks by

Cardona and Zhang. Finally, Section 2.4 introduces the Laplace method which is

an important method in bivariate asymptotics.

Most of the contents of this chapter can be found in [FS09], Section 4.7 in

[SF13] and Section 4 of [CZ20].

7



‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i  U

niv

ers
i t

y

DOI:10.6814/NCCU202200447

2.1 Symbolic Method

Counting discrete structures is one of the pillars of combinatorics. More pre­

cisely, we want to study the number of elements of a fixed size in a combinatorial

class, which is a set of discrete objects. A precise definition is as follows:

Definition 2.1. (Combinatorial class) A combinatorial class is a finite or denu­

merable set of discrete objects on which a size function is defined such that:

(1) the size of an element is a non­negative integer;

(2) the number of elements of any given size is finite.

As a convention, for a class A, the number of elements of size n will be

denoted by An and called the counting sequence for A.

Generating functions are formal power series which encode these counting

sequence as its coefficients. Usually, we will use ordinary generating functions, in

abbreviation, OGFs, for unlabelled classes and exponential generating functions,

EGFs, for labelled ones, their forms are shown below:

A(z) =
∞∑
n=0

Anz
n, OGF for unlabelled class A;

B(z) =
∞∑
n=0

Bn
zn

n!
, EGF for labelled class B.

Since the coefficients of generating functions are usually our focus, we also

introduce a notation to extract coefficients from generating functions, [·], where

one puts the variable to any power in the bracket depending on which term one

wants to extract, i.e.,

[zn]A(z) = An, [zn]B(z) =
Bn

n!
.

For example, in this thesis, the combinatorial classes we will consider are

8
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galled trees with k reticulation nodes, tree­child networks with k reticulation nodes

and some related network classes where the size function of each class will be the

number of leaves of a network.

Another example is the class of phylogenetic trees which we denote by PT .

The size is again the number of leaves and for the exponential generating function

of phylogenetic trees, we have

T (z) =
∑
n≥0

Tn

n!
zn =

∑
n≥1

(2n− 3)!!

n!
zn = 1−

√
1− 2z; (2.1)

see Theorem 1.2.

Finally, two classes, the empty and atomic class, are worth mentioning. An

empty class E is a class having only one object, ϵ, that has size 0. An atomic

class Z also has only one object this time of size 1. Obviously, the corresponding

generating functions are

E(z) = 1, Z(z) = z.

Specification

In order to count the number of objects of a combinatorial class, we usually

need to decompose them and use simpler structures to make the counting feasible.

Then, the construction of the class from these simpler structures will be translated

into different operations on generating functions resulting in an equation satisfied

by the corresponding generating functions. Such a decomposition of a class is

called specification.

Note that we are only concerned with labelled objects; therefore, we consider

labelled constructions. As for unlabelled objects, see [FS09, Part A.I] for more

information.

9
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Sum. The Sum of two classes is analogous with the concept of disjoint union;

thus, in case that the classes have objects in common, we define the sum of two

classes as the union of their duplicates which are given different colors. More

precisely, we have

Definition 2.2. Let B and C be two classes. The sum of B and C, denoted by B+C,

is

B + C = (B)blue ∪ (C)red.

The size of an object in the sum is inherited from their class. Clearly, if

A = B + C, then the counting sequences has the relation

An = Bn + Cn, and therefore A(z) = B(z) + C(z).

That is, the generating function of a sum of two combinatorial classes is the sum

of the corresponding generating functions.

Product. Product is another basic constructions for labelled classes. It con­

sists of tuples of labelled objects, however, we need to relabel them to avoid that

labels are repeated. For this purpose, we define a relabelling function of an object

which is a function for a labelled object that satisfies that for two labels i < j, we

have r(i) < r(j) after relabelling. Now, we can give the definition:

Definition 2.3. Given two labelled objects, β ∈ B and γ ∈ C, the product of β

and γ, denoted by β ⋆ γ, is the set of tuples (rB(β), rC(γ)) where rB and rC are

any pair of relabelling functions so that the intersection of their images is ∅ and

the union of their images is {1, . . . , |β|+ |γ|}.

The product of B and C is then defined by

B ⋆ C =
∪

β∈B,γ∈C

β ⋆ γ.

10
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We now consider the counting sequence of B ⋆ C. Let A = B ⋆ C. Observe

that the counting sequences have the relation

An =
∑

β∈B,γ∈C
|β|+|γ|=n

(
|β|+ |γ|
|β|, |γ|

)
B|β|C|γ|.

Therefore,

A(z) =
∑
n≥0

An

n!
zn =

∑
n≥0

n∑
k=0

1

n!

(
n

k

)
BkCn−kz

n

=
∑
n≥0

n∑
k=0

Bk

k!
zk · Cn−k

(n− k)!
zn−k

= B(z) · C(z).

In words, the EGF of the labelled product is the product of EGFs.

Sequence. The k­th power of B is defined by B ⋆ B · · · ⋆ B with k factors of

B and will be denoted as SEQk(B). The sequence class of B is defined by:

SEQ(B) = E + B + SEQ2(B) + SEQ3(B) + · · ·+ SEQk(B) + · · ·

From the previous discussions, we have that the corresponding generating function

of SEQk(B) is B(z)k. Recall that the empty class, E , has generating function 1.

Hence, if A = SEQ(B), then

A(z) = 1 +B(z)2 + · · ·+B(z)k + · · · = 1

1−B(z)
.

Set. The class SET and SEQ are almost the same with the only difference that

the objects of SET have no order. The k­set of B is defined as SEQk(B)
k!

and will be

denoted as SETk(B). The set class of B is defined by:

11
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SET(B) = E + B + SET2(B) + SET3(B) + · · ·+ SETk(B) + · · ·

The generating function of SETk(B) is B(z)k

k!
and thus the generating function of

A = SET(B) is

A(z) = 1 +B(z) +
B(z)2

2!
+ · · ·+ B(z)k

k!
= eB(z).

We summarize the above constructions and their generating functions into a

theorem, see Theorem II.1 in [FS09].

Theorem 2.4. Let A, B, and C be combinatorial classes and A(z), B(z), C(z)

be their corresponding generating functions. The constructions of sum, labelled

product, sequence and set and the associated operations on EGFs are listed below:

Sum: A = B + C =⇒ A(z) = B(z) + C(z),

Product: A = B ⋆ C =⇒ A(z) = B(z) · C(z),

Sequence: A = SEQ(B) =⇒ A(z) =
1

1−B(z)
,

Set: A = SET(B) =⇒ A(z) = eB(z).

Before we go on to the next topic, let us give some examples.

Example 2.5 (Phylogenetic trees). We can describe the structure of phylogenetic

trees as:

PT = +
PT PT

where the black node represents a labelled leaf and the white nodes represent in­

ternal nodes. Since the order of the trees in the second term is irrelevant, we obtain

12
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the specification:

PT = Z + SET2(PT ). (2.2)

By Theorem 2.4, we can translate (2.2) into

T (z) = z +
T (z)2

2
.

Solving for T (z) we have

T (z) = 1−
√
1− 2z;

see (2.1).Consequently, by the binomial theorem, the n­th coefficient is

Tn

n!
= [zn]1−

√
1− 2z

= [zn]− (1− 2z)
1
2

= −
(

1
2

n

)
(−2)n

= −(−2)n ·
1
2
× −1

2
× −3

2
× · · · × −(2n−3)

2

n!

=
2n

2n
· 1× 3× · · · × (2n− 3)

n!

=
(2n− 3)!!

n!

=
1

n!
· (2n− 2)!

2n−1(n− 1)!
.

which is the same result as in Theorem 1.2.

Example 2.6 (General phylogenetic trees). We can also generalize the concept of

phylogenetic trees by allowing internal nodes to have out­degree at least 2. Denote

by L the class of general phylogenetic trees. The size of an object is again the

number of leaves. We give the construction of general phylogenetic trees below:

13
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L = +
L L

+
L L L

+ · · ·

Note that the order of subtrees is again irrelevant. Thus, we have the specification

L = Z + SET≥2(L). (2.3)

By Theorem 2.4, we can translate (2.3) into an equation for its generating function

L(z):

L(z) = z + eL(z) − 1− L(z).

We reorganize the terms in order to solve this equation,

L(z)− z − 1

2
=

1

2
eL(z)

=
1

2
e

z−1
2 eL(z)−

z−1
2 .

Now define V (z) as the function satisfying V (z) = zeV (z). Then,

V

(
1

2
e

z−1
2

)
= L(z)− z − 1

2

and consequently,

L(z) = V

(
1

2
e

z−1
2

)
+

z

2
− 1

2
.

The function, V , is related to the Lambert W function by V (u) = −W (−z). There­

fore, we can obtain Ln with the help of the Lambert W function.

14
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2.2 Asymptotic Enumeration

In Example 2.5 the EGF has a neat and simple expression which allowed us to

find an exact formula for the number of phylogenetic trees. However, in practice,

such a nice solution is seldomly available, e.g. see Example 2.6. Moreover, even

if we obtain a formula for the counting sequence of a combinatorial class, the

growth behaviour of the counting sequence as n tends to infinity might still not

be clear. Therefore, it is important to have asymptotic tools in order to understand

the growth of combinatorial quantities.

In the following parts, we will introduce the exact and asymptotic Lagrange

inversion formulas which are powerful methods dealing with finding exact formu­

las and asymptotic approximations of counting sequences.

Lagrange inversion formulas

The Lagrange inversion formula relates the coefficients of the compositional

inverse of a function to the coefficients of the powers of the function. In particular,

since the combinatorial structures are often recursively defined, it turns out that

we can often rearrange terms in a specification so that it fits into the setting of the

Lagrange inversion formula.

Theorem 2.7 (Exact Lagrange inversion formula). Let ϕ(z) =
∑∞

n=0 ϕnz
n be a

power series such that ϕ0 ̸= 0. Suppose that a generating function C(z) satisfies

an equation of the form C(z) = zϕ(C(z)). Let f(z) be any power series. Then,

for all integer n, we have

[zn]f(C(z)) =
1

n
[zn−1]f ′(z)ϕ(z)n

15



‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i  U

niv

ers
i t

y

DOI:10.6814/NCCU202200447

Moreover, if f(z) = z, then

[zn]C(z) =
1

n
[zn−1]ϕ(z)n.

We revisit Example 2.5 but this time we will obtain the exact counting for­

mula with the help of the Lagrange inversion formula; this will turn out to be less

computation­intensive compared with the derivation before.

Example 2.8 (Continuation of Example 2.5). The counting sequence of phyloge­

netic trees can also be derived without solving for its exponential generating func­

tion, T (z). We have obtained an equation in terms of T (z) from the specification

of phylogenetic trees:

T (z) = z +
T (z)2

2
.

To bring this equation into the form T (z) = zϕ(T (z)), we rearrange terms which

gives

ϕ(z) =
(
1− z

2

)−1

Since ϕ(z) satisfies ϕ(0) ̸= 0, by the Lagrange inversion formula and the binomial

theorem, we obtain that

[zn]T (z) =
1

n
[zn−1]

(
1− z

2

)−n

=
1

n
[zn−1]

∑
i≥0

(
n+ i− 1

i

)
zi

2i

=
1

n

(
2n− 2

n− 1

)
2−(n−1) =

(2n− 2)!

2n−1(n− 1)!n!
.

We then have Tn = (2n−2)!
2n−1(n−1)!

after multiplying by n!.

To understand the growth of combinatorial quantities, another form of the

Lagrange inversion formula is helpful.

16
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Theorem 2.9 (Asymptotic Lagrange inversion formula). Let ϕ(z) =
∑∞

n=0 ϕnz
n

be a power series such that ϕ0 ̸= 0, ϕn is positive for all n, and ϕ(z) ̸= ϕ0 + ϕ1z.

Moreover, let R > 0 be the radius of convergence of ϕ at 0 and assume that

ϕ(z)− zϕ′(z) = 0 has a solution τ ∈ (0, R). Suppose that a generating function

C(z) satisfies an equation of the form C(z) = zϕ(C(z)). Then, we have the

following:

(i) ρ = τ
ϕ(τ)

is the radius of convergence of C at 0;

(ii) We have C(z) ∼ τ −
√

2ϕ(τ)
ϕ′′(τ)

√
1− z

ρ
as z → ρ;

(iii) We have [zn]C(z) ∼
√

ϕ(τ)
2ϕ′′(τ)

ρ−n
√
πn3

as n → ∞.

Remark 2.10. The relationship between (ii) and (iii) is a result of the so­called

transfer theorems which are used to transfer the asymptotic information around

dominant singularities into asymptotic expansions of the coefficients; see [FS09,

VI.3] for more detail.

Example 2.11 (Continuation of Example 2.8). Recall from Example 2.5 that Tn =

(2n−2)!
2n−1(n−1)!

. Thus, we can estimate the asymptotic growth of Tn directly by Stirling’s

formula. Since

(2n− 2)! =
(2n)!

(2n)(2n− 1)
∼

√
π

2
n− 3

2

(
4

e2

)n

n2n;

2n−1(n− 1)! = 2n−1n!

n
∼

√
2π

2
n− 1

2

(
2

e

)n

nn,

dividing this gives

Tn =
(2n− 2)!

2n−1(n− 1)!
∼

√
2

2

(
2

e

)n

nn−1.

We can also apply the asymptotic form of Lagrange inversion formula. Recall

that ϕ(z) =
(
1− z

2

)−1. Clearly, ϕ satisfies the assumptions of Theorem 2.9 with

17
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R = 2 and the equation ϕ(z)− zϕ′(z) = 0 has 1 as a solution in (0, 2). Thus, by

Theorem 2.9 and Stirling’s formula:

Tn = n! [zn]T (z) ∼
√
2πn

(n
e

)n
· 1
2

2n√
πn3

∼
√
2

2

(
2

e

)n

nn−1.

Example 2.12 (Continuation of Example 2.6). Recall that L(z) satisfies L(z) =

z+ eL(z)−1−L(z) which is not of the form C(z) = zϕ(C(z)). However, L(z) =

V
(

1
2
e

z−1
2

)
+ z

2
− 1

2
and V (z) = zeV (z). Since the latter is of the form C(z) =

zϕ(C(z)), we can find the asymptotics of L(z) via V (z).

First for V (z), we have ϕ(z) = ez which satisfies the assumptions of Theorem

2.9 with τ = 1. Thus, by Theorem 2.9, we have that ρ = 1/e and V (z) ∼ 1 −
√
2
√
1− ez as z → 1

e
. Next, note that 1

2
e

z−1
2 → 1/e when z → 2 log 2− 1. Thus,

as z → 2 log 2− 1,

L(z) = V

(
1

2
e

z−1
2

)
+

z

2
− 1

2
∼ log 2−

√
2 log 2− 1

√
1− z

2 log 2− 1
.

Finally, by the transfer theorems (see Remark 2.10) and Stirling’s formula:

Ln = n! [zn]L(z) ∼
√

4 log 2− 2

2

(
1

e(2 log 2− 1)

)n

nn−1.

Asymptotic distribution of parameters

So far, our generating functions have been univariate with the variable record­

ing the size of the combinatorial objects. Including additional variables in generat­

ing functions, that is, recording other parameters, may give us a more clear picture

of how most of the objects of size n look like.

Example 2.13 (The number of cherries in phylogenetic trees). A cherry in a phy­

18
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logenetic tree is an internal node having two leaves as its children. We will take

the number of cherries as a guiding example in this part. Let z as usual be the

variable that records the number of leaves and x be the additional variable that

records the number of cherries. Since the number of cherries of a tree is the sum

of left and right subtree of the root except when the tree has size 2, we have the

following equation for the bivariate generating function:

T (z, x) = z +
xz2

2
− z2

2
+

T (z, x)2

2
. (2.4)

Under suitable assumptions, if we uniformly and randomly pick an object of

size n, the following theorem shows that the additional parameter is asymptotically

normal distributed. Moreover, the asymptotic mean and variance can be derived

from the theorem as well.

Theorem 2.14. Suppose that C(z, x) is a power series that is the solution of the

equation C = F (C, z, x), where F (C, z, x) satisfies:

(i) F (C, z, x) is analytic in C, z and x around 0,

(ii) F (C, 0, x) = 0,

(iii) F (0, z, x) ̸= 0 and

(iv) all coefficients [znCm]F (C, z, 1) are non­negative.

Assume in addition that the region of analyticity of F (C, z, x) contains non­

negative solutions z = z0 and C = C0 of the system of equations:

C = F (C, z, 1)

1 = FC(C, z, 1)

with Fz(C0, z0, 1) ̸= 0 and FCC(C0, z0, 1) ̸= 0.

19
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If Xn is a sequence of random variables such that E[xXn ] = [zn]C(z,x)
[zn]C(z,1)

, then

Xn is asymptotically normally distributed.

To be more precise, setting

µ =
Fx

z0Fz

,

σ2 = µ+ µ2 +
1

z0F 3
z FCC

(
F 2
z (FCCFxx − F 2

Cx)

−2FzFx(FCCFzx − FCzFCx) + F 2
x (FCCFzz − F 2

Cz)
)
,

where all partial derivatives are evaluated at the point (C0, z0, 1), we have

EXn = µn+O(1) and VarXn = σ2n+O(1)

and if σ2 > 0, then
Xn − EXn√

VarXn

d→ N (0, 1).

Example 2.15 (Continuation of Example 2.13). Rearranging terms in (2.4), we

have

T (z, x) =
z + xz2

2
− z2

2

1− T (z,x)
2

;

that is, F (T, z, x) = z+xz2−z2

1−T/2
. The conditions (i), (ii), (iii) and (iv) in the previous

theorem can be easily checked. Moreover, the system of equations

T = F (T, z, 1)

1 = FT (T, z, 1)

has a solution T0 = 1 and z0 = 1/2. Then after calculations of derivatives and

applying the formulas given in the previous theorem, we have that the number of

cherries in a phylogenetic trees is asymptotically normal with mean ∼ n/4 and

variance ∼ n/16; see [MS00] where this was derived via urn models.
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2.3 Component Graphs and One­component Tree­

child Networks

We saw above that the counting of phylogenetic trees (both exact and asymp­

totically) is relatively easy. On the other hand, due to reticulation nodes, the count­

ing problems become much more difficult for phylogenetic networks. In order to

simplify and overcome these problems, in Section 4 of [CZ20], Cardona and Zhang

used component graphs to decompose a tree­child network into parts. In brief, we

can view a tree­child network as a one­component tree­child network on top with

networks attached below. In this section we will first introduce component graphs

and then recall the counting result for one­component tree­child networks.

Component Graphs

The process of constructing the component graph from a network is as fol­

lows:

Given a network with k reticulation nodes, N , we remove all reticulation

edges turning the network into tree components. Take each tree component as a

vertex of the component graph,C, induced fromN . For each removed reticulation

edge inN , add one edge between the nodes of C which contained the ends of that

reticulation edge; see Figure 2.1 for examples.

From the construction of component graphs, we can easily see that each node

of the component graph has in­degree 2 except the node containing the network

root (having in­degree 0). This property is called indegree constraint in [CZ20].

21



‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i  U

niv

ers
i t

y

DOI:10.6814/NCCU202200447

(a)
4 6 5 1 2 3

(a’)

(b)
3 5 4 2 1 6

(b’)

Figure 2.1: TCNs and their corresponding component graphs.

One­component tree­child networks

One­component tree­child networks aremajor building blocks when counting

via component graphs. Recall that each reticulation node is followed by a leaf in a

one­component networks. Thus, one­component networks arise from component

graphs which just contain a single node. We will now count one­component tree­

child networks.

Theorem 2.16. Denote by OTCn,k the number of one­component tree­child net­

works with n leaves and k reticulation nodes. Then, we have

OTCn,k =

(
n

k

)
(2n− 2)!

2n−1(n− k − 1)!
.

A reticulation node is inserted into a network by selecting 2 tree edges (choos­

ing identical edges is allowed) and then adding a node to each edge which is the

starting point of a reticulation edge.

Note that for N , a one­component tree­child network, we can remove all

22
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reticulation nodes and edges attached to them so that we obtain a corresponding

tree, T , of N where T has some degree 2 nodes. Hence, those degree 2 nodes

form a map for us to insert reticulation nodes. In other words, any one­component

tree­child network can be obtained from a phylogenetic tree after some reticulation

insertions.

However, there is the question of whether we can have the same networks

after inserting reticulation nodes into different trees. To answer this we give a

lemma below. For convenience, we use A ⊆ {1, . . . , n}, for a subset of labels

of leaves below reticulation nodes, and N ⊕ A to represent all of the possible

networks after inserting the nodes in A.

Lemma 2.17. Let T1, T2 be two phylogenetic trees on A ⊆ {1, · · · , n} and B ⊆

{1, · · · , n} \ A. (T1 ⊕B) ∩ (T2 ⊕B) ̸= ∅ if and only if T1 = T2.

Proof. The “if” part is trivial.

Suppose that T1 ̸= T2. Then there exists a node, say u, in T1 such that the set

of leaves below u is different from the corresponding set of leaves in T2. Given

N1 ∈ T1 ⊕ B, let Cu be the set of leaves below u in N1. If Cu appears in N2 ∈

T2 ⊕ B, then Cu
′ appears in both T1 and T2 where Cu

′ is the set Cu with the

leaves below reticulation nodes removed and we have a contradiction. Therefore,

(T1 ⊕B) ∩ (T2 ⊕B) = ∅.

Now, we can give the proof of the theorem:

Proof of Theorem 2.16. Let N be a one­component tree­child network with n

leaves and k reticulation nodes. We know that N can be generated from one of
(2(n−k)−1)!

2n−k−1(n−k−1)!
phylogenetic trees. From Proposition 1.3, we have that such a tree

has 2(n− k)− 1 tree edges.

To perform our first reticulation node insertion, we can choose one of(
2(n−k)−1

2

)
pairs of distinct edges or one of 2(n− k)− 1 identical edges. In total,

23
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we have

(
2(n− k)− 1

2

)
+ 2(n− k)− 1 =

(2n− 2k − 1)(2n− 2k)

2

ways and the number of tree edges is increased by 3. Here, note that the tree edges

below reticulation nodes cannot be used to perform reticulation insertion (other­

wise we would violate the one­component property). Continuing with the reticu­

lation node insertion step by step, we have that there are (2n−2k+2i−3)(2n−2k+2i−2)
2

ways to perform our i­th reticulation insertion.

Moreover, there are k labels to be assigned to each reticulation which can be

done in
(
n
k

)
ways.

Therefore, the number of one­component tree­child networks with n leaves

and k reticulation nodes equals to:

(
n

k

)
·

k∏
i=1

(2n− 2k + 2i− 3)(2n− 2k + 2i− 2)

2
· (2(n− k)− 1)!

2n−k−1(n− k − 1)!

=

(
n

k

)
(2n− 2)!

2n−1(n− k − 1)!
.

This concludes the proof.

2.4 Laplace Method

The Laplace method is a powerful tool when estimating sums. The method

is centered on the following threes steps:

• Restricting the range so that it contains the largest terms.

• Approximating the terms and bounding the tails.
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• Approximating by an integral, extending the range and bounding the new

tails.

We will explain this via an example, namely, we will apply the Laplace

method to estimate the number of one­component tree­child networkswithn leaves.

Recall that the number of one­component tree­child network with n leaves and k

reticulation nodes is

OTCn,k =

(
n

k

)
(2n− 2)!

2n−1(n− k − 1)!

and hence

OTCn =
n−1∑
k=0

(
n

k

)
(2n− 2)!

2n−1(n− k − 1)!

=
n!(2n− 2)!

2n−1

n−1∑
k=0

1

k!(n− k)!(n− k − 1)!
.

Separating the above expression into two parts, the estimate for the coefficient in

front of the summation can be derived from Stirling’s formula; for the second part,

we will use the Laplace method.

First, for n!(2n−2)!
2n−1 , Stirling’s formula gives

n!(2n− 2)!

2n−1
∼

√
2π

(
2

e3

)n

n3n−1.

Second, set

S :=
n−1∑
k=0

1

k!(n− k)!(n− k − 1)!
=

n−1∑
k=0

ak(n)

whose asymptotics will be derived by the steps above.

First, to restrict to the range that contains the largest terms, we observe from
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the ratio of consecutive terms that 1
k!(n−k)!(n−k−1)!

is increasing for k ≤ n−
√
n+ 1

and decreasing for k ≥ n−
√
n+ 1. Thus, we need to restrict k near n−

√
n+ 1.

Next, setting k = n−
√
n+ x and expanding, we have

ak(n) =
1

2π
√
2eπ

n− 1
2 e2

√
n
( e
n

)n
· e(−

13
6
− 3

2
x−x2)n−1/2+(−1− 7

4
x2− 1

3
x3)n−1+O

(
1+x4

n3/2

)
.

where x = o(n).

Observe from the equation above that for x = O (nα) with n
1
4 ≤ nα ≤ n

1
3 ,

ak(n) affects the asymptotics and is exponentially small outside that range. Thus,

picking α = 3/10, we have

ak(n) =
1

2π
√
2eπ

n− 1
2 e2

√
n
( e
n

)n
e
− x2√

n

(
1 +O

(
1 + |x|3

n
+

|x|√
n

))
=

1

2π
√
2eπ

n− 1
2 e2

√
n
( e
n

)n
e
− x2√

n

(
1 +O

(
1

n
1
10

))
. (2.5)

uniformly in x = O
(
n3/10

)
.

Now, we consider

S =
∑

|x|≤n3/10

1

k!(n− k)!(n− k − 1)!
+

∑
|x|>n3/10

1

k!(n− k)!(n− k − 1)!

The tail
∑

|x|≥n3/10
1

k!(n−k)!(n−k−1)!
is exponentially small with respect to the former

term. Hence, we obtain that

S ∼ 1

2π
√
2eπ

n− 1
2 e2

√
n
( e
n

)n ∑
−n3/10≤x≤n3/10

e−x2/
√
n

(
1 +O

(
1

n
1
10

))

Finally, since e−x2/
√
n is also exponentially small, we add back the tail for

e−x2/
√
n and approximate the sum by an integral, that is,
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S ∼ 1

2π
√
2eπ

n− 1
2 e2

√
n
( e
n

)n ∫ ∞

−∞
e−x2/

√
n

(
1 +O

(
1

n
1
10

))
dx

∼ 1

2π
√
2e

n− 1
4 e2

√
n
( e
n

)n(
1 +O

(
1√
n

))
.

Overall, we have that

OTCn ∼ 1

2
√
e
n−5/4e2

√
n

(
2

e2

)n

n2n;

see Theorem 2 in [FYZ21].
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Chapter 3

Galled Trees

In this chapter, we will study the class of galled trees. This family was dis­

cussed both in [BGM20, Section 4] and [CZ20, Section 3]. In the former paper,

the authors used the symbolic method as well as analytic tools to derive not only an

exact formula for the number of galled trees but also the asymptotic growth term

and distributional results (these results will be reviewed in Section 3.1 below). In

the later one, the authors counted the number by relating galled trees to ordered

trees and using leaf insertions. Moreover, they considered two additional families

namely, normal and one­component galled trees. We list their counting formulas

for each class: denote by gn andmn the number of galled trees and normal galled

trees, respectively, and by cn,k denote the number of one­component galled trees

with k reticulation nodes. We have

gn =
∑

(k2,k3,··· ,kn)∈A

(n+ k2 + · · ·+ kn − 1)!3k2+k34k4 · · ·nkn

k2!k3! · · · kn!2k2+k3+···+kn
;

mn =
∑

(k2,k3,··· ,kn)∈A

(n+ k2 + · · ·+ kn − 1)!1k32k4 · · · (n− 2)kn

k2!k3! · · · kn!2k2+k3+···+kn
;

cn,k =

(
n

k

)
1

2n+k−1

k∑
j=0

(−1)k−j

(
k

j

)
j!(2n+ 2j − 2)!

(2j)!(n+ j − 1)!
,
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where A = {(k2, k3, · · · , kn) | n = 1 + k2 + 2k3 + · · ·+ (n− 1)kn; ki ≥ 0}.

The formulas given by [CZ20] depend on solving an integer partition prob­

lem. On the other hand, this is not needed in [BGM20]. Thus, we think that

the symbolic method is more flexible and in addition also gives asymptotic re­

sults. Hence, we will review the study done in [BGM20] as a warm­up and then

apply the method to the two subclasses from [CZ20] which were not considered

in [BGM20]. We conclude with some numerical results in Table 3.1.

n gn mn cn

1 1 1 1
2 3 1 3
3 36 6 27
4 723 69 399
5 20280 1050 8205
6 730755 20025 216315

as n → ∞ h1 ≈ 0.1339 h1 ≈ 0.1802 h1 ≈ 0.2706

∼ h1h
n
2n

n−1 h2 ≈ 2.9430 h2 ≈ 1.5440 h2 ≈ 2.1442

Table 3.1: gn, mn and cn are the number of galled, normal and one­component
galled trees with n leaves, respectively.

3.1 Review: Galled Trees

Exact and Asymptotic Enumeration

We start with the specification of galled trees. Since each biconnected com­

ponent of a galled tree has at most one reticulation node, we observe that each

biconnected component consists either of a single edge or of tree node on top and

a reticulation node at the bottomwith two node­disjoint paths from top to bottom (a

reticulation cycle). Also, recall that there are no parallel edges; thus, the two paths

contain at least one other node. Hence, galled trees can be classified as follows:
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(1) A single leaf;

(2) The tree node below the root is not part of a reticulation cycle;

(3) The tree node below the root is at the top of a reticulation cycle and one of

the paths to the bottom node has no other node;

(4) The tree node below the root is at the top of a reticulation cycle and both

paths to the bottom node have at least one other node.

The description is shown by the figure:

GT = +

GT GT

+

GT

+

GT

Figure 3.1: The specification of galled trees. A thick path indicates that there is at
least one node on it.

Denote byG(z) =
∑

n≥0 gn
zn

n!
the generating function of galled trees. In (1),

the single leaf is an atomic class having z as its generating function. In (2), there

are two galled trees below the tree node which is translated into 1
2
G(z)2. For (3)

and (4), the thick path is a sequence of galled trees having at least one node and

there is a galled tree at the bottom and hence their translations are G(z)
1−G(z)

· G(z)

and 1
2
( G(z)
1−G(z)

)2 ·G(z) respectively. Therefore, we have

G(z) = z +
G(z)2

2
+

G(z)2

1−G(z)
+

G(z)

2

(
G(z)

1−G(z)

)2

. (3.1)

In order to apply the exact Lagrange inversion formula, we rearrange terms in

(3.1) to obtain the form G(z) = zϕ(G(z)) where ϕ(z) = 1

1− z
2
− z

1−z
− z2

2(1−z)2

. From

this, we obtain the following result:
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Proposition 3.1. For any n ≥ 1, the number gn of galled trees with n leaves is

given by

(2n− 2)!

2n−1(n− 1)!

+
n−1∑
m=0

m∑
i=1

i∑
k=(m−i)⋆

(n+ i− 1)!(n+ k − i− 2)!2k−m

(i− k)!(m− i)!(k −m+ i)!(n−m− 1)!(m+ k − i− 1)!
.

where (m− i)⋆ = max{m− i, 1}.

Proof. By the Lagrange inversion formula, we have that

gn = n![zn]G(z) = n!
1

n
[zn−1]ϕ(z)n = (n− 1)![zn−1]ϕ(z)n.

We first state the binomial theorem which plays an important role:

(1− z)−n =
∑
i≥0

(
n+ i− 1

i

)
zi.

Repeatly using the binomial theorem when expanding ϕ(z)n = (1 − z
2
− z

1−z
−

z2

2(1−z)2
)−n, we obtain that

ϕ(z)n =
∑
i≥0

(
n+ i− 1

i

)
zi

2i

(
1 +

2

1− z
+

z

(1− z)2

)i

=
∑
i≥0

(
n+ i− 1

i

)
zi

2i

i∑
k=0

(
i

k

)(
2

1− z
+

z

(1− z)2

)k

=
∑
i≥0

(
n+ i− 1

i

)
zi

2i
+
∑
i≥0

(
n+ i− 1

i

)
zi

2i

i∑
k=1

(
i

k

)
(2− z)k

(1− z)2k

=
∑
i≥0

(
n+ i− 1

i

)
zi

2i

+
∑
i≥0

i∑
k=1

(
n+ i− 1

i

)(
i

k

)
zi

2i(1− z)2k

k∑
p=0

(
k

p

)
zk−p(2− 2z)p
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=
∑
i≥0

(
n+ i− 1

i

)
zi

2i

+
∑
i≥0

i∑
k=1

k∑
p=0

∑
j≥0

(
n+ i− 1

i

)(
i

k

)(
k

p

)(
2k − p+ j − 1

j

)
zi+k−p+j

2i−p
.

Therefore,

gn = (n− 1)![zn−1]ϕ(z)n

=
(2n− 2)!

2n−1(n− 1)!

+
n−1∑
m=0

∑
i+k−p=m

0≤p≤k≤i, k ̸=0

(n+ i− 1)!(n+ k − i− 2)!2p−i

(i− k)!(k − p)!p!(n−m− 1)!(2k − p− 1)!

=
(2n− 2)!

2n−1(n− 1)!

+
n−1∑
m=0

m∑
i=1

i∑
k=(m−i)⋆

(n+ i− 1)!(n+ k − i− 2)!2k−m

(i− k)!(m− i)!(k −m+ i)!(n−m− 1)!(m+ k − i− 1)!
.

This proves the claim.

Apart from exact enumeration, we can also derive the asymptotic behavior

of gn with the help of the asymptotic form of Lagrange inversion formula and

Stirling’s formula.

Theorem 3.2. The number gn of galled trees with n leaves is asymptotically equiv­

alent to h1h
n
2n

n−1 where h1 =
√
34(

√
17−1)

136
≈ 0.1339 and h2 =

8
e
≈ 2.9430.

Proof. Again, we rewrite (3.1) into the form G(z) = zϕ(G(z)) where ϕ(z) =

(1 − z
2
− z

1−z
− z2

2(1−z)2
)−1. Equivalently, ϕ(z) = 2(1−z)2

(2−z)(z2−3z+1)
which gives that

the pole having smallest absolute value is 3−
√
5

2
. Therefore, ϕ(z) is analytic at 0

and the radius of convergence is R = 3−
√
5

2
> 0.

Considering the equation ϕ(z) − zϕ′(z) = 0 and solving it by Maple, it has

roots 1, 1 ± i and 5±
√
17

4
. Note that 5−

√
17

4
∈ (0, R). Thus, set τ = 5−

√
17

4
. We
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obtain ρ = τ
ϕ(τ)

= 1
8
and

√
ϕ(τ)

2ϕ′′(τ)
=

√
17(

√
17−1)

136
. Therefore, from the asymptotic

form of Lagrange inversion formula,

[zn]G(z) ∼
√
17(

√
17− 1)

136

8n√
πn3

.

Since gn = n![zn]G(z) and the Stirling’s formula gives that n! ∼
√
2πn(n

e
)n, we

have

gn ∼
√
34(

√
17− 1)

136

(
8

e

)n

nn−1

which completes the proof.

Asymptotic distribution of the number of reticulation nodes

We can also incorporate parameters into the above approach. The parameter

we discuss is the number of biconnected components, or equivalently, the number

of reticulation cycles. Multivariate generating functions are used to analyze addi­

tional parameters. Let G(z, x) =
∑ gn,k

n!
znxk where gn,k is the number of galled

trees with n leaves and k reticulation nodes. We can refine the specification of

Figure. 3.1 to obtain for G = G(z, x):

G = z +
G2

2
+ x

G2

1−G
+ x

G

2

(
G

1−G

)2

.

The equation above can be written as follows

G = zΦ(G, x) where Φ(z, x) =
1

1− z
2
− x z

1−z
− x z2

2(1−z)2

.

If all the assumptions of Theorem 2.14 are satisfied, then we obtain that the

number of reticulation nodes is asymptotically normal distributed. This is sum­

marized in the following theorem.
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Theorem 3.3. LetXn be the random variable counting the number of reticulation

nodes in a galled tree with n leaves which is picked uniformly at random. Xn is

asymptotically normal distributed. More precisely, we have

EXn = µXn+O(1), VarXn = σ2
Xn+O(1) and

Xn − EXn√
VarXn

d→ N (0, 1)

where µX ≈ 0.56 and σ2
X ≈ 0.18.

Proof. From the arguments above, Φ(z, x) = (1 − z
2
− x z

1−z
− x z2

2(1−z)2
)−1 is

a function satisfying G = zΦ(G, x). From the definition of the expectation, we

have

E[xXn ] =
∑

xk · [x
k][zn]G(z, x)

[zn]G(z, 1)
=
∑

xk · gn,k
gn

=
[zn]G(z, x)

[zn]G(z, 1)
.

Set F (G, z, x) = zΦ(G, x), we can observe that G = F (G, z, x) holds. The four

hypotheses from of Theorem 3.2 are satisfied.

The system of equations

G = F (G, z, 1)

1 = FG(G, z, 1)

has a solution (G0, z0) with G0 ≈ 0.2192 and z0 =
1
8
such that Fz (G0, z0, 1) ̸= 0

and FGG (G0, z0, 1) ̸= 0.

The result follows now from Theorem 2.14 and the numerical estimates of

µX and σ2
X are computed from the formulas in the theorem.
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3.2 Normal Galled Trees

Exact and Asymptotic Enumeration

The normal property requires that the two parents of each reticulation node

are incomparable. With this additional restriction, we only need to make a small

adjustment to the specification of galled trees. To be more clear, only case (3) in

the specification of galled trees does not satisfy the condition. We still list each

case for normal galled trees and again give a figure for the sake of clarity; the cases

are:

(1) A single leaf;

(2) The tree node below the root is not part of a reticulation cycle;

(3) The tree node below the root is at the top of a reticulation cycle and this

cycle contains two paths to the bottom node where both paths have at least

one other node.

NG = +

NG NG

+

NG

Figure 3.2: The specification of normal galled trees. A thick path indicates that
there is at least one node on it.

Denote by M(z) =
∑

n≥0mn
zn

n!
the generating function of normal galled

trees. Similarly as for galled trees, the three cases can be translated into the gen­

erating functions z, 1
2
M(z)2 and 1

2
( M(z)
1−M(z)

)2 ·M(z), respectively. Therefore, we

have

M(z) = z +
M(z)2

2
+

M(z)

2

(
M(z)

1−M(z)

)2

. (3.2)

35



‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i  U

niv

ers
i t

y

DOI:10.6814/NCCU202200447

Rearranging the equation above into the form M(z) = zϕ(M(z)), we have

ϕ(z) = 1

1− z
2
− z2

2(1−z)2

. Then by Lagrange inversion formula we obtain the following

result.

Proposition 3.4. For any n ≥ 1, the number mn of normal galled trees with n

leaves is given by

(2n− 2)!

2n−1(n− 1)!
+

n−1∑
ℓ=0

ℓ/2∑
j=1

(n+ ℓ− j − 1)!(n+ 2j − ℓ− 2)!

j!(ℓ− 2j)!(n− ℓ− 1)!(2j − 1)!2ℓ−j
.

Proof. Recall thatmn = n![zn]M(z) = (n− 1)![zn−1]ϕ(z)n. Using the binomial

theorem multiple times, we obtain that

ϕ(z)n =

(
1− z

2
− z2

2(1− z)2

)−n

=
∑
i≥0

(
n+ i− 1

i

)
zi

2i

(
1 +

z

(1− z)2

)i

=
∑
i≥0

(
n+ i− 1

i

)
zi

2i
+
∑
i≥0

(
n+ i− 1

i

)
zi

2i

i∑
j=1

(
i

j

)
zj(1− z)−2j

=
∑
i≥0

(
n+ i− 1

i

)
zi

2i
+
∑
i≥0

i∑
j=1

(
n+ i− 1

i

)(
i

j

)
zi+j

2i

∑
k≥0

(
2j + k − 1

k

)
zk

=
∑
i≥0

(
n+ i− 1

i

)
zi

2i
+
∑
i≥0

i∑
j=1

∑
k≥0

(
n+ i− 1

i

)(
i

j

)(
2j + k − 1

k

)
zi+j+k

2i
.

Hence,

mn = (n− 1)![zn−1]ϕ(z)n

=
(2n− 2)!

2n−1(n− 1)!
+

n−1∑
ℓ=0

∑
i+j=ℓ
0≤j≤i

(n+ i− 1)!(n+ 2j − ℓ− 2)!

j!(i− j)!(2j − 1)!(n− ℓ− 1)!2i
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=
(2n− 2)!

2n−1(n− 1)!
+

n−1∑
ℓ=0

ℓ/2∑
j=1

(n+ ℓ− j − 1)!(n+ 2j − ℓ− 2)!

j!(ℓ− 2j)!(n− ℓ− 1)!(2j − 1)!2ℓ−j
.

This proves the claim.

We also derive an asymptotic estimate ofmn.

Theorem 3.5. The number mn of normal galled trees with n leaves is asymptoti­

cally equivalent to h1h
n
2n

n−1 where h1 ≈ 0.1802 and h2 ≈ 1.5440.

Proof. Again, we rewrite (3.2) into the form M(z) = zϕ(M(z)) where ϕ(z) =

(1− z
2
− z2

2(1−z)2
)−1. Equivalently, ϕ(z) = 2(1−z)2

−z3+3z2−5z+2
. The pole of ϕ(z) having

the smallest absolute value is − (108+12
√
177)1/3

6
+ 4

(108+12
√
177)1/3

+ 1 ≈ 0.5466.

Consider the equation ϕ(z) − zϕ′(z) = 0, we solve it with Maple and find

there is a root τ ≈ 0.3583 ∈ (0, R)whereR = − (108+12
√
177)1/3

6
+ 4

(108+12
√
177)1/3

+

1 is the radius of convergence. We obtain that ρ = τ
ϕ(τ)

≈ 0.2383 and
√

ϕ(τ)
2ϕ′′(τ)

≈

0.1274. By Theorem 2.9, [zn]M(z) ∼ 0.1274 . . . (0.2383...)
−n

√
πn3

. Furthermore, using

Stirling’s formula, we have that h1 =
√

ϕ(τ)
ϕ′′(τ)

≈ 0.1802 and h2 = ρ−1

e
≈ 1.5440.

From this theorem, we see that almost all galled trees are not normal.

Asymptotic distribution of the number of reticulation nodes

Similarly, we can consider the number of reticulation nodes as an additional

parameter. LetM = M(z, x) =
∑ mn,k

n!
znxk. From Figure 3.2 we can derive the

refinement:

M = z +
M2

2
+ x

M

2

(
M

1−M

)2

.

To apply Theorem 2.14, rewrite the equation as

M = zΦ(M,x), where Φ(z, x) =
1

1− z
2
− x z2

2(1−z)2

.
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Theorem 3.6. Let Xn be the random variable counting the number of reticula­

tion nodes in normal galled trees with n leaves. Xn is asymptotically normal

distributed. More precisely, we have

EXn = µXn+O(1), VarXn = σ2
Xn+O(1) and

Xn − EXn√
VarXn

d→ N (0, 1)

where µX ≈ 0.23 and σ2
X ≈ 0.05.

Proof. The functionΦ(M,x) is the onementioned above. With the same argument

as in the proof of Theorem 3.3, we have

E[xXn ] =
[zn]M(z, x)

[zn]M(z, 1)
.

Define F (M, z, x) = zΦ(M,x) such thatM = F (M, z, x) holds. The hypotheses

of Theorem 2.14 are easily checked to hold. Also, the system

M = F (M, z, 1)

1 = FM(M, z, 1)

admits a solutionM0 ≈ 0.3583 and z0 ≈ 0.2383.

The result follows now from Theorem 2.14 with µX and σ2
X computed with

Maple.

3.3 One­Component Galled Trees

Exact and Asymptotic Enumeration

Each reticulation node of a network having the one­component property is

followed by a leaf. The description of one­component is the same as the one of

galled trees listed above:
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(1) A single leaf;

(2) The tree node below the root is not part of a reticulation cycle;

(3) The tree node below the root is at the top of a reticulation cycle and one of

the paths to the bottom node has no other node;

(4) The tree node below the root is at the top of a reticulation cycle and both

paths to the bottom node have at least one other node.

The difference is that there is a leaf rather than a network below the reticulation

cycle, see the figure below for the specification.

OG = +

OG OG

+ +

Figure 3.3: The specification of one­component galled trees. Thick paths indicate
that there is at least one node on it and black nodes represent labelled leaves.

Denote by C(z) =
∑

n≥0 cn
zn

n!
the generating function of one­component

galled trees. Similar as for galled trees, each case translates into the generating

functions z, 1
2
C(z)2, C(z)

1−C(z)
· z and 1

2
( C(z)
1−C(z)

)2 · z, respectively.

Thus, we obtain that

C(z) = z +
C(z)2

2
+ z

C(z)

1− C(z)
+

z

2

(
C(z)

1− C(z)

)2

. (3.3)

Proposition 3.7. For any n ≥ 1, the number cn of one­component galled trees

with n leaves is given by

cn =
n−1∑
m=0

m∑
i=0

(m−i)/2∑
ℓ

(−1)m−i−2ℓ(2n+ i− 1)!(2n−m− 2)!n!2m−ℓ−n+1

(2n− 1)!(n−m− 1)!(n−m+ i+ ℓ)!i!ℓ!(m− i− 2ℓ)!
.
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Proof. Note that C(z) = zϕ(C(z)) with

ϕ(z) =
1 + z

1−z
+ z2

2(1−z)2

1− z
2

which is obtained after rearranging (3.3). Applying the binomial theorem several

times, we have

ϕ(z)n =
(1− z + z2

2
)n

(1− z)2n
(
1− z

2

)n
=
∑
i≥0

∑
j≥0

(
2n+ i− 1

i

)(
n+ j − 1

j

)
2−jzi+j

(
1− z +

z2

2

)n

=
∑
i,j≥0

(
2n+ i− 1

i

)(
n+ j − 1

j

)
2−jzi+j

n∑
k=0

(
n

k

)(
−z +

z2

2

)k

=
∑
i,j≥0

0≤ℓ≤k≤n

(
2n+ i− 1

i

)(
n+ j − 1

j

)(
n

k

)(
k

ℓ

)
(−1)k−ℓ2−j−ℓzi+j+k+ℓ.

Hence,

cn = (n− 1)![zn−1]ϕ(z)n

=
n−1∑
m=0

∑
i+k+ℓ=m
0≤ℓ≤k

(−1)k−ℓ (2n+ i− 1)!(2n−m− 2)!n!2i+k+1−n

(2n− 1)!(n−m− 1)!(n− k)!i!ℓ!(k − ℓ)!

=
n−1∑
m=0

m∑
i=0

(m−i)/2∑
ℓ

(−1)m−i−2ℓ(2n+ i− 1)!(2n−m− 2)!n!2m−ℓ−n+1

(2n− 1)!(n−m− 1)!(n−m+ i+ ℓ)!i!ℓ!(m− i− 2ℓ)!
.

This proves the claim.

Our formula is complicated. The result will be more simpler if we utilize cn,k
in [CZ20] and solve it by Maple. This gives
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cn =
n−1∑
k=0

cn,k

=
n−1∑
k=0

(
n

k

)
1

2n+k−1

k∑
j=0

(−1)k−j

(
k

j

)
j!(2n+ 2j − 2)!

(2j)!(n+ j − 1)!

=
n!

2n− 1

n∑
i=0

(
n− 1/2

n− i

)(
1/2− n

i

)
(−1)i.

The asymptotic behaviour of the number of one­component galled trees is

derived in the next result.

Theorem 3.8. The number cn of one­component galled trees with n leaves is

asymptotically equivalent to h1h
n
2n

n−1 where h1 ≈ 0.2706 and h2 ≈ 2.1442.

Proof. Again we rewrite equation (3.3) into the form C(z) = zϕ(C(z)) with

ϕ(z) =
1+ z

1−z
+ z2

2(1−z)2

1− z
2

. Equivalently, ϕ(z) = −z2+2z−2
(z−1)2(z−2)

from which we see that

the radius of convergence R = 1.

Solving the equationϕ(z)−zϕ′(z) = 0withMaple, it has roots 1−i
√

1 +
√
2,

1+i
√

1 +
√
2, 1−

√√
2− 1 and 1+

√√
2− 1. Note that 1−

√√
2− 1 ∈ (0, R)

thus τ = 1 −
√√

2− 1. We obtain ρ = τ
ϕ(τ)

= −2
√
2 + 3 ≈ 0.1716 and√

ϕ(τ)
2ϕ′′(τ)

≈ 0.1913. Using Theorem 2.9 and applying Stirling’s formula, we have

cn = (n− 1)![zn]C(z) ∼ 0.2706 . . . (2.1442 . . .)nnn−1

which is the claimed result.

Asymptotic distribution of the number of reticulation nodes

Taking the number of reticulation nodes into account and refining the gener­

ating function with a new variable x, we have C = C(z, x) =
∑ cn,k

n!
znxk which
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satisfies

C = z +
C2

2
+ x

zC

1− C
+ x

z

2

(
C

1− C

)2

Rearranging terms gives that C = zΦ(C, x) with

Φ(z, x) =
1 + x z

1−z
+ x z2

2(1−z)2

1− z
2

.

Theorem 3.9. LetXn be the random variable counting the number of reticulation

nodes in one­component galled trees with n leaves. Xn is asymptotically normal

distributed. More precisely, we have

EXn = µXn+O(1), VarXn = σ2
Xn+O(1) and

Xn − EXn√
VarXn

d→ N (0, 1)

where µX ≈ 0.41 and σ2
X ≈ 0.12.

Proof. With the same argument as in the proof of Theorem 3.3, we have

E[xXn ] =
[zn]C(z, x)

[zn]C(z, 1)
.

Define F (C, z, x) = zΦ(C, x) such that C = F = (C, z, x) holds where Φ(C, x)

is the function mentioned above. The hypotheses of Theorem of 2.14 are easily

checked to hold. Also, the system

C = F (C, z, 1)

1 = FC(C, z, 1)

has a solution C0 ≈ 0.3564 and z0 ≈ 0.1716. The result follows from Theorem

2.14 with µX and σ2
X computed with Maple.
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Chapter 4

Tree­child Networks with Few

Reticulation Nodes

In this chapter, we will study tree­child networks. Denote by TCn,k the num­

ber of tree­child networks with n leaves and k reticulation nodes.

The first section in this chapter is concerned with exact enumeration of tree­

child networks with few reticulation nodes. Exact formulas for specific k’s have

been given in many papers.

Cardona and Zhang used component graphs to construct tree­child networks

from one­component tree­child networks and gave the following formulas for k =

1 and 2 in [CZ20]:

TCn,1 =
n(2n)!

2nn!
− 2n−1n!; (4.1)

TCn,2 =
n!

2n

n−2∑
j=1

(
2j

j

)(
2n− 2j

n− j

)
j(2j + 1)(2n− j − 1)

2n− 2j − 1

+ n(n− 1)n!2n−3 − (2n− 1)!n

3 · 2n−1(n− 2)!
, (4.2)

where the formula for k = 1 was derived from a recurrence relation (see [Zha19]
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for more details).

Fuchs et al. described the shape of the exponential generating function of the

number of tree­child networks with fixed k in [FGM19] and used it to obtain the

asymptotics for this counting sequence. Even though the authors noted that exact

formulas for generating functions for higher k are complicated to obtain, they gave

exact formulas for small k. In a subsequent paper, they used these exact formulas

to derive the following results:

TCn,2 =n!

(
(n+ 1)n(n− 1)(3n+ 2)

6(2n+ 1)2n

(
2n+ 2

n+ 1

)
− 2nn(n− 1)

)
; (4.3)

TCn,3 =n!
((n+ 2)2(n+ 1)n(n− 1)(n− 2)

12(2n+ 3)2n

(
2n+ 4

n+ 2

)
− 2n

48
n(n− 1)(n− 2)(48n+ 31)

)
. (4.4)

Pons and Batle conjectured a bijection between tree­child networks and a

certain class of words and found (based on their conjecture) a simple recurrence

formula that allowed them to determine the number of tree­child networks for

small n and k. Moreover, their result also gives formulas for small values of k,

e.g.,

TCn,2 =

(
n

2

)(
(2n+ 1)!!− 2(2n)!! +

1

3
(2n− 1)!!

)
; (4.5)

TCn,3 =

(
n

3

)(
(2n+ 3)!!− 3(2n+ 2)!! + (2n+ 1)!! +

17

8
(2n)!!

)
. (4.6)

We focus on constructing tree­child networks from component graphs. We

will review the result in [CZ20], extend them to k = 3 and then compare the result

with the ones above.

In the second section we will give a proof via component graphs for the

asymptotic growth term of the counting sequence.
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In [FGM19], Fuchs et al. obtained the following first­order asymptotics for

TCn,k (see also [FGM21] for some corrections of the proof):

TCn,k ∼ ck

(
2

e

)n

nn+2k−1, as n → ∞. (4.7)

Moreover, they computed ck for small values of k, namely, c1 =
√
2, c2 =

√
2 and

c3 =
2
√
2

3
.

Surprisingly, with our approach based on component graphs, we do not only

get the above first­order asymptotics for TCn,k, but also a simple, closed expres­

sion for ck.

Theorem 4.1. For the number TCn,k of tree­child networks with n leaves and k

reticulation nodes, we have

TCn,k ∼
2k−1

√
2

k!

(
2

e

)n

nn+2k−1, as n → ∞.

We submitted this result and it was recently accepted by Discrete Applied

Mathematics; see [FHY21].

4.1 Enumeration with 1, 2 and 3 Reticulation Nodes

Component graphs are a suitable tool for decomposing tree­child network

and they are also useful for counting networks. Given any component graph, the

node containing the root of the corresponding networks will be viewed as a one­

component tree­child networks whose children below the reticulation nodes are

exactly {1, . . . , k}. At these k nodes, we will attach other one­component net­

works and networks. The labels are used to distinguish their difference and to

keep track of how we connect other networks.

Wementioned in Theorem 2.16 that there are
(
n
k

) (2n−2)!
2n−1(n−k−1)!

one­component
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TCNs with n leaves and k reticulation nodes. However, for our subsequent argu­

ments, we need to make a slight adjustment to Theorem 2.16.

Theorem 4.2. Denote by On,k the number of one­component networks with n

leaves and k reticulation nodes where the labels of the leaves below the reticu­

lation nodes are from {1, . . . , k}. Then,

On,k =
(2n− 2)!

2n−1(n− k − 1)!
.

We consider tree­child networks with 1 and 2 reticulation nodes as a warm­up

to demonstrate how the enumeration process works. Then, we will deal with the

more complicated case of 3 reticulation nodes.

In this section, most of the summations are simplified by Maple.

1 and 2 Reticulation Nodes

[TCn,1] There is only one component graph which generates all tree­child

networks with 1 reticulation nodes; see Figure 4.1 (i). Suppose that the node on

the top has j leaves of the generated network and the one below n−j leaves where

j ranges from 1 to n − 1. Observe that the only reticulation node lies in the top

node which implies that the network which we have to insert (the bottom one)

is actually a phylogenetic tree. Finally, after inserting a network, we relabel the

leaves in an order­consistent way. Hence, we obtain for TCn,1

TCn,1 =
n−1∑
j=1

(
n

j

)
(2j)!

2j(j − 1)!
· (2n− 2j − 2)!

2n−j−1(n− j − 1)!

=
n−1∑
j=1

(
n

j

)
(2j)!(2n− 2j − 2)!

2n−1(j − 1)!(n− j − 1)!

=
n(2n)!

2n(n)!
− 2n−1n!.
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(i) (ii)­1 (ii)­2 (ii)­3

Figure 4.1: The component graphs of T Cn,1 and T Cn,2.

We summarize this as a theorem.

Theorem 4.3. For the number TCn,1 of tree­child networks with n leaves and 1

reticulation node, we have

TCn,1 =
n(2n)!

2n(n)!
− 2n−1n!.

Note that it is exactly the same result as in [Zha19, Theorem 4] where it was

derived using a recurrence relation.

[TCn,2] We now turn our focus on the three component graphs of tree­child

networks with 2 reticulation nodes, see Figure 4.1 (ii)­1, (ii)­2 and (ii)­3. From the

structure of the component graph in Figure 4.1 (ii)­1, we see that the node on top

represents a one­component tree­child network with 2 reticulation nodes where the

leaves below the reticulation nodes are 1 and 2. Since there is no reticulation node

left, the two nodes at the bottom combined are a phylogenetic tree. As a result, we

pick a phylogenetic tree and break it into two branches at the root. Then, we attach

the branch having the smallest label and the other branch to reticulation node 1 and

2, respectively. Finally, we relabel in an order­consistent way. Therefore, if the

one­component tree­child network on top has j leaves where j ranges from 1 to

n− 2, then we have

TC (ii)­1
n,2 =

n−2∑
j=1

(
n

j

)
(2j + 2)!

2j+1(j − 1)!
· (2n− 2j − 2)!

2n−j−1(n− j − 1)!
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=
n−2∑
j=1

(
n

j

)
(2j + 2)!

2n(j − 1)!
· (2n− 2j − 2)!

(n− j − 1)!

=
(2n)!

2nn!
(n3 + 4n2 + n)− 2n−3n!(15n2 + 9n). (4.8)

The tree­child networks having the component graph from Figure 4.1 (ii)­2

can be formed by a one­component tree­child network having 1 reticulation node

whose leaf is replaced by a phylogenetic tree. For the single edge that goes from

the top node to the bottom node, we pick an ordered pair of edges, the first one is

an edge from the top one­component network and the other from the phylogenetic

tree below. Then, we create a new edge from the middle of the first edge to the

middle of the second. Due to the tree­child property, it is clear that we can only

pick tree edges as candidates. Moreover, some situations still violate the tree­child

property even when we pick just tree edges:

(1) The starting edge is the edge below the reticulation node.

(2) The terminal edge is the root edge.

Suppose that the top one­component network has j leaves (not counting the

leaf below the reticulation nodes) and the one below n − j where j ranges from

1 to n − 2. Recall that by Proposition 1.3, a network has 2n + k − 1 tree edges.

Therefore, the one­component network on the top has 2j+1 tree edges which can

be chosen and 2n− 2j − 2 edges can be chosen in the phylogenetic tree. Overall,

TC (ii)­2
n,2 =

n−2∑
j=1

(
n

j

)
(2j)!

2j(j − 1)!
· (2n− 2j − 2)!

2n−j−1(n− j − 1)!
· (2j + 1)(2n− 2j − 2)

=
n−2∑
j=1

(
n

j

)
(2j + 1)!

2n−2(j − 1)!
· (2n− 2j − 2)!

(n− j − 2)!

= 2n−2n!(3n2 + 9n)− (2n)!

2nn!

(
4n2 + 2n

)
. (4.9)
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The component graph in Figure 4.1 (ii)­3 is handled similarly. A tree­child

network having such a component graph consists of a one­component tree­child

network on top and the network that is going to be inserted is a tree­child network

with one reticulation node. Suppose that the one­component network on top has j

leaves and the network below is from TCn−j,1 where j is ranging from 1 to n− 2,

using Theorem 4.3, we have

TC (ii)­3
n,2 =

n−2∑
j=1

(
n

j

)
(2j)!

2j(j − 1)!
·
(
n(2n)!

2nn!
− 2n−1n!

)

=
n!

2n

n−2∑
j=1

(
2j

j

)(
2n− 2j

n− j

)
j(n− j)− n!2n−1

n−2∑
j=1

(2j)!

4jj!(j − 1)!

= n(n− 1)n!2n−3 − (2n− 1)!n

3 · 2n−1(n− 2)!
, (4.10)

where we used standard identities for binomial coefficients in the last line.

Overall, TCn,2 is just the sum of TC (ii)­t
n,2 where t = 1, 2, 3. Thus,

TCn,2 = TC (ii)­1
n,2 + TC (ii)­2

n,2 + TC (ii)­3
n,2

=
(2n)!

3 · 2nn!
(3n+ 2)n (n− 1)− n!2nn (n− 1) .

We summarize this in the following theorem.

Theorem 4.4. For the number TCn,2 of tree­child network with n leaves and 2

reticulation nodes, we have

TCn,2 =
(2n)!

3 · 2nn!
· (3n+ 2)n (n− 1)− n!2nn (n− 1) .

It is not hard to see that this coincides with (4.2), (4.3) and (4.5).
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(1) (2) (3) (4) (5) (6) (7)

(8) (9) (10) (11) (12) (13)

Figure 4.2: All possible component graphs of TCN with 3 reticulation nodes.

3 Reticulation Nodes

There are 13 component graphs for tree­child networks with n leaves and 3

reticulation nodes. Luckily, we do not need to count the number of tree­child net­

works for each single one of them; instead, some of them can be grouped according

to the type of the outgoing edges of the root and handled together. The way we

count is mostly the same as in the two cases (k = 1 and k = 2) before. That

is, we choose a network from the Oj+t,t =
(2(j+t)−2)!
2j+t−1(j−1)!

one­component tree­child

networks where t is the number of nodes connected to the root node by double

edges in the component graph and j is the number of leaves that lie not below

reticulation nodes. As for the single edges starting from the root node, we choose

suitable pair of edges and create a new edge starting from the middle of one of

these edges to the middle of the other. However, we need to consider more care­

fully how other networks are attached to the one­component tree­child network

and how the additional edges connect different parts in the component graph.

[3 double edges, 0 single edge] The component graph is shown in Figure
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4.2 (1). Here, we will use unrooted phylogenetic trees with ℓ leaves. Note that an

unrooted phylogenetic tree can be converted into a phylogenetic tree by inserting

a root into one of its 2ℓ−3 edges. Therefore, the number of unrooted phylogenetic

trees with ℓ leaves is

(2ℓ− 2)!

2ℓ−1(ℓ− 1)!

1

2ℓ− 3
=

(2ℓ− 4)!

2ℓ−2(ℓ− 2)!
.

Also note that we can break an unrooted phylogenetic tree into 3 parts by choosing

one of its ℓ− 2 non­root nodes.

Let G3,0 be the number of tree­child networks having the graph in Figure 4.2

(1) as their component graph. Note that the one­component tree­child network on

top can have at most n− 3 leaves. Thus, we have

G3,0 =
n−3∑
j=1

(
n

j

)
(2j + 4)!

2j+2(j − 1)!
· (2n− 2j − 4)!

2n−j−2(n− j − 2)!
(n− j − 2)

=
(2n)!

3 · 2nn!
(
2n5 + 37n4 + 76n3 + 53n2 + 12n

)
− 2n−7n!

(
315n4 + 1470n3 + 1545n2 + 510n

)
. (4.11)

[2 double edges, 1 single edge] See Figure 4.2 (4) for the component

graph. We break a phylogenetic tree into two parts using the same method as

for the component graph in Figure 4.1 (ii)­1. The single edge is dealt with as for

the component graph in Figure 4.1 (ii)­2. Recall that there are 2ℓ + k − 1 tree

edges in a network with ℓ leaves and k reticulation nodes. We need to prevent vi­

olating the tree­child property during the construction. Consequently, except for

the 2 tree edges below the reticulation nodes, there are 2j + 3 tree edges which

we are allowed to choose in the one­component tree­child network on the top. For

the bottom part, 2(n − j) − 4 tree edges can be picked since three of them have

been either deleted or are adjacent to reticulation nodes. Therefore, the number of
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tree­child networks with n leaves and 3 reticulation nodes having the component

graph from Figure 4.2 (4) as their component graph is

G2,1 =
n−2∑
j=1

(
n

j

)
(2j + 2)!

2j+1(j − 1)!
· (2n− 2j − 2)!

2n−j−1(n− j − 1)!
(2j + 3)(2n− 2j − 4)

= 2n−5n!
(
35n4 + 570n3 + 925n2 + 390n

)
− (2n)!

2nn!

(
12n4 + 50n3 + 46n2 + 12n

)
. (4.12)

[2 double edges, 0 single edge] There are 2 component graphs of this kind,

namely the ones from Figure 4.2 (2) and Figure 4.2 (3). For the one in Figure 4.2

(2), which is less complicated, the two networks that have to be attached to the 2

leaves below the reticulation nodes are a phylogenetic tree and a tree­child network

with 1 reticulation node. For the one in Figure 4.2 (3), we pick two phylogenetic

trees with ℓ leaves for the first tree and n − j − ℓ leaves for the second tree.

Then we join them with an edge which starts from the first to the second. For the

starting points, there are 2ℓ−1 edges that can be used; for the end points, there are

2(n−j−ℓ)−2 edges since the root edge has to be avoided. Also, since the bottom

part is symmetric, we need to multiply by 1/2 in order to avoid double counting.

Finally, note that the two trees need to have at least 3 leaves so that we are able to

connect them via an edge.

Overall, we have for the number G(2) of tree­child networks arising from the

somponent graphs in Figure 4.2 (2):

G(2) =
n−3∑
j=1

(
n

j

)
(2j + 2)!

2j+1(j − 1)!

n−j−2∑
ℓ=1

(
n− j

ℓ

)
(2ℓ− 2)!

2ℓ−1(ℓ− 1)!
· TCn−j−ℓ,1

=
n−3∑
j=1

(
n

j

)
(2j + 2)!

2j+1(j − 1)!

n−j−2∑
ℓ=1

(
n− j

ℓ

)
(2ℓ− 2)!

2ℓ−1(ℓ− 1)!

(
ℓ̃(2ℓ̃)!

2ℓ̃(ℓ̃)!
− 2ℓ̃−1(ℓ̃)!

)
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=
n!

2n

n−3∑
j=1

(2j + 2)!

j!(j − 1)!

n−j−2∑
ℓ=1

(2ℓ− 2)!

ℓ!(ℓ− 1)!

(
(2ℓ̃− 2)!

ℓ̃!(ℓ̃− 1)!
− 22ℓ̃−1

)

=2nn! · n(n− 1)

(
5

64
n2 +

31

64
n+

14

64

)
− (2n)!

2nn!

1

128
n(n− 1)(2n+ 1)

(
2

7
n+

8

35

)
,

where ℓ̃ = n− j − ℓ.

Moreover, for the number of tree­child networks arising from Figure 4.2 (3),

we have

G(3) =
1

2

n−3∑
j=1

(
n

j

)
(2j + 2)!

2j+1(j − 1)!

n−j−2∑
ℓ=1

(
n− j

ℓ

)
(2ℓ− 1)(2ℓ− 2)!

2ℓ−1(ℓ− 1)!

(2ℓ̃− 2)(2ℓ̃− 2)!

2ℓ̃−1(ℓ̃− 1)!

=
n!

2n−1

n−3∑
j=1

(2j + 2)!

j! (j − 1)!

n−j−1∑
ℓ=1

(2ℓ− 1)
(2ℓ− 2)!

ℓ!(ℓ− 1)!
(ℓ̃− 1)

(2ℓ̃− 2)!

ℓ̃!(ℓ̃− 1)!

=
(2n+ 1)!

2n−1 (n− 1)!

(5n2 + 69n+ 66)

70
− n!2n

15

16

(
n3 +

17

5
n2 + 2n

)
,

where ℓ̃ = n− j − ℓ.

Therefore, if we let G2,0 denote the number of tree­child networks whose

correspondent component graphs have 2 double edges and 0 single edges, then we

have

G2,0 =G(2) +G(3)

=2nn!
1

64

(
5n4 − 34n3 − 221n2 − 134n

)
+

(2n+ 1)!

2n+1n!

(
−2

7
n3 +

142

35
n2 +

148

35
n

)
. (4.13)

[1 double edge, 2 single edges] Here, we need to consider the component

graphs in Figure 4.2 (12),(13). In both cases, the bottom part is a phylogenetic

tree. Moreover, there are 2 edges connecting the upper one­component tree­child
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network with the bottom part. For this construction, if there is no path containing

the end points of the two chosen edges, then the component graph from Figure

4.2 (12) will be the correspondent component graph for the resulting network;

otherwise, it will be the component graph from Figure 4.2 (13).

Next, we discuss the number of possible edges which can be chosen. Observe

that after an edge of the upper part is attached to the bottom part, it creates a new

edge in the upper part which can be chosen as well. Therefore, the number of

possible edges from the top is (2j + 1)(2j + 2). For the bottom part, which is a

phylogenetic tree with n−j leaves, the two endpoints of the edges must be distinct

and further, they cannot have a same source. That is, we have
(
2n−2j−2

2

)
−(n−j−1)

edges which are feasible. Note that there must be at least 3 edges not adjacent to

the reticulation node in the phylogenetic trees. Therefore, j ranges from 1 to n−3.

Overall, the number of tree­child networks with 3 reticulation nodes whose

component graphs have 1 double edge and 2 single edges is

G1,2 =
n−3∑
j=1

(
n

j

)
(2j)!

2j(j − 1)!

(2ĵ − 2)!

2ĵ−1(ĵ − 1)!
(2j + 1)(2j + 2)

((
2ĵ − 2

2

)
− (ĵ − 1)

)

=
n!

2n−1

n−3∑
j=1

(2j)!

j!(j − 1)!

(2ĵ)!

ĵ!(ĵ − 1)!
· (2j + 1)(2j + 2)2(ĵ − 1)(ĵ − 2)

=2n−5n!(5n4 − 94n3 − 425n2 − 254n) +
(2n)!

2n−3n!
n(n+ 1)(2n+ 1),

(4.14)

where ĵ = n− j.

[1 double edge, 1 single edge] The component graphs belonging to this case

are in Figure 4.2 (8), (9), (10) and (11). The basic structure in these cases is a one­

component tree­child network on top of a tree­child network with 1 reticulation

node. Note that a tree­child network with 1 reticulation node is actually a galled

tree. The terminal node of the single edge connecting the two parts determines
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which kind of graph it is. The edges of a tree­child network with 1 reticulation

node are partition into four parts: (a) the path from the root to the tree node on

the top of the reticulation cycle, (b) edges on the reticulation cycles, (c) edges that

lie below the reticulation node and (d) all other edges. Depending on the terminal

node of the edge from the top one­component network to the galled tree, we obtain

the following pairs: (a)­(9), (b)­(10), (c)­(11) and (d)­(8).

For the possible edges to be chosen, there are 2j+1 feasible edges in the one­

component tree­child network and 2n−2j−4 edges in the tree­child network with

n−j leaves and 1 reticulation node since the tree edge below the reticulation node

and the two tree edges adjacent to the parents of the reticulation node are forbidden

and the root edge gets removed.

Consequently, we have

G1,1 =
n−1∑
j=1

(
n

j

)
(2j)!

2j(j − 1)!
· TCn−j,1(2j + 1)(2n− 2j − 4)

=
n−1∑
j=1

(
n

j

)
(2j)!

2j(j − 1)!

(
ĵ(2ĵ)!

2ĵ(ĵ)!
− 2ĵ−1ĵ!

)
(2j + 1)(2ĵ − 4)

=2nn!
1

32
(3n4 − 14n3 − 3n2 + 14n)− (2n+ 1)!

2n+1n!

1

35
(8n3 − 52n2 + 44n),

(4.15)

where ĵ = n− j.

[1 double edge, 0 single edge] See the component graphs in Figure 4.2 (5),

(6) and (7). This case is simply a one­component tree­child network connected

with a tree­child network with 2 reticulation nodes. We have dealt with TCn,2 in

Theorem 4.4. Thus, the number of networks having these component graphs is

G1,0 =
n−1∑
j=1

(
n

j

)
(2j)!

2j(j − 1)!
· TCĵ,2
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=2nn!
5

128

(
n4 − 26

15
n3 − 9

5
n2 +

38

15
n

)
− (2n+ 1)!

2n+1n!

16

105
(n3 − 3n2 + 2n),

(4.16)

where ĵ = n− j.

The number of tree­child networks with n leaves and 3 reticulation nodes is

consequently the sum of all the above cases; see Table 4.1 for a summary. We

summarize the result in the next theorem.

Theorem 4.5. For the number TCn,3 of tree­child networks with n leaves and 3

reticulation nodes, we have

TCn,3 =
(2n+ 1)!

2n+1n!
n (n− 1) (n− 2)

(
2n

3
+

4

3

)
−2nn!n (n− 1) (n− 2)

(
n+

31

48

)
.

Our formula shows that the counting sequence of TCn,3 for n ≥ 4 starts with

2544, 154500, 6494400, 241204950, 8609378400, . . .

which is the same results as obtained from (4.4) and (4.6).

TCn,3
(2n+1)!
2n+1n! n (n− 1) (n− 2)

(
2n
3 + 4

3

)
− 2nn!n (n− 1) (n− 2)

(
n+ 31

48

)
G3,0

(2n)!
3·2nn! ·

(
2n5 + 37n4 + 76n3 + 53n2 + 12n

)
− 2n−7n!

(
315n4 + 1470n3 + 1545n2 + 510n

)
G2,1 2n−5n! ·

(
35n4 + 570n3 + 925n2 + 390n

)
− (2n)!

2nn!

(
12n4 + 50n3 + 46n2 + 12n

)
G2,0 2nn! 1

64

(
5n4 − 34n3 − 221n2 − 134n

)
+ (2n+1)!

2n+1n! ·
(
− 2

7n
3 + 142

35 n2 + 148
35 n

)
G1,2 2n−5n! · (5n4 − 94n3 − 425n2 − 254n) + (2n)!

2n−3n! · n(n+ 1)(2n+ 1)

G1,1 2nn! 1
32 (3n

4 − 14n3 − 3n2 + 14n)− (2n+1)!
2n+1n!

1
35 (8n

3 − 52n2 + 44n)

G1,0 2nn! 5
128 (n

4 − 26
15n

3 − 9
5n

2 + 38
15n)−

(2n+1)!
2n+1n!

16
105 (n

3 − 3n2 + 2n)

Table 4.1: The counting formulas for the numbers of tree­child networks with
3 reticulation nodes corresponding to the different groups of component graphs
considered in the proof of Theorem 4.5.
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4.2 Asymptotic Enumeration

In this section we will prove Theorem 4.1, i.e., we will show the expansion

TCn,k ∼
2k−1

√
2

k!

(
2

e

)n

nn+2k−1 as n → ∞.

We will use the groups of component graphs from the last section for k = 3.

When computing an asymptotic expansion for each group, we found that the so­

called star component graph namely, the case [3 double edges, 0 single edges],

contributes the most (see Table 4.2 for the numerical results). This will turn out

to be true also for general k. Consequently, we will divide the component graphs

into two groups, namely the star component graph and the remaining graphs, and

treat their asymptotics separately.

n TCn,3 Sn,3 Rn,3 R/S
5 1.5450× 105 2.7900× 104 1.2660× 105 4.54
10 1.1116× 1013 3.4142× 1012 7.7015× 1012 2.26
15 1.1384× 1021 4.3490× 1020 7.0352× 1020 1.62
25 1.8594× 1038 8.8048× 1037 9.7896× 1037 1.11
40 3.2014× 1066 1.7680× 1066 4.4334× 1066 0.81

Table 4.2: The number of tree­child networks with n leaves and 3 reticulation
nodes arising from different groups of component graphs where Sn,3 is the number
for the star component graph and Rn,3 is the number for the remaining graphs.

Star Component Graph

For convenience, we use Sn,k to denote the number of all tree­child networks

with n leaves and k reticulation nodes having the star component graph with k

leaves as component graph, i.e., the component graph consisting of a root to which

k children are attached via double edges. We have given formulas for the cases
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k ≤ 3 in the last section. Now we give the formula for general k.

Proposition 4.6. For k ≥ 1, we have,

Sn,k =
n!

2n−1(k − 1)!

n−k∑
j=1

(2j + 2k − 2)!

j!(j − 1)!
· (2n− 2j − k − 1)!

(n− j − k)!(n− j)!
.

Proof. Recall that we have

Oℓ,k =
(2ℓ− 2)!

2ℓ−1(ℓ− k − 1)!
.

Further, recall that T (z) denotes the exponential generating function of the num­

ber of phylogenetic trees. Now, to construct tree­child networks with component

graph the star component graph, we pick a one­component tree­child network

with k reticulation nodes having j + k leaves and replace all the leaves below

the reticulation nodes by phylogenetic trees. Then, we relabel all leaves in an

order­consistent way such that there are only labels from {1, . . . , n}.

From this, we have the following

Sn,k =
n−k∑
j=1

(
n

j

)
(2j + 2k − 2)!

2j+k−1(j − 1)!
· 1

k!
(n− j)!

[
zn−j

]
T (z)k. (4.17)

Recall that from Example 2.5, we know that

T (z) = z

(
1

1− T (z)
2

)
, and T (z) = 1−

√
1− 2z.

Therefore, by the Lagrange inversion formula

[zn]f(C(z)) =
1

n
[zn−1]f ′(z)ϕ(z)n.
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and the binomial theorem

(1− z)−n =
∑
i≥0

(
n+ i− 1

i

)
zi,

we have

[
zn−j

]
T (z)k =

k

(n− j)

[
zn−j−1

]
kzk−1

(
1− z

2

)−(n−j)

=
k

(n− j)
2j+k−n

(
2n− 2j − k − 1

n− j − k

)
.

Plugging this into (4.17), the claimed result is obtained with an easy computation.

Next, the asymptotics of Sn,k can be obtained by applying the Laplacemethod

to the sum from the last proposition.

Theorem 4.7. For k ≥ 1, we have

Sn,k ∼
√
2dk

2(k − 1)!

(
2

e

)n

nn+2k−1, as n → ∞,

where

dk :=
∑
j≥0

(2j + k − 1)!

j!(j + k)!
4−j.

Proof. In the previous proposition, the asymptotics of the term outside the sum­

mation can be deduced from Stirling’s formula:

n!

2n−1(k − 1)!
∼ 2

√
2π

(k − 1)!

(
1

2e

)n

nn+1/2, as n → ∞. (4.18)
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Let Σn,k be the remaining terms, that is

Σn,k :=
n−k∑
j=1

(2j + 2k − 2)!

j!(j − 1)!
· (2n− 2j − k − 1)!

(n− j − k)!(n− j)!

=
n−k−1∑
j=0

(2n− 2j − 2)!

(n− j − k)!(n− j − k − 1)!
· (2j + k − 1)!

j!(j + k)!
. (4.19)

The ratio of consecutive terms is

(2j + k + 1)(2j + k)(n− j)(n− j − 1)

(2n+ 2k − 2j − 1)(2n+ 2k − 2j)(j + 1)(j + k + 1)

which is smaller than 1. Thus, we can observe that the main contribution to the

sum (4.19) comes from the terms with small j. Now, expanding the first term

inside (4.19) gives

(2n− 2j − 2)!

(n− j − k)!(n− j − k − 1)!
=

1√
π
4n−j−1n2k−3/2 · e

1
n

(
−k2+ 1

2
− 4k−3

2
j+O

(
1+j2

n2

))
.

uniformly for j with j = o(n). Thus,

(2n− 2j − 2)!

(n− j − k)!(n− j − k − 1)!
=

1√
π
4n−j−1n2k−3/2

(
1 +O

(
1 + j

n

))
.

(4.20)

We now split Σn,k into two parts:

n−k−1∑
j=0

(2n− 2j − 2)!

(n− j − k)!(n− j − k − 1)!
=
∑
j≤

√
n

+
∑
j≥

√
n

=
∑
j≤

√
n

(2n− 2j − 2)!

(n− j − k)!(n− j − k − 1)!
+ ∆
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∼
∑
j≤

√
n

(2n− 2j − 2)!

(n− j − k)!(n− j − k − 1)!

where ∆ is an exponentially small term.

Plugging (4.20 into this sum gives, as n → ∞,

Σn,k ∼
∑
j≤j0

(2n− 2j − 2)!

(n− j − k)!(n− j − k − 1)!
· (2j + k − 1)!

j!(j + k)!

∼ dk√
π
4n−1n2k−3/2

and multiplying this with (4.18) gives the claimed result.

What is left is to simplify dk.

Lemma 4.8. For k ≥ 1, we have

∑
j≥0

(2j + k − 1)!

j!(j + k)!
4−j =

2k

k
.

Proof. Set A(z) =
∑

j≥0
(2j+k−1)!
(j+k)!j!

zj and again recall the binomial theorem.

(1− z)−n =
∑
i≥0

(
n+ i− 1

i

)
zi

and the Lagrange inversion formula

[zn]f(C(z)) =
1

n
[zn−1]f ′(z)ϕ(z)n.

Now, note that

[
zj
]
A(z) =

(2j + k − 1)!

(j + k)!j!

=
1

(j + k)

(
2j + k − 1

j

)
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=
1

(j + k)

[
zj
]
(1− z)−(j+k)

=
1

k

1

(j + k)

[
zj+k−1

]
kzk−1(1− z)−(j+k)

=
1

k

[
zj+k

]
C(z)k

=
1

k

[
zj
](C(z)

z

)k

where the second last step involves an application of the Lagrange inversion for­

mula by setting f(z) = zk and where C(z) is a function such that 1
1−C(z)

= C(z)
z
,

or equivalently, C(z)2 − C(z) + z = 0.

Thus,

C(z) =
1−

√
1− 4z

2
.

Therefore,

A(z) =
1

k
·
(
1−

√
1− 4z

2z

)k

which gives A(1/4) = 2k

k
.

The first order asymptotics of Sn,k is now straightforwardly obtained by com­

bining the last three results.

Theorem 4.9. For the number Sn,k of tree­child networks with n leaves and k

reticulation nodes arising from the star component graph, we have, as n → ∞,

Sn,k ∼
2k−1

√
2

k!

(
2

e

)n

nn+2k−1.

Remaining Component Graphs

Denote by Rn,k the number of networks arising from the non­star component

graphs. We will show that Rn,k contributes asymptotically less than Sn,k which

then completes the proof of Theorem 4.1.
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Before estimating Rn,k, we estimate Tn and On,k.

Proposition 4.10. We have,

Tn = O
((

2

e

)n

nn−1

)

Proof. See Example 2.11.

Proposition 4.11. We have,

On,k = O
((

2

e

)n

nn+k−1

)

Proof. Recall that

On,k =
(2n− 2)!

2n−1(n− k − 1)!
.

Thus, by Stirling’s formula, n! ∼
√
2πn (n

e
)n, we have

On,k = O

(
2−(n−1) ·

√
2π(2n− 2)√

2π(n− k − 1)
· (2n− 2)2n−2

(n− k − 1)n−k−1
· e−(2n−2)+(n−k+1)

)

= O
((

2

e

)n

nn+k−1

)

which is the claimed result.

The following lemma gives bounds for certain sums.

Lemma 4.12. Let α0, . . . , αt be real numbers none of which equal to −1. Set

s := #{0 ≤ j ≤ t : αj > −1}

Then, ∑
ℓ0+···+ℓt=ℓ

ℓα0
0 · · · ℓαt

t = O
(
ℓ
s−1+

∑
αj>−1 αj

)
,
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where the sum runs over all positive integers ℓ0, . . . , ℓt.

Proof. We first assume that 0 < s < t+ 1. Then, we can write the sum as

∑
ℓ0+···+ℓt=ℓ

ℓα0
0 · · · ℓαt

t =
ℓ−1∑
i=1

 ∑
∑

αj<−1 ℓj=ℓ−i

 ∏
αj<−1

ℓ
αj

j




 ∑
∑

αj>−1 ℓj=i

 ∏
αj>−1

ℓ
αj

j


 .

We will start by estimating the two terms inside this sum.

For the first term, we have

∑
∑

αj<−1 ℓj=ℓ−i

 ∏
αj<−1

ℓ
αj

j

 = O ((ℓ− i)α) ,

where α = max{αj : αj < −1}. This follows because at least one of the ℓj’s

with
∑

αj<−1 ℓj = ℓ − i is at least (ℓ − i)/(t + 1 − s) (giving the claimed upper

bound) and the series
∑∞

ℓ=1 ℓ
β converges for all β < −1 (giving a constant upper

bound for the remaining ℓj’s).

For the second term, by approximating by an integral,

∑
∑

αj>−1 ℓj=i

 ∏
αj>−1

ℓ
αj

j

 = O

i
s−1+

∑
αj>−1 αj

∫
∑

αj>−1 xj=1

 ∏
αj>−1

x
αj

j

 dx


= O

(
i
s−1+

∑
αj>−1 αj

)
, (4.21)

where the integral is O(1) since it converges.
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Finally, by combining the estimates of the two terms:

∑
ℓ0+···+ℓt=ℓ

ℓα0
0 · · · ℓαt

t = O

(
ℓ−1∑
i=1

i
s−1+

∑
αj>−1 αj(ℓ− i)α

)

= O

 ∑
1≤i≤ℓ/2

i
s−1+

∑
αj>−1 αj(ℓ− i)α

+
∑

ℓ/2≤i≤ℓ−1

i
s−1+

∑
αj>−1 αj(ℓ− i)α

 .

For the first sum, we have

∑
1≤i≤ℓ/2

i
s−1+

∑
αj>−1 αj(ℓ− i)α = O

ℓα
∑

1≤i≤ℓ/2

i
s−1+

∑
αj>−1 αj


= O

(
ℓ
α+s+

∑
αj>−1 αj

∫ 1/2

0

x
s−1+

∑
αj>−1 αjdx

)
= O

(
ℓ
α+s+

∑
αj>−1 αj

)
.

For the second sum, we have

∑
ℓ/2≤i≤ℓ−1

i
s−1+

∑
αj>−1 αj(ℓ− i)α = O

(
ℓ
s−1+

∑
αj>−1 αj

∑
ℓ≥1

ℓα

)

= O
(
ℓ
s−1+

∑
αj>−1 αj

)
.

Thus,

∑
ℓ0+···+ℓt=ℓ

ℓα0
0 · · · ℓαt

t = O
(
ℓ
α+s+

∑
αj>−1 αj

)
+O

(
ℓ
s−1+

∑
αj>−1 αj

)
= O

(
ℓ
s−1+

∑
αj>−1 αj

)
which is the claimed result for 0 < s < t.
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For the missing cases s = 0 and s = t + 1, the result is already implied by

(4.2) and (4.21), respectively. This concludes the proof.

We are now ready for the last step.

Theorem 4.13. For the number Rn,k of tree­child networks with n leaves and

k reticulation nodes arising from the non­star component graphs, we have, as

n → ∞,

Rn,k = O
((

2

e

)n

nn+2k−3/2

)
.

Proof. For a non­star component graph with k + 1 vertices, we consider its sub­

graph which contains only the root node and the nodes attached to it by double

edges; all other nodes and the edges are removed.

Let t be the number of all non­root nodes in this subgraph. Note that 1 ≤ t <

k since t = k is true only if the original component graph is the star component

graph. Now, we bound the number using a construction similar as the one from

the previous section. First, we pick a one­component tree­child network with t

reticulation nodes whose leaves are replaced by phylogenetic trees with n1, . . . , nt

leaves, respectively. Then, we relabel the leaves in an order­consistent way. Fi­

nally, we reattach the edges. Note that the number of ways this can be done is

bounded by a constant times nδ0
0 · · ·nδt

t , where

δ0 + . . .+ δt = 2(k − t). (4.22)

since k−t edges need to be reattached. Note that this is only an upper bound since

some networks may be constructed multiple times.

Overall, we obtain (up to a constant) the following upper bound for the num­

ber of tree­child networks arising from the given component graph

R̃n,k :=
∑

n0+···+nt=n

(
n

n0, . . . , nt

)
On0+t,tTn · · ·Tntn

δ0
0 · · ·nδt

t .
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The above sum, by Propositions 4.10 and 4.11 and Stirling’s formula, can be

bounded as

R̃n,k = n!
∑

n0+···+nt=n

On0+t,t

n0!
nδ0
0 · Tn1

n1!
nδ1
1 · · · Tnt

nt!
nδt
t

= O

((
1

e

)n

nn+1/2
∑

n0+···+nt=n

2n0n
2t+δ0−3/2
0 · 2n1n

δ1−3/2
1 · · · 2ntn

δt−3/2
t

)

= O

((
2

e

)n

nn+1/2
∑

n0+···+nt=n

n
2t+δ0−3/2
0 · nδ1−3/2

1 · · ·nδt−3/2
t

)
.

Note that 2t+ δ0 − 3/2 > −1 and nδj−3/2
j > −1 if and only if δj > 0. Set

s := #{1 ≤ j ≤ t : δj > 0}

which satisfies s ≥ 1 since t < k. Then, by Lemma 4.12,

R̃n,k = O
((

2

e

)n

nn+1/2ns+2t+
∑t

j=0(δj−3/2)+(t−s)3/2

)
= O

((
2

e

)n

nn+2k−1n−s/2

)

which gives the required bound for R̃n,k since s ≥ 1.

Finally, summing over all non­star component graphs with k + 1 vertices

gives the claimed result.
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Chapter 5

Conclusion

This thesis provided both enumerative and asymptotic information about

galled trees and tree­child networks.

First, we applied the symbolic method to galled trees as well as normal and

one­component galled trees. This method turned out to be not only more flexible

for finding exact formulas but was also capable of providing asymptotic results.

The results we obtained for the different classes of galled trees with n leaves were

easier then previous results since the formulas given in [CZ20] require solving an

integer partition problem. Moreover, our first order asymptotics results show that

most galled trees are not normal.

Second, for tree­child networks, we counted them via component graphs and

enhanced the range of applicability of this method to cases with more reticulation

nodes than in [CZ20]. Moreover, we showed that this approach can also be used

to obtain the first order asymptotics result from [FGM19]. In addition, this new

method allowed us to solve an open problem from [FGM19] and [FGM21].

As for other phylogenetic networks, component graphs may not be useful

since, for example, the normal condition may be violated during the construction.

We wonder whether component graphs can be generalized so that they can be used

to deal with other networks as well. We leave this as an open problem.
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