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摘要

近年來，作為演化網路的眾多分類中最著名的子類之一，樹子網路吸引了許多數學家

與生物學家的注意。然而直到幾年前，樹子網路的精確和漸進計數仍然很困難，遑論

其它問題。在本碩論中，我們將回顧以往樹子網路及其變體的一些重要結果，並添加

幾個新的結果。

藉由組合學和概率論中的工具，我們實現的主要貢獻有：在單組分樹子網路下證明

了最近的一個對於樹子網絡精確計數的猜想；此外，得到了第一個在均勻隨機選取樹

子網路時的隨機結果；同時，還擴展了樹子網路的定義並將前人的和我們的結果推廣

到這一新類；另外，也使先前對於有序樹子網路中圖案極限規律的研究更進一步，且

提供了首個對一類演化網路中一般圖形的研究。

該碩論的簡短概述如下：首先在第1章中，我們給出了樹子網路、樹子網路的擴展

以及有序樹子網路的定義和基本性質；然後在第2章中，我們介紹了所用的工具。其次

在第3和第4章，我們分別對樹子網路及其擴展進行研究。接著在第5章，我們將以往對

於有序樹子網路的研究推廣到所有高度為1和2的圖案，再給出對於任意高度圖案的推

論。最後在第6章，我們總結全文。

關鍵詞：演化網路，樹子網路，解析計數，極限法則，雙射法，拉普拉斯方法，動

差估計。
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Abstract

In recent years, as one of the most prominent subclass among the many different classes of

phylogenetic networks, the class of tree-child networks has attracted the attention of many

mathematicians and biologists. However, until a few years ago, both exact and asymptotic

counting for tree-child networks was still difficult, not to mention other problems. In this thesis,

we will review the most important previous results for tree-child networks and their variants

and add several new results.

Our main contributions, which are mainly proved with tools from Combinatorics and Prob-

ability Theory, are as follows. For a recent conjecture on the exact counting of tree-child

networks, we give a proof for the special case when the tree-child network is a one-component

network. In addition, we prove the first stochastic results for tree-child networks which are

picked uniformly at random. Also, we can extend the definition of tree-child networks and

generalize previous and our results to the new class. Moreover, we have taken the previous

research on limit laws of patterns in ranked tree-child network a step further and provided the

first general patterns study for a class of phylogenetic networks.

A short outline of the thesis is as follows: in Chapter 1, we give definitions and show some

basic properties for tree-child networks, their extensions and ranked tree-child networks. Then,

in Chapter 2, we introduce our tools. In Chapter 3 and Chapter 4, we focus on results for tree-

child networks and their extensions, respectively. Next in Chapter 5, we generalize the former

study on patterns of ranked tree-child networkto all patterns of height 1 and 2 and make a con-

jecture for patterns of any height. Finally, we finish the thesis in Chapter 6 with a conclusion.

Keywords: Phylogenetic network, tree-child network, analytic counting, limit laws, bijec-

tive proof, Laplace method, method of moments.
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Chapter 1

Introduction

In this chapter, we will describe background of the research topics discussed in this thesis and

give precise definitions of the objects we are going to investigate.

1.1 Phylogenetic trees and networks

The purpose of phylogenetic analysis is to reveal the evolution between different species, so

as to obtain an understanding of the evolution of life. Two important tools for visualizing the

evolution are phylogenetic trees and networks which will be discussed in the two subsections

below.

1.1.1 Phylogenetic trees

Phylogenetic trees are widely used in evolutionary biology and are usually calculated from

molecular sequences. For example, they are used to understand the age and rate of diversifica-

tion of taxa, to comprehend the evolutionary history of gene families, to study the co-evolution

of hosts and parasites, and to track the origin and transmission of infectious diseases (like

dominant species of COVID-19) in epidemiology.

We first give a precise (mathematical) definition of phylogenetic trees.

Definition 1.1.1. A phylogenetic tree is a rooted binary tree with leaves labeled bijectively by

the elements of {1, . . . , n}.

Remark 1.1.2. We will often assume that the root has also an incoming edge.

1
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There has been a lot of work focusing on phylogenetic trees over the past few decades;

tools from enumerative and analytic combinatorics, graph theory, probability theory and other

methods have been used to obtain a wealth of results. Two of them, which are relevant to this

thesis, are concerned with the the counting problem and the pattern problem. The former is

actually easy and summarized in the next result.

Proposition 1.1.3. The number PTn of phylogenetic trees equals (2n− 3)!!.

Proof. We use proof by induction.

Clearly, PT2 = 1 since the rooted tree which consists of a root to which two leaves labeled

by 1 and 2 are attached is the only phylogenetic tree of size 2.

Next, for PTn−1, there are n − 2 internal nodes in a rooted binary tree with n − 1 leaves

due to the binary property. In addition, the number of nodes is equal to the number of edges

(recall that we assume that the root has also an incoming edge). Thus a rooted binary tree with

n − 1 leaves has a total of 2n − 3 edges. We can create any rooted binary tree with n leaves

from one with n − 1 leaves by picking an edge, splitting it in two with a new node between

them and attaching the new leaf (labeled by n) to the newly created node. So by the induction

hypothesis, we have

PTn= (2n− 3)× PTn−1 = (2n− 3)!!.

This proves the claimed result.

Remark 1.1.4. By Stirling’s formula

n! =
√
2πn

( e
n

)n(
1 +O

(
1

n

))
,

we have the asymptotic result:

PTn = (2n− 3)!! =
(2n− 2)!

2n−1(n− 1)!

∼ 1√
2

(
2

e

)n

nn−1, as n→ ∞.

As for the pattern problem, there have been many studies which have investigated the num-

ber of occurrence of patterns on the fringe of phylogenetic trees under various random models;

see [6, 8–10, 18, 19, 21, 23, 24] for some results. In these studies mean, variance, limit laws and

even more detailed stochastic results have been obtained.

2
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1.1.2 Phylogenetic networks

Phylogenetic trees are not always suitable as a model since the evolutionary process of, e.g.,

chromosomes, species and populations is not necessarily tree-like. This is because of mei-

otic recombination on the chromosome level, specification and horizontal gene transfer on the

species level, and sexual recombination on the population level which all lead to reticulation

events. Due to this, phylogenetic networks have been proposed as an alternative to phylogenetic

trees. In fact, they have become a standard tool in evolutionary biology over the last decades.

We start by defining a phylogenetic network.

Definition 1.1.5. A phylogenetic network is a rooted simple DAG (directed acyclic graph) with

a unique root of indegree 0 and outdegree 1 such that all other nodes belong to one of the

following types:

(i) leaves, which are nodes with indegree 1 and outdegree 0; these are bijectively labeled by

the elements of {1, . . . , n};

(ii) tree nodes, which are nodes with indegree 1 and outdegree 2; and

(iii) reticulation nodes, which are nodes with indegree 2 and outdegree 1.

From the definition, we can observe that phylogenetic trees are a special case of phyloge-

netic networks; they are phylogenetic networks without reticulation nodes.

Moreover, for any phylogenetic network, by counting incoming and outgoing edges, we

obtain the following result.

Proposition 1.1.6. For a phylogenetic network with n leaves, k reticulation nodes, and t tree

nodes, we have,

n+ k = t+ 1.

Proof. Note that the sum of the outgoing edges equals 2t+ k+1. This sum is equal to the sum

of the incoming edges which is t+2k+n. Equating these two sums and a simple computation

gives the claimed result.

Clearly, the number of phylogenetic networks with n leaves is infinite. Thus, in order

to get a meaningful counting problem, we have to consider one of the many subclasses of

3
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phylogenetic networks which have been proposed in phylogenetics. One of them is the class of

tree-child networks which will be investigated in this thesis.

1.2 Tree-child networks

In recent years, the class of tree-child networks has become one of the most prominent subclass

among the many different classes of phylogenetic networks. The definition of this class uses

one fact which is often observed in evolution: newly born dominant species are usually not

quickly wiped out, in other words, reticulation events seldomly occur in class vicinity of each

other. Because of this, tree-child network are more important in real-world applications than

other classes of phylogenetic trees.

In this master thesis, we will mainly focus on counting, bijections and the distributional

behavior of tree-child networks. We will start with the definition.

Definition 1.2.1. A phylogenetic network is a tree-child network if each non-leaf node has at

least one child which is not a reticulation node.

Thus, in a tree-child network a tree node has least one child which is not a reticulation node.

In addition, a reticulation node should not be followed by another reticulation node. This

is because reticulation nodes have only one outgoing edge, in other words, they only have one

child. And by definition this child cannot also be a reticulation node.

Finally, the child of the root cannot be a reticulation node, too.

We will denote by T Cn,k the set of tree-child networks with n leaves and k reticulation

nodes and by TCn,k the cardinality of this set. In addition, we use t to denote the number of

tree nodes in a network from T Cn,k.

Remark 1.2.2. When k = 0, the set T Cn,0 is exactly the set of phylogenetic trees with n leaves.

Thus, TCn,0 = PTn, where PTn was defined in Proposition 1.1.3.

Next, we will introduce free tree nodes which will play an important role in our subsequent

study of tree-child networks.

Definition 1.2.3. We call a tree node a free tree node if both its children are not reticulation

nodes. Moreover, we call an outgoing edge of a free tree node a free edge.

4
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Note that every node in a phylogenetic tree is a free tree node. More generally, also in a

tree-child network, the number of free tree nodes can be determined.

Lemma 1.2.4. Every tree-child network with n leaves and k reticulation nodes has n− k − 1

free tree nodes.

Proof. From Proposition 1.1.6, we see that each phylogenetic network and thus each tree-child

network has n + k − 1 tree nodes. Any tree node which has one child which is a reticulation

node is not free and each reticulation node has two incoming edges. Thus, a tree-child network

has exactly 2k tree nodes which are not free. (Here, we used the tree-child property.) So the

total number of free tree nodes is n+ k − 1− 2k = n− k − 1 as claimed.

The previous lemma immediately gives the following consequence.

Corollary 1.2.5. In every tree-child network with n leaves and k reticulation nodes, we have

that k ≤ n− 1.

Thus, we have for the number of tree-child networks with n leaves, which will be denoted

by TCn:

TCn =
n−1∑
k=0

TCn,k.

In addition the set of tree-child networks with n leaves will be denoted by T Cn; thus,

TCn = |T Cn|.

We will next introduce a subclass, an extension and a variant of the class of tree-child

networks.

One-component Tree-child networks. The class of tree-child networks is rather com-

plex. Because of this, further restrictions on tree-child networks have been imposed to obtain

subclasses of networks whose investigation is easier.

One important subclass of tree-child network is the class of one-component tree-child net-

work. It is defined as follows.

Definition 1.2.6. A tree-child network is called a one-component tree-child network if every

reticulation node is directly followed by a leaf.

5
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One-component tree-child networks are more “tree-like” than general tree-child networks.

In fact, as we will see below, we know much more about the one-component case than the

general case. We believe that studying one component tree-child networks will be helpful for

the general case because one-component networks constitute an important building block in the

construction of general networks; see [5].

We denote by OT Cn,k the set of one-component tree-child networks with n leaves and k

reticulation nodes and by OTCn,k the cardinality of this set. Moreover, we denote by OT Cn

resp. OTCn the number resp. set of one-component tree-child networks with n leaves. Note

that by Corollary 1.2.5:

OTCn =
n−1∑
k=0

OTCn,k.

d-combining tree-child network. Note that in a tree-child network, all reticulation nodes

have two incoming edges. Thus, a natural generalization is to change the “two” into “d”,

where d ≥ 2 is a fixed integer; such networks are called d-combining tree-child network. (The

definition of tree nodes remains the same.) In particular, we call the case with d = 2 the

bi-combining case. (Subsequently, this is the case we mean if no d is indicated.)

We use T C[d]
n,k to denote the set of d-combining tree-child networks with n leaves and k

reticulation nodes and TC
[d]
n,k to denote the cardinality of this set. Also the notion of one-

component networks can be extended to d-combining tree-child networks, and we use OT C[d]
n,k

resp. OTC
[d]
n,k to denote the set resp. its cardinality of d-combining one-component tree-child

networks with n leaves and k reticulation nodes.

This extension will give some interesting (and unexpected) results. For example, for the

case of d-combining one-component tree-child network, the first order asymptotics of OTC[d]
n

(the number of d-combining one-component tree-child networks with n leaves) are different

when d = 2, d = 3 and d ≥ 4. We will prove these (and other) results in the chapters below.

Proposition 1.1.6, Lemma 1.2.4 and Corollary 1.2.5 can all be easily generalized to d-

combining tree-child networks. We summarize the results in the proposition below.

Proposition 1.2.7. For a d-combining tree-child network with n leaves, k reticulation nodes

and t tree nodes, we have

6
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branching event

(a)

reticulation event

(b)

Figure 1.1: The two kinds of events used in the construction of RTCNs.

(i) n+ (d− 1)k = t+ 1;

(ii) the number of free tree nodes is n− k − 1;

(iii) k ≤ n− 1.

Thus, the number of d-combining tree-child networks with n leaves, denoted by TC[d]
n , and

the number of d-combining one-component tree-child networks with n leaves satisfy:

TC[d]
n =

n−1∑
k=0

TC
[d]
n,k, OTC[d]

n =
n−1∑
k=0

OTC
[d]
n,k.

In addition, we will use the notations T C[d]
n and OT C[d]

n for the corresponding sets.

Ranked tree child network (RTCN). As mentioned above, in the past few decades,

many studies on statistical properties of the shape of phylogenetic tree have been performed

(e.g., pattern studies; see the references above). On the other hand, until recently, no corre-

sponding studies have been done for phylogenetic networks. This is due to a fact that even

counting problems for almost all subclasses of phylogenetic network (including tree-child net-

works) were still open until recently.

In order to overcome this, the idea of ranking phylogenetic networks was proposed in [1]

which made the investigation of the above mentioned problems feasible. Ranking for tree-child

networks yields ranked tree-child networks or RTCNs for short.

In order to define them, first in a tree-child network, we call a tree node a branching event

and a reticulation node with its two parents a reticulation event; see Figure 1.1 for the graphical

depiction of these two events. (Vertical edges in this depiction will subsequently be called

lineages.) Then, a RTCN is defined as follows.

7
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5

7

2
4

1 8

3 6

5 2 7 4 1 8 3 6

(a) (b)

t = 1

t = 2

t = 3

t = 4

t = 5

t = 6

t = 7

t

Figure 1.2: (a) A tree-child network which is rankable; (b) A RTCN corresponding to (a) with

a (fixed) ranking.

Definition 1.2.8. A ranked tree-child network is a tree-child network which is drawn starting

with a branching event and consecutively adding either a branching event or a reticulation

event until all events are used; see Figure 1.2 an example.

Compared to tree-child networks, RTCNs have two advantages. First, they are easily

counted and their stochastic properties can be understood. Second, they are equipped with

a growth model since RTCNs start from the root and the network is constructed step by step.

On the other hand, it is not clear how this has happened in other phylogenetic networks.

We will obtain some results of patterns of RTCN in Chapter 5 below.

1.3 Previous research and purpose of this work

Previous research. Tree-child networks were introduced by Cardona, Rossello and Valiente

(2009); see [4]. Apart from giving the definition, the authors of this paper defined a distance

that extends the well-known Robinson-Foulds distance for phylogenetic trees. Moreover, they

provided algorithms for reconstructing a tree-child network and computing the distance be-

tween two tree-child networks.

The first enumerative study of tree-child networks was done a few years later by McDi-

armid, Semple and Welsh (2015) who showed that the largest term in the main growth term of

TCn is n2n; they obtained this result by using lower and upper bounds, see [20]. In addition,

8
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they also proved a similar result for vertex-labeled tree-child networks. Moreover, they found

that almost all tree-child networks with n leaves have (1 + o(1))n reticulation nodes, a prelim-

inary step towards understanding the distribution of TCn,k. They ended their paper with a long

list of open problems.

In recent years, many follow-up studies on enumerative properties of tree-child networks

(and other classes of phylogenetic networks) have appeared. We give a (brief) summary of the

studies which are relevant to this thesis.

First, Fuchs, Gittenberger and Mansouri (2019 and 2021) and Fuchs, Huang and Yu (2022)

solved the asymptotic counting problem for tree-child networks with a fixed number of retic-

ulation nodes. More precisely, two different methods, namely sparsened skeletons (in [12]

and [13]) and component graphs (in [14]) were used to show that the number TCn,k has the

first-order asymptotics:

TCn,k ∼
2k−1

√
2

k!

(
2

e

)n

nn+2k−1, as n→ ∞.

On the other hand, Cardona and Zhang (2020) devised an algorithmic approach (based on

component graphs) for obtaining values of TCn,k for all small n and k; see [5] for a table which

displays the values of TCn,k for 1 ≤ k < n and 3 ≤ n ≤ 8. In addition, Cardona and Zhang

also used their approach to derive exact formulas for TCn,k for k = 1, 2; see also [13] where

these formulas and a formula for k = 3 were obtained with a different approach.

Thus, exact and asymptotic counting for tree-child networks with few reticulation nodes is

well understood.

For general tree-child networks, the most important result so far was obtained by Fuchs,

Yu and Zhang (2021) who almost solved the asymptotic counting problem for TCn; see [17].

They showed that TCn has the same growth order as TCn,n−1 and they used a bijective proof

to obtain (up to a constant) the main growth term of TCn,n−1. More precisely, they gave the

following formula:

TCn = Θ

(
n−2/3eα1(3n)1/3

(
12

e

)n

n2n

)
,

where α1 = −2.338107410 . . . is the largest root of the Airy function of the first kind. In other

words, they significantly improved the n2n result of McDiarmid, Semple and Welsh (2015).

Finally, there was also some recent progress on the exact counting of tree-child networks

by Pons and Batle (2021) who made a conjecture on TCn,k in [22]. This conjecture yields a

9
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recurrence formula for TCn,k which can be used to quickly re-derive the values in the above

mentioned table from [5]. Moreover, also the above mentioned exact formulas for small values

of k can be derived from their conjecture in an elegant way.

Apart from the above progress on tree-child networks, one-component tree-child networks

were studied as well. Cardona and Zhang proposed them in [5], where they also proved a simple

exact formula for OTCn,k. This formula was then used in [17] to prove a local limit theorem

for the number of reticulation nodes of one-component tree-child networks picked uniformly

at random and to derive the first-order asymptotics for OTCn (which is a consequence of the

local limit theorem).

Finally, as mentioned above, RTCN where proposed by Bienvenu, Lambert and Steel in

[1]. They used tools from combinatorics and probability theory to prove a lot of results for

them, e.g., they obtained exact counting results and distributional results for patterns and other

parameters.

Purpose of this work. In this thesis, we will review (in detail) some of the above results and

contribute several results on our own. The main contributions of the thesis are:

• a proof of the conjecture of Pons and Batle for the subclass of one-component tree-child

networks;

• announcing the first stochastic results for random tree-child networks; the proof will be

contained in the journal version of the extended abstract [7];

• extending previous and our new results to d-combining networks;

• continuing the pattern study from [1] for random RTCNs; this will constitute the first

such study for a class of phylogenetic networks.

Outline of this thesis. We give a short outline of the structure of this thesis.

In Chapter 2, we introduce tools from two different areas in mathematics, namely, from

Combinatorics and from Probability Theory. In the chapters after that, we will extensively use

these tools.

In Chapter 3, we recall the exact counting formula for OTCn,k from [5] (and provide a

new proof) and review some details of the proof of the asymptotic counting formula for TCn.

10
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We also introduce the conjecture for the exact counting of TCn,k from [22] and prove it for

one-component tree-child networks.

In Chapter 4, we generalize some of the d = 2 results from Chapter 3 to d ≥ 3. Apart from

this, we also give distributional results of the number of reticulation nodes obtained by picking

uniformly at random one-component d-combining tree-child networks and d-combining tree-

child networks with n leaves.

In Chapter 5, we extend the study of patterns of height 1 from [1] to height 2, giving for

each pattern the expectation and limiting distribution. In addition, we have a conjecture for

arbitrary patterns.

Finally, we finish the thesis in Chapter 6 with a conclusion.

11
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Chapter 2

Tools

2.1 Tools from Combinatorics

In this section, we will introduce two methods from Combinatorics: (i) bijective proofs and (ii)

the Laplace method. Both these methods are used in the proof of the results in Chapter 3 and

Chapter 4.

First, we will give some examples of bijective proofs, where we use Catalan numbers as

guiding example. Recall that a phylogenetic tree is a rooted binary tree whose leaves are labeled

bijectively by the elements of {1, . . . , n}. A related class of trees are rooted binary ordered trees

with n internal nodes. (Here, ordered means that the two children of every internal node have

a left-right order.) These trees are also easily enumerated.

Proposition 2.1.1. The number Cn of rooted binary ordered trees with n internal nodes is
1

n+1

(
2n
n

)
Proof. Clearly, C0 = 1 since the tree without internal nodes just consists of a single leaf.

Next, for n ≥ 0, the root in a rooted binary ordered tree RT with n + 1 internal nodes has

children which root trees RT1 and RT2. The root is an internal node, thus the total number of

internal nodes in RT1 and RT2 is n. In other words, if RT1 has i internal nodes, then RT2 has

n− i internal nodes. Thus, we have the following recurrence for Cn:

Cn+1 =
n∑

i=0

CiCn−i, (n ≥ 0) (2.1)

with initial condition C0 = 1.

12
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We use an ordinary generating function to solve the recurrence. Let

f(x) :=
∑
n≥0

Cnx
n.

Since C0 = 1, f(x) satisfies

f(x) = 1 +
∑
n≥1

n−1∑
i=0

CiCn−1−ix
n = 1 + x

∑
n≥0

n∑
i=0

CiCn−ix
n = 1 + x(f(x))2.

Solving this yields

f(x) =
1±

√
1− 4x

2x
.

Since C0 = 1, by L’Hôspital’s rule as x→ 0, we must choose

f(x) =
1−

√
1− 4x

2x
.

Next, by the binomial theorem,

1−
√
1− 4x

2x
=

∞∑
n=1

−1

2

(
1/2

n

)
(−4)nxn−1 =

∞∑
n=0

−1

2

(
1/2

n+ 1

)
(−4)n+1xn.

Thus,

Cn = −1

2

(
1/2

n+ 1

)
(−4)n+1 =

1

n+ 1

(
2n

n

)
,

where we used straightforward manipulations for binomial coefficients in the last step.

Remark 2.1.2. The sequence

Cn =
1

n+ 1

(
2n

n

)
is called the sequence of Catalan numbers; it is an important sequence in Combinatorics due to

it being the answer to many different counting problems. For example,

(a) The number of rooted ordered trees with n vertices and a root with degree 1.

(b) The number of ways one can decompose a convex n-gon into triangles by n − 3 nonin-

teresting diagonals.

(c) Consider walks in the x-y plane with steps U : (x, y) → (x + 1, y + 1) or D : (x, y) →

(x + 1, y − 1). The number of walks which start at (0, 0) and reach (2n, 0) without

crossing the x-axis.

Next we will introduce another set whose cardinality is the Catalan number.

13
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Definition 2.1.3. Suppose we have a nonassociative product operation, i.e., an operation for

which the order of computation is important. (E.g, ((x1x2)x3) is different from (x1(x2x3)).)

Then, let Sn be the number of ways to compute x1 · · ·xn.

Proposition 2.1.4. We have,

|Sn| = Cn−1 =
1

n

(
2n− 2

n− 1

)
.

Proof. Each product contains within the outer brackets two expressions, where the first is a

product of i factors and the second is a product of n − i factors. Thus the number un= |Sn|

satisfies the recurrence :

un =
n−1∑
i=1

uiun−i, (n ≥ 2).

Note that (2.1) can be rewritten into

Cn−1 =
n−2∑
i=0

CiCn−i−2 =
n−1∑
i=1

Ci−1Cn−i−1, (n ≥ 2).

Comparing with the above recurrence (and comparing initial values), we obtain that

un = Cn−1 =
1

n

(
2n− 2

n− 1

)
which is the claimed result.

Because we have that the set Sn has the same cardinality as the set of rooted binary ordered

trees with n− 1 internal nodes, we wonder whether there is a bijection between these two sets.

Finding such a bijection is called a bijective proof in Combinatorics.

Theorem 2.1.5. There is a bijection between the set of rooted binary ordered trees with n

internal nodes and the set Sn+1.

Proof. Label the leaves in a rooted binary ordered tree with n internal nodes from left to right

by x1, x2, . . . , xn+1. Every bracket is represented by an internal node and the two subtrees of

the node are the two components in the bracket; see Figure 2.1 for examples.

In addition, we also have the following relation between Catalan numbers and the counting

sequence PTn of phylogenetic trees; see Proposition 1.1.3.

Theorem 2.1.6. The number of phylogenetic tree with n leaves satisfies

PTn =
n!Cn−1

2n−1

14
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(((x1x2)(x3x4))x5) ((x1x2)(x3(x4x5)))

x1 x2 x3 x2 x3 x4x4 x5x5 x1

Figure 2.1: Two rooted binary plane trees with 4 internal nodes and their corresponding images

from S5 under the one-to-one map from Theorem 2.1.5.

Proof. Even though this can be proved by a simple computation, we give a bijective proof.

Therefore, rewrite the above equation into:

n!Cn−1 = 2n−1PTn.

Now, the left-hand side of this equation is the number of rooted binary trees together with

a permutation (which gives a labeling of the n leaves).

On the other hand, the right-hand side is the number of phylogenetic trees with n leaves,

where for each internal node, a left-to-right order of the two subtrees of the node is fixed.

(Recall that a binary tree with n leaves has n− 1 internal nodes.)

Clearly, the above two objects are identical and we have found a bijection.

Now, we will introduce another related class of trees which are called unary-binary trees.

A unary-binary tree is a rooted ordered tree with all internal nodes having 1 or 2 children; such

trees are counted by Motzkin numbers.

Before giving a proof of this, we first recall the Lagrange Inversion Formula, which is an

important tool in Combinatorics (and will also be used in the next proof).

Theorem 2.1.7 (Lagrange Inversion Formula). Let f(ω) be an analytic function at 0 with

f(0) ̸= 0 and z = ω
f(ω)

. Then z =
∑

n≤0 anω
n is analytic at 0 with

an =
1

n
[ωn−1](f(ω))n,

where [ωn] is an operator which extracts the n-th coefficient in the Maclaurin series of a func-

tion in ω.

15
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+ +=

(a) (b) (c) (d)

Figure 2.2: A unary-binary tree can be classified into 3 subclasses: a single root; a root with

outdegree 1 followed by a unary-binary tree; a root with outdegree 2 followed by two unary-

binary trees.

Proposition 2.1.8. The number Mn of unary-binary trees with n nodes is

1

n

⌊(n+1)/2⌋∑
k=1

(
n

k

)(
n− k

k − 1

)
.

Proof. In contrast to Proposition 2.1.1, here we deduce the generating function of unary-binary

tree directly from a composition of these trees.

We use M(z) to denote the ordinary generating function of unary-binary trees, that is, part

(a) in Figure 2.2. Clearly, each such tree can be decomposed into a tree just consisting of a leaf

(part (b) with generating function z) or a root which is either followed by one unary-binary tree

(part (c) with generating function zM(z)) or two unary-binary trees (part (d) with generating

function z(M(z))2).

Thus, M(z) satisfies

M(z) = z + zM(z) + z(M(z))2 (2.2)

with M(0) = 1. Solving this, we get

M(z) =
1− z ±

√
(1− 3z)(1 + z)

2z

and we have to use the minus sign due to M(0) = 1.

Note that from this formula for M(z), it is not easy to obtain coefficients. However, we can

use the Lagrange Inversion Formula.

So, we write (2.2) as

z =
M(z)

1 +M(z) + (M(z))2
.

16
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Let ω =M(z), then f(ω) = 1 + ω + ω2. Then, by Theorem 2.1.7:

[z]nM(z) =
1

n
[ωn−1](1 + ω + ω2)n

=
1

n

n∑
k=1

(
n

k

)
[ωn−1]ωn−k(1 + ω)n−k

=
1

n

n∑
k=1

(
n

k

)
[ωk−1](1 + ω)n−k

=
1

n

⌊(n+1)/2⌋∑
k=1

(
n

k

)(
n− k

k − 1

)
.

Thus, we have,

Mn =
1

n

⌊(n+1)/2⌋∑
k=1

(
n

k

)(
n− k

k − 1

)
as claimed.

Laplace method. We now have an exact counting formula for Mn. However, this formula

contains a summation and we cannot see how fast the sequenceMn grows as n→ ∞. Note that

the terms and summation indices of this sum depend on n. For such sums, we have a method

to give an asymptotic results which is called Laplace method.

In general, the Laplace method is applied to sums of the forms∑
k

ak(n).

The asymptotics is then derived via the following steps (see Figure 2.3):

(i) Find the part of the sum which has the largest contribution to the asymptotics;

(ii) Show that the tails are neligible;

(iii) Approximate ak(n) in the major range;

(iv) Add back the tails;

(v) Approximate the sum by an integral using the Euler-Maclaurin summation formula.

Now, we apply this method to Mn in the above result. First, writing binomial coefficients

as factorials, we obtain

Mn = (n− 1)!

⌊(n+1)/2⌋∑
k=1

1

k!(k − 1)!(n− 2k + 1)!
.

17
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Figure 2.3: The major steps in the Laplace method.

Stirling’s formula gives

(n− 1)! ∼
√
2πn

nn−1

en
.

Thus, we only need the asymptotics of

S(n) =

⌊(n+1)/2⌋∑
k=1

1

k!(k − 1)!(n− 2k + 1)!
=

⌊(n+1)/2⌋∑
k=1

ak(n).

In order to understand where the main contribution comes from, first observe that 1/(k!(k−

1)!(n− 2k + 1)!) is increasing for 1 ≤ k ≤ n
3

and decreasing for n
3
< k ≤ ⌊(n+ 1)/2⌋. Next,

by straightforward expansion,

ak(n) =

(
3

2πn

) 3
2
(
3e

n

)n

e−9x2/n

(
1 +O

(
1 + |x|
n

+
|x|3

n2

))
uniformly for x = o(n2/3) where k = n

3
+ x. Thus, we have

ak(n) =


(

3

2πn

)3/2(
3e

n

)n

e−9x2/n

(
1 +O

(
1

n1/2−3ϵ

))
, if |x| < n1/2+ϵ;

O
(
(3e)nn−n−3/2e−9n2ϵ

)
, if |x| ≥ n1/2+ϵ,

(2.3)

where ϵ > 0 is an arbitrary small constant.

18
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Next, we split the sum into two parts (Step (i) in the above procedure):

S(n) =
∑

|x|<n1/2+ϵ

ak(n) +
∑

|x|≥n1/2+ϵ

ak(n).

The second part (which are the tails in Step (ii) above) is bounded by:∑
|x|≥n1/2+ϵ

ak(n) = O
(
(3e)nn−n−1/2e−9n2ϵ

)
,

where we used the monotonicity of ak(n) and (2.3).

For the first sum, we again use (2.3) which gives∑
|x|<n1/2+ϵ

ak(n) ∼
(

3

2πn

)3/2(
3e

n

)n ∑
|x|<n1/2+ϵ

e−9x2/n

∼
(

3

2πn

)3/2(
3e

n

)n ∞∑
x=−∞

e−9x2/n,

where we have added back the tails in the second line above (these are Steps (iii) and (iv) in the

outline above); note that adding back the tails introduces just another exponential small error.

Next, by the Euler-Maclaurin summation formula (Step (v) above),
∞∑

x=−∞

e−9x2/n =

∫ ∞

−∞
e−9x2/ndx+O

(
1

n

)
=

√
πn

3
+O

(
1

n

)
.

Plugging this into the above first sum and combining with the bound for the second sum

gives:

S(n) ∼
√
3

23/2πn

(
3e

n

)n

.

Now, we can give the asymptotic result for Mn:

Mn ∼ (n− 1)!

√
3

23/2πn

(
3e

n

)n

∼
√

3

4πn3
× 3n. (2.4)

Thus, Mn grows (up to subexponential terms) like 3n.

2.2 Tools from Probability Theory

In this section, we will explain some tools from probability theory which will be used in Chap-

ter 5. For the proofs, we refer to [2].

We start with the method of moments which was introduced by Pafnuty Chebyshev in 1887

who used it to prove the central limit theorem.

First, we need a uniqueness theorem for moments.
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Theorem 2.2.1. Let X be a random variable having finite moments αk = E(Xk) of all orders.

If the exponential generating function of αk (the power series
∑

k≥0 αkz
k/k!) has a positive

radius of convergence, then X is uniquely determined by its moments.

We give two examples which will be used in Chapter 5.

• The moments of the standard normal distribution are given by:

αk = E(N(0, 1))k =


k!

2k/2(k/2)!
, if k is even;

0, if k is odd.
(2.5)

The exponential generating function of this sequences is∑
k≥0

αk
zk

k!
=
∑
k≥0

z2k

2kk!
= ez

2/2.

Clearly, this series has radius of convergence equal to ∞. Thus, Theorem 2.2.1 implies

that the standard normal distribution is uniquely determined by its moments.

• As a second example, consider a random variable X which has a Poisson distribution

with parameter λ. Then, the factorial moments of X are given by

E(Xk) = λk

and thus

αk = E(Xk) =
k∑

j=0

S(k, j)λj,

where S(k, j) denotes the Stirling numbers of the second kind. The exponential generat-

ing function of this sequences is

∑
k≥0

αk
zk

k!
=

∞∑
k=0

k∑
j=0

S(k, j)λj
zk

k!
= ez(e

λ−1).

Thus, the exponential generating function of αk has again radius of convergence equal

to ∞ and by Theorem 2.2.1, we obtain that also the Poisson distribution is uniquely

determined by its moments.

The method of moments is now encapsulated in the following theorem.
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Theorem 2.2.2. Assume that X is uniquely determined by its moments and let Xn be a se-

quence of random variables whose moments of all orders exist and satisfy:

lim
n→∞

E(Xk
n) = E(Xk) for k = 1, 2, . . . .

Then, Xn converges in distribution to X , i.e., Xn
w−→ X .

Thus, if one for instance has that

lim
n→∞

E(Xk
n) =


k!

2k/2(k/2)!
, if k is even;

0, if k is odd,

then Xn satisfies a central limit theorem, i.e., Xn
w−→ N(0, 1).

Also, Theorem 2.2.2 still holds with moments replaced by factorial moments. Thus, if one

has that

lim
n→∞

E(Xk
n) = λk,

then Xn convergences in distribution to a Poisson random variable with parameter λ.

In fact, the above two theorems can be generalized to multivariate random variables.

Theorem 2.2.3. Let X = (X1, . . . , Xd) be a random variable for which αi,k = E(|Xi|k) <∞

for i = 1, . . . , d and k = 1, 2, . . . . Consider the mixed moments:

β(k1, . . . , kd) = E(Xk1
1 · · ·Xkd

d )

for nonegative integers ki. If for each i, the exponential generating function of αi,k has a

positive radius of convergence, then X is uniquely determined by its mixed moments.

We discuss as example the multivariate normal distribution. Thus, assume that X =

(X1, . . . , Xd) has a multivariate normal distribution with mean 0 and covariance matrix Σ. Re-

call that this implies that Xi ∼ N(0, σi
2) with some σi > 0. First, we compute αi,k = E(|Xi|k)

for i = 1, . . . , d and k = 1, 2, . . . . We have

E(|Xi|k) = 2

∫ ∞

0

1√
2πσ2

i

xke−x2/(2σ2
i )dx

=
2k/2σk

i√
π

∫ ∞

0

u(k−1)/2e−udu

=
2k/2σk

i√
π

Γ

(
k + 1

2

)
∼

√
2σk

i

(
k

e

)k/2

, as k → ∞,
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where in the last step, we used Stirling’s formula for the gamma function. Thus,∑
k≥0

αi,k
zk

k!

has radius of convergence equal to ∞. Consequently, by Theorem 2.2.3, the multivariate nor-

mal distribution is uniquely determined by its mixed moments.

As for the computation of the mixed moments, we can apply the following theorem.

Theorem 2.2.4 (Isserlis’ theorem). If (X1, X2, · · · , Xd) is a multivariate normal random vari-

able with zero mean, then

E(Xk1
1 X

k2
2 · · ·Xkd

d ) =
∑
P

∏
{P1,P2}∈P

Cov(Pi, Pj),

where the sum runs over all partitions into pairs of the multiset

{X1, . . . , X1︸ ︷︷ ︸
k1

, X2, . . . , X2︸ ︷︷ ︸
k2

, . . . , Xd, . . . , Xd︸ ︷︷ ︸
kd

}.

For example, if d = 4 and k1 = k2 = k3 = k4 = 1, then

E(X1X2X3X4) = E(X1X2)E(X3X4) + E(X1X3)E(X2X4) + E(X1X4)E(X2X3).

Next, we give the multivariate version of Theorem 2.2.2.

Theorem 2.2.5. Let X = (X1, . . . , Xd) be a random variable satisfying the assumptions of

Theorem 2.2.3. Assume that Xn = (Xn,1, . . . , Xn,d) is a sequence of random variables whose

mixed moments all exist and satisfy:

lim
n→∞

E(Xk1
n,1 · · ·X

kd
n,d) = β(k1, . . . , kd)

for all non-negative integers ki. Then, Xn converges in distribution to X , i.e., Xn
w−→ X .

Thus, if we have

lim
n→∞

E(Xk1
n,1 · · ·X

kd
n,d) = E(Xk1

1 · · ·Xkd
d ),

where (X1, . . . , Xd) ∼ N(0,Σ) with N(0,Σ) denoting the multivariate normal distribution

with mean vector 0 and covariance matrix Σ, then Xn satisfies a multivariate central limit

theorem, i.e.,

Xn
w−→ N(0,Σ).

Finally, we recall another well-known theorem from probability which will also be used in

Chapter 5.
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Theorem 2.2.6 (Slutsky’s theorem). Let Xn and Yn be sequences of random variables. If Xn

converges in distribution to a random element X and Yn converges in probability to a constant

c, then

• Xn + Yn
w−→ X + c;

• XnYn
w−→ Xc;

• Xn/Yn
w−→ X/c, provided that c ̸= 0.
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Chapter 3

Enumeration of bi-combining tree-child

networks

Most of the studies on tree-child networks have focused on bi-combining tree-child networks.

In this chapter, we are going to review some results for these networks and add some new

results.

3.1 Results for OTCn,k

In this section, we first give a formula for OTCn,k which is proved through a recurrence. Then,

an asymptotic result can also be obtained by straightforward calculation. Finally, we use the

Laplace method mentioned in Section 2.1 to derive an asymptotic result for OTCn and prove

a distributional result for the number of reticulation nodes if one picks a network of OT Cn

uniformly at random.

Theorem 3.1.1. The number of one-component bi-combining tree-child networks with n leaves

and k reticulation nodes is given by

OTCn,k =

(
n

k

)
(2n− 2)!

2n−1 (n− k − 1)!
, (0 ≤ k ≤ n− 1).

Consequently,

OTCn =
n−1∑
k=0

(
n

k

)
(2n− 2)!

2n−1 (n− k − 1)!
;

see (1.2).
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Remark 3.1.2. This formula was first obtained in [5]. The proof we give below is, however,

new.

Proof. We use a networkN of OT Cn−1,k−1 to construct corresponding networksN ′ in OT Cn,k

by adding one additional reticulation node.

First, note that by Proposition 1.1.6, we have that N has n − 1 + (k − 1) − 1 tree nodes

which is also the number of edges leading to a tree node. Also we have (n− 1)− (k− 1) edges

which lead to a leaf that is not under a reticulation node. Thus, we have

n− 1 + (k − 1)− 1 + (n− 1)− (k − 1) = 2n− 3.

edges where we can add parent nodes of the new reticulation node. (Here, we used the tree-

child property.) Consequently, there are(
2n− 3 + 2− 1

2

)
=

(
2n− 2

2

)
.

choices. Moreover, label the leaf of the newly formed reticulation node with a label from

{1, . . . , n} and increase all (old) labels in N which are at least as large as the new label by +1

(if there are any). Note that this construction gives each networks N ′ exactly k times.

Thus, from the above,

OTCn,k =
n

k

(
2n+ k − 2

2

)
OTCn−1,k−1

and by iteration,

OTCn,k =

(
n

k

)
(2n− 2)!

2k(2n− k − 2)!
OTCn−k,0. (3.1)

Note that OTCn−k,0 is the number of phylogenetic trees with n − k leaves, so by Proposi-

tion 1.1.3,

OTCn−k,0 = PTn−k,0 = (2(n− k)− 3)!! =
(2n− 2k − 2)!

2n−k−1(n− k − 1)!
.

Inserting this into (3.1) gives the claimed result.

If we plot the numbers OTCn,k using software such as Maple (fixing n and letting k run

from 0 to n−1), we see that the maximum value of OTCn,k is near n and that this plot looks like

the normal distribution in the vicinity of the peak (see Figure 3.1). In the next result, we show

this and use the Laplace method to derive the limit distribution of the number of reticulation

nodes.
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Figure 3.1: A plot of OTCn,k with n = 50 and 0 ≤ k ≤ 49. The peak appears at k = 43 and

the curve looks similar to the density of the normal distribution.

Theorem 3.1.3. Let Rn be the number of reticulation nodes of a network picked uniformly at

random from the set OT Cn. Then, we have the following limit distribution result of Rn:

Rn − n+
√
n

4
√
n/4

w−→ N(0, 1).

Remark 3.1.4. This result was stated without proof in [15].

Proof. By Theorem 3.1.1, we have

OTCn,k =
n!(2n− 2)!

2n−1
· 1

k!(n− k)!(n− k − 1)!
.

The ratio of two consecutive terms in this sum is:

(k + 1)!(n− k − 1)!(n− k − 2)!

k!(n− k)!(n− k − 1)!
.

From this, we see that 1/k!(n− k)!(n− k − 1)! is monotonic increasing for 0 ≤ k ≤ n −
√
n+ 1 and monotonic decreasing for n−

√
n+ 1 < k ≤ n− 1. Substituting k = n−

√
n+x

and using Stirling’s formula gives:

OTCn,k =
1

2
√
eπ
n2n−3/2e2

√
n

(
2

e2

)n

e−x2/
√
n

(
1 +O

(
1 + |x|√

n
+

|x|3

n

))
(3.2)
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uniformly for |x| ≤ n3/10 and n→ ∞.

Next, recall that

OTCn =
n!(2n− 2)!

2n−1

n−1∑
k=0

1

k!(n− k)!(n− k − 1)!
.

We can deal with the summation by a standard application of the Laplace method. More pre-

cisely,

OTCn ∼ 1

2
√
eπ
n2n−3/2e2

√
n

(
2

e2

)n n3/10∑
x=−n3/10

e−x2/
√
n

(
1 +O

(
1 + |x|√

n
+
x3

n

))

∼ 1

2
√
eπ
n2n−3/2e2

√
n

(
2

e2

)n ∫ ∞

−∞
e−x2/

√
n

(
1 +O

(
1 + |x|√

n
+
x3

n

))
dx

∼ 1

2
√
e
n2n−5/4e2

√
n

(
2

e2

)n(
1 +O

(
1√
n

))
,

(3.3)

where this actually holds as equality since all errors are exponentially small.

Combining the latter with (3.2) gives

OTCn,k

OTCn

=
1√
πn1/4

e−x2/
√
n

(
1 +O

(
1 + |x|√

n
+

|x|3

n

))
uniformly for k = n−

√
n+ x with |x| ≤ n3/10 and n→ ∞, or

OTCn,k

OTCn

=
1√
πn1/4

e−t2/2

(
1 +O

(
1 + |t|
n1/4

))
uniformly for k = n−

√
n+ t 4

√
n/4 with |t| ≤ n1/20 and n→ ∞. Thus, by similar arguments

as used in the Laplace method,

P

(
Rn − n+

√
n

4
√
n/4

≤ x

)
= P

(
Rn ≤ n−

√
n+ x 4

√
n/4
)

∼ 1√
πn1/4

x∑
t=−∞

e−t2/2

(
1 +O

(
1 + |t|
n1/4

))
∼ 1√

2π

∫ x

−∞
e−t2/2dt.

This proves the claimed result.

The proof contains the following corollary which is Theorem 3 in [17].

Corollary 3.1.5. We have,

OTCn ∼ 1

4π
√
e
(n!)22ne2

√
nn−9/4.

Proof. This is obtained from (3.3) and Stirling’s formula.
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3.2 Results for TCn,k

In this section we review the asymptotic result for TCn,k from [17] and mention a result for

the distribution of the number of reticulation nodes (which will be contained in a forthcoming

paper). More precisely, we first show relations for TCn,k with different k when n is fixed. From

these relations, it can be observed that TCn,n−1 is the dominant term for the sequence TCn,k.

Finally, we use a bijective proof and a method in [11] to get a Θ-result for TCn,n−1.

We start with the following bound.

Lemma 3.2.1. For any 1 ≤ k ≤ n− 1,

TCn,n−1−k ≤
1

2k
TCn,n−k.

Proof. By Lemma 1.2.4, each tree-child network in T Cn,n−1−k has k free tree nodes and 2k

free edges. Insert a reticulation node into one of free edges; then the initial node of the free edge

can be considered as one of the parents of the inserted node. The other parent is constructed by

inserting a node between the root of the network and its child; then add an edge from this parent

to the newly formed reticulation node. Since this generation method is injective, the claimed

result follows. (Note that in the case k = 1, the generating method is even bijective.)

Lemma 3.2.1 shows that TCn,k increases with k (fixing n). Moreover, it implies that the

order of TCn is that of TCn,n−1.

Proposition 3.2.2. We have TCn,n−1 ≤ TCn ≤
√
e · TCn,n−1 and thus TCn = Θ(TCn,n−1)

Proof. For 0 ≤ k ≤ n− 1, by iterating the inequality in Lemma 3.2.1,

TCn,k ≤
1

2n−1−k(n− k − 1)!
TCn,n−1. (3.4)

Then,

TCn ≤
n−1∑
k=0

(
1

2n−1−k(n− k − 1)!
)TCn,n−1 ≤

√
e · TCn,n−1

which gives the upper bound. The lower bound is trivial.

Since TCn has the same growth order as TCn,n−1, we can now focus on finding the growth

order of TCn,n−1.

Next we will introduce a bijection which will help us in solving this problem. (Since this

bijection will play an important role in this thesis, we discuss it in an own paragraph.)
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Figure 3.2: An example of a network from T C5,4 with its path-components. This tree-child

network is encoded as aabc5abd3bcd4c2d1 (where the permutation is inserted into the word

with each label at the end of its path-component).

Bijection between TCn,n−1 and words. We start with a graph-theoretical property of

T Cn,n−1.

Lemma 3.2.3. A tree-child network with n leaves has n − 1 reticulation nodes if and only if

there is exactly one path from every node to a leaf whose intermediate nodes are all tree nodes.

Proof. Notice that networks in T Cn,n−1 are the only tree-child networks with no free tree nodes.

Thus, they cannot have two paths as indicated since two such paths must meet in a free tree

node. On the other hand, if there is a free tree node, then two paths as indicated exist because

of the tree-child property.

According to this, we can decompose an arbitrary network from T Cn,n−1 into n path-

components; see Figure 3.2 for an example. We will use this in order to bijectively map T Cn,n−1

onto the following class of words.

Definition 3.2.4. Let Cn denote the class of words built from n letters {ω1, . . . , ωn} in which

each letter occurs exactly 3 times such that in every prefix the letter ωi has either not yet

occurred, or, if it has, then the number of occurrences of ωi is at least as large as the number

of occurrences of ωj for all j > i.
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For example,

C2 = {aaabbb, aababb, abaabb, baaabb, aabbab, ababab, baabab}

and thus |C2| = 7.

Proposition 3.2.5. There is a bijection between T Cn,n−1 and Cn−1×Pn, where Pn denotes the

set of permutations of length n.

Proof. First, note that networks in T Cn,n−1 have no symmetry. Thus, if we remove labels from

the networks in T Cn,n−1, we obtain TCn,n−1/n! unlabeled networks. Consequently, it suffices

to show that these unlabeled networks can be bijectively mapped onto words of Cn−1.

We begin by ordering the path-components of an unlabeled network from T Cn,n−1. We do

this recursively. First, the path-component starting from the child of the root is considered as the

first path-component. Next, assume that k path-components have been indexed. We read these

indexed path-components from the path-component with smallest index to the path-component

with largest index and each path-component from the beginning node (which is a reticulation

node or the child of the root) to its corresponding leaf. Now, consider all un-indexed path-

components whose two parents are already in those indexed path-components. Order its two

parents so that the first parent to be read is called first parent and the second parent to be read is

called second parent. Now, order all these un-indexed path-components according to the order

of their second parents. Due to the connectivity of tree-child network, we can continue doing

this until all path-components are indexed which will eventually happen; see Figure 3.2 for an

example.

Next, label a reticulation node and both its parents by the index of the path-component

which starts from it. (This gives labels from the set {2, . . . , n − 1} which alternatively can be

replaced by the letters of the alphabet as follows: 2 → a, 3 → b, 4 → c, . . .; Figure 3.2.) Read

all path-components and nodes in these path-components in order. Then, we can get a word in

Cn−1.

Finally, it is not difficult to see that the above construction can be reversed. Thus, it is a

bijection and the proof is finished.

The previous proposition shows that we can (asymptotically and exactly) count T Cn,n−1

via Cn−1.
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The authors in [17] found a recurrence for the cardinality of Cn−1 to which they applied the

method in [11] to get an asymptotic result for the cardinality of Cn−1. (We will introduce an

extension of this recurrence in Section 4.2.) More precisely, they obtained

|Cn−1| = Θ
(
n!n−5/3eα1(3n)1/312n

)
, (3.5)

where α1 = −2.338107410 . . . is the largest root of the Airy function of the first kind. Thus,

by Stirling’s formula,

TCn,n−1 = Θ

(
n−2/3eα1(3n)1/3

(
12

e2

)n

n2n

)
,

and finally from Proposition 3.2.2,

TCn = Θ

(
n−2/3eα1(3n)1/3

(
12

e2

)n

n2n

)
. (3.6)

This was the main result in [17].

As for the number of reticulation nodes for a random network from T Cn, we recently

managed to show a corresponding lower bound in Proposition 3.2.1 which is asymptotically

sharp for k close to n. This lower bound (together with the upper bound in Proposition 3.2.1)

implies that for k close to n, (3.4) can be sharpened to

TCn,n−1−k ≈
1

2kk!
TCn,n−1, (3.7)

i.e., the number of reticulation nodes satisfies a Poisson limit law.

Theorem 3.2.6. Let In be the number of reticulation nodes of a network picked uniformly at

random from the set T Cn. Then, we have the following limit distribution result of In:

n− 1− In
w−→ Poisson

(
1

2

)
.

The proof of this result will be presented in the journal version of [7]. (It was mentioned

as a conjecture in the conclusion of [7].) We also remark that (3.7) allows us to improve the

Θ-result in Proposition 3.2.2.

Corollary 3.2.7. We have,

TCn ∼
√
e · TCn,n−1.

This, however, does not yield an improvement of (3.6) since the method in [11] is only

capable of giving a Θ- result for TCn,n−1.
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3.3 Pons and Batle’s conjecture

In this section, we will present a conjecture of Pons and Batle for TCn,k. This conjecture was

found by them by generalizing the bijection between T Cn,k and Sn−1×Pn from the last section.

We start with a generalization of Definition 3.2.4.

Definition 3.3.1. Let Cn,k denote the class of words built from n letters {ω1, . . . , ωn} in which

{ω1, . . . , ωk} occur exactly 3 times and {ωk+1, . . . , ωn} occur 2 times such that in every prefix

the letter ωi has either not yet occurred, or, if it has, then the number of occurrences of ωi is at

least as large as the number of occurrences of ωj for all j > i.

For example:

|C2,0| = 3 : C2,0 = {aabb, abab, baab};

|C2,1| = 7 : C2,1 = {aaabb, aabab, abaab, baaab, aabba, ababa, baaba}.

Note that Cn in Definition 3.2.4 is exactly Cn,n.

The number of words in Cn,k satisfy an easy recurrence.

Proposition 3.3.2. The number cn,k of words in Cn,k satisfies the recurrence:

cn,k = cn,k−1 + (2n+ k − 1)cn−1,k.

Proof. Because the last letter of a word in Cn,k must be the third occurrence of ωk or the second

occurrence of ωn, we can divide Cn,k into two parts according two whether we assume the

former (first part) or the latter (second part).

For the first part, we remove the third ωk. This gives a one-to-one map to Cn,k−1.

For the second part, we remove the two ωn’s. Note that the position of the second ωn was

fixed and the first ωn can appear in 2n + k − 1 positions.Thus, the number of words from the

second part is (2n+ k − 1)cn−1,k.

Combining the two parts gives the claimed recurrence.

The conjecture of Pons and Batle is now as follows.

Conjecture 3.3.3 (Pons and Batle). TCn,k and cn,k are related as follows:

TCn,k =
n!

(n− k)!
cn−1,k.
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Two cases of the conjecture are clear.

Proposition 3.3.4. The conjecture is true for k = 0 and k = n.

Proof. For k = n, the conjecture holds by Proposition 3.2.5.

For k = 0, consider a permutation of the letters {ω1, . . . , ωn} with each letter repeated

twice. This gives (2n)!/2n such permutations. Next, assume that the second letters in order of

their occurrences are ω′
1 to ω′

n. Then, we rename them (together with the corresponding first

letters) by ω1, . . . , ωn. There are n! possibilities for this. Consequently,

cn,0 =
(2n)!

2nn!

and thus

cn−1,0 =
(2n− 2)!

2n−1(n− 1)!
= (2n− 3)!! = PTn;

see Proposition 1.1.3. This proves the conjecture also for k = n.

3.4 Bijection for OT Cn,k

In this section, we give a proof of the conjecture mentioned in Section 3.3 for one-component

tree-child networks. This part is currently under submission; see [15].

We start by defining a class of words.

Definition 3.4.1. Let Hn,k denote the subset of words from Cn,k which satisfy that the letter

right before the third occurrence of a letter is the second occurrence of that letter.

An example for a word in H4,2 with the letters in the order a, b, c, d, e is badacbacdb.

Lemma 3.4.2. There is a bijection between Hn,k and Cn,0 ×
({ω1,...,ωn}

k

)
, where

(
A
k

)
denotes the

set consisting of subsets of A of cardinality k.

Proof. We can remove the third occurrence of the letters ω1, . . . , ωk and the resulting word is in

Cn,0. Next, record the letters which were right before the removed letters. Clearly, these letters

form a subsets of {ω1, . . . , ωn} of cardinality k. Also, this process can be reversed.

Taking the word efbadacbacbdefc as example, we see that the third a follows the second

b, the third b follows the second c, and the third c follows the second f . Thus, the set in the
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3 12 456 7

c(4)

a(3)

b(6)

b(6)

d(1)

d(1)

e(5)

f(7)

Figure 3.3: A one-component tree-child network with the internal nodes labeled as in the proof

of Theorem 3.4.4.

above lemma is {b, c, f}. Moreover, we remove a,b and f and get: efbadacbcdef . (We will

subsequently write efbadacbcdef + {b, c, f} for the value of the bijiection from the above

lemma.)

Lemma 3.4.3. We have,

|Hn,k| =
(
n

k

)
(2n− 1)!!.

Proof. Because
({ω1,...,ωn}

k

)
consists of all subsets of {ω1, . . . , ωn} of cardinality k, the number

of these subsets is
(
n
k

)
. Thus, the cardinality of Hn,k equals

(
n
k

)
times |Cn,0| and the result

follows from Proposition 3.3.4.

Let Ak denote the set consisting of k-tuples without repetition of elements from A. For

example, {1, 2, 3}2 = {(1, 2), (1, 3), (2, 1), (2, 3), (3, 1), (3, 2)}.

We can now prove Pons and Batle’s conjecture for one-component tree-child network.

Theorem 3.4.4. There is a bijection between OT Cn,k and Hn−1,k × {1, . . . , n}k. Thus,

OTCn,k =
n!

(n− k)!
× |Hn−1,k|.

Proof. We will directly give the map between the two sets from the theorem; see Figure 3.3 for

an example.
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From OT Cn,k to Hn−1,k × {1, . . . , n}k. Consider a network from OT Cn,k. First, we remove

the reticulation nodes, their two incoming edges and their outgoing edge and leaf. This gives a

tree with some unary nodes (nodes of indegree and outdegree 1), where these unary nodes are

parents of the reticulation nodes which we have just removed. We label the unary nodes with

the labels of the removed leaves below their removed reticulation nodes.

Next, we define path-components in the resulting tree where every path-component has

an index. The first path-component is the unique path from the child of the root to the leaf

with smallest label. The second path-component is from a unique node on an indexed path-

component (currently there is only one path-component) to the second smallest label. Contin-

uing like this step by step, we can find all n− k path-components.

Now, the nodes without label are nodes where two path-components overlap; label them by

the label of the larger leaf at the end of the two path-components. Then, remove the labels of

the leaves.

Next, we read the labels of the nodes along each path-component starting from the the one

with the smallest index and proceeding until the one with the largest index; call the resulting

word ω̃. Also, put the labels of the unary nodes into a set Ã. For example, for the network in

Figure 3.3 this gives ω̃ = 431736641557 and Ã = {1, 6}.

Next, we convert ω̃ and Ã into Hn−1,k and {1, . . . , n}k.

First, we form a k tuple by listing the elements from Ã in the order they occur for the second

time in ω̃. For the example in Figure 3.3 this gives the tuple (6, 1).

Next, we rename the numbers in ω̃ and Ã as follows: if a number in ω̃ appears the second

time and there are already j− 1 numbers appearing twice before it, then rename the number by

ωj . This converts ω̃ and Ã into ω and A. Moreover, via the map from Lemma 3.4.2, this gives

a word from Hn−1,k. For the example from Figure 3.3, the mapping is:

3 → a, 6 → b, 4 → c, 1 → d, 5 → e, 7 → f.

Thus, ω = cadfabbcdeef and A = {b, d} and hence cadfabbcdeef + {b, d}. Finally, this

gives the word cadfabbacdbeef .

Therefore, the corresponding word is cadfabbacdbeef and k-tuple is (6, 1).

From Hn−1,k × {1, . . . , n}k to OT Cn,k. We use again the word cadfabbacdbeef and the tuple

35



‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i  U

niv

ers
i t

y

DOI:10.6814/NCCU202201049

(6, 1) from above which is (considered as a tuple) an element of H6,2 × {1, . . . , 7}2.

We first separate the given word into a word ω and a setA by the method from Lemma 3.4.2.

(For our example: ω = cadfabbcdeef and A = {b, d}.)

Then, we use the second occurrence of the letters fromB := {ω1, . . . , ωn−1}\A to separate

ω into n − k subwords: the first subword is from the beginning to the letter before the second

occurrence of the first letter from B; the next is from the second occurrence of the first letter

from B to the letter before the second occurrence of the second letter from B; etc.

For example, cadfabbcdeef → cadf |abb|cde|e|f giving the subwords: cadf, abb, cde, e, f .

These subwords correspond to nodes along paths in a tree that is successively constructed

as follows: the i-th subword corresponds to the i-th path which ends in a leaf which is labeled

by the i-th smallest integer from {1, . . . , n} which is not in the k-tuple (in our example, the leaf

of the first path equals 2, the leaf of the second path equals 3; etc.) Also, the i-th subword starts

with a letter which is contained on one of the former i − 1-st paths; thus, we can recursively

construct the tree by starting from this letter and attaching the i-th path (assuming that the first

i− 1-st path are already attached).

Next, reticulation nodes are attached whose parents are the unary nodes on the tree with

identical labels. Moreover, the leaves of the reticulation nodes are labeled with the integers

from the k-tuple in the order of the second occurrence of the letters of the parents in ω.

Finally, removing all labels of the internal nodes gives the preimage of the map from above.

This completes the proof.

Remark 3.4.5. From the above result and Lemma 3.4.3, we obtain

OTCn,k =
n!

(n− k)!

(
n− 1

k

)
(2n− 3)!!.

Note that this is Theorem 3.1.1. Thus, we found a second proof of this theorem via a bijection.

One immediate question is whether our proof can be extended to yield the full conjecture

of Pons and Batle? Since one-component networks are still relatively easy, this is, at present,

still unclear. We leave this as an open problem.
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Chapter 4

Enumeration of d-combining tree-child

networks

In this chapter, we generalize the results from the previous chapter to d-combining tree-child

networks. Most of these results are new and have either appeared in the recent extended abstract

[7] or are mentioned in the conclusion of [7] as open problems. These results (together with

more results) will appear in the journal version of [7] which is currently under preparation.

4.1 Exact formula for OTC
[d]
n,k

In this section, we will extend Theorem 3.1.1 to d-combining networks. The result is as follows.

Theorem 4.1.1. The number of one-component d-combing tree-child networks with n leaves

and k reticulation nodes is given by

OTC
[d]
n,k =

(
n

k

)
(2n+ (d− 2)k − 2)!

(d!)k 2n−k−1 (n− k − 1)!
, (0 ≤ k ≤ n− 1).

Proof. The proof is similar to the one of Theorem 3.1.1 except that now we have to count

the possible positions for d parents of the reticulation nodes instead of just two. Notice that the

number of tree nodes has also changed; now it is n−1+(d−1)(k−1)−1 (see Proposition 1.2.7).

So, we have 2n+ (d− 2)(k − 1)− 3 edges in each network of OT C[d]
n−1,k−1 where we can

add parent nodes of reticulation nodes and thus there are(
2n+ (d− 2)(k − 1)− 3 + d− 1

d

)
=

(
2n+ (d− 2)k − 2

d

)
.
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choices.

By iteration, we obtain

OTC
[d]
n,k =

(
n

k

)
(2n+ (d− 2)k − 2)!

d!k(2n− k − 2)!
OTC

[d]
n−k,0. (4.1)

Moreover, by Proposition 1.1.3,

OTC
[d]
n−k,0 = (2(n− k)− 3)!! =

(2n− 2k − 2)!

2n−k−1(n− k − 1)!
.

Inserting this into (4.1) gives the claimed result.

Remark 4.1.2. A second way to count OTC
[d]
n,k proceeds by constructing OTC

[d]
n,k from

OTC
[d−1]
n,k . To give details, first, there are 2n+ (d− 3)k− 1 edges with end points either a tree

node or a leaf in each network of OT C[d−1]
n,k . We add k different nodes (each node is the d-th

parent of a reticulation node) to these edges. Overall there are

(2n− 2 + (d− 3)k + 1)(2n− 2 + (d− 3)k + 2) · · · (2n− 2 + (d− 3)k + k)

ways to do this. Now, if we assign the first of the k nodes to the first reticulation node, the

second of the k nodes to the second reticulation node, etc., we obtain every network in OTC
[d]
n,k

exactly dk times. Thus,

OTC
[d]
n,k

OTC
[d−1]
n,k

=
(2n− 2 + (d− 3)k + 1)(2n− 2 + (d− 3)k + 2) · · · (2n− 2 + (d− 3)k + k)

dk
.

Since we already have OTC
[2]
n,k (see Theorem 3.1.1), we can get the result for d-combining

networks from the above relation by iteration.

4.2 Counting TC
[d]
n,k by modified words

In Section 3.2, we mentioned a bijection between T Cn,n−1 and Cn × Pn (Proposition 3.2.5).

Furthermore, in Section 3.3, we presented a conjecture of Pons and Batle which generalizes this

bijection to T Cn,k and Cn,k (Conjecture 3.3.3). Now, we introduce another bijection which maps

T C[d]
n,k onto a class of words which is different from the class of words used in Conjecture 3.3.3.

Also, in contrast the the conjecture of Pons and Batle, we can prove that our map is indeed a

bijection.

We start with d = 2 since d ≥ 3 is similar.
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Definition 4.2.1. Let W [2]
n,k, or Wn,k for short, denote the class of words built from n letters

{ω1, . . . , ωn} in which k letters occur exactly 3 times and the remaining n − k letters occur

2 times and which satisfy a special property describen next. Consider the 0-th, 1-st and 2-nd

occurrences of the n−k letters which occur 2 times as 1-st, 2-nd and 3-rd occurrences of these

letters. Then, with this convention, the property says that in every prefix of the word the letter

ωj has either not yet occurred, or, if it has, then the number of occurrences of these ωj is at

least as large as the number of occurrences of ωj for all j > i.

For example:

|W2,0| = 2 : W2,0 = {aabb, abab};

|W2,1| = 7 : W2,1 = {abbab, babab, aabab, aabbb, ababb, baabb, aaabb};

|W2,2| = 7 : W2,2 = {aabbab, ababab, baabab, aaabbb, aababb, abaabb, baaabb}.

Note that Wn,n is exactly Cn,n = Cn.

We have the following relation between T Cn,k and the cardinality of Wn,k which we prove

bijectively.

Theorem 4.2.2. TCn,k and |Wn−1,k| are related as follows:

TCn,k =
n!

2n−k−1
|Wn−1,k|.

Proof. First, recall that we gave an order of the path-components for networks from T Cn,n−1

in Propostion 3.2.5. Each tree node on the path-components in such networks is not a free

tree node. However, when we replace T Cn,n−1 by T Cn,k, we will meet free tree nodes while

reading path-components. Here, we give a new ordering of the path-components for such net-

works which is a generalization of the ordering for T Cn,n−1. (In fact, we give several different

orderings for each network when k < n− 1.)

When we meet a free tree node, we consider the tree node as both a reticulation node and

its second parent. Since a free tree node leads to two free edges, we need to decide which

edge should be read first. Once this decision is taken for every free tree node, we follow the

index rule used in Proposition 3.2.5 (with the path to the other free edge considered as the path

starting from the free tree node considered as reticulation node). For each such ordering, we get

a different word and permutation with the bijection from Proposition 3.2.5 (and each of them

give an encoding of our network); see Figure 4.1 for an example.

39



‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i  U

niv

ers
i t

y

DOI:10.6814/NCCU202201049

b

b

bb

b b b b

b

b

bb

b b
b b

b b
bb

b
b

b
b bb b b

b

b b
b

a a

a a

a

aa a

aa

c
c

c

c
c

c c c
c

c
c

c

c

c
c

c
c

c

c

c

c

c

c
c

c c c c

aaa a

aa

a

a a a

d ddd d

d dd dd

d d d dd

d d d dd d d

(i)

(ii)

(iii)

(iv)

1 23 45

1 23 451 2 452 4545

2 45 2 45 1 2 45

1 23 451 2 451 4545

1 23 451 2 451 2525

4
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5

5

b

a

c
c

c

dd d

1 23 45

A network in T C5,2

Figure 4.1: The four different ways to label the internal nodes and order the path-components

of the tree-child network on the top (which is a network from T C5,2). These different ways pro-

duce the following words (with the permutation inserted into the word with each label at the end

of its path-component): acb4ac5bd2cd1d3 for (i); acbd2ac5b4cd1d3 for (ii); ab5abc4bd1cd2d3

for (iii); and ab5abcd2bd1c4d3 for (iv).
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Clearly, the above gives a multivalued function between T Cn,k and Wn−1,k×Pn, where Pn

denotes the set of permutations of length n. What is left is to count the number of images of

each network. Therefore, recall that each network from T Cn,k has exactly n − k − 1 free tree

nodes; see Corollary 1.2.4. Moreover, since there are two choices when we encounter a free

tree node, the number of images of each network from T Cn,k under the above mentioned map

is 2n−k−1. This concludes the proof.

Now, we extend the above result from d = 2 to all d ≥ 2. We first need an extension of

Wn,k.

Definition 4.2.3. Let W [d]
n,k denote the class of words built from n letters {ω1, . . . , ωn} in which

k letters occur exactly d + 1 times and the remaining n − k letters occur 2 times and which

satisfy a special property describen next. Consider the 0-th, 1-st and 2-nd occurrences of the

n − k letters which occur 2 times as d − 1-st, d-th and d + 1-st occurrences of these letters.

Then, with this convention, the property says that in every prefix of the word the letter ωj has

either not yet occurred more than d − 2 times, or, if it has, then the number of occurrences of

these ωj is at least as large as the number of occurrences of ωj for all j > i.

For example:

|W [3]
2,0| = 2 : W [3]

2,0 = {aabb, abab};

|W [3]
2,1| = 11 : W [3]

2,1 = {aaaabb, aabbbb, ababbb, baabbb, abbabb, bababb, bbaabb, abbbab,

babbab, bbabab, aaabab};

|W [3]
2,2| = 25 : W [3]

2,2 = {aaabbabb, aabababb, abaababb, baaababb, aabbaabb, ababaabb,

baabaabb, abbaaabb, babaaabb, bbaaaabb, aaababbb, aabaabbb,

abaaabbb, baaaabbb, aaaabbbb, abababab, aabbabab, baababab,

abbaabab, bbaaabab, babaabab, aaabbbab, aababbab, abaabbab,

baaabbab}.

Note that W [2]
n,k = Wn,k.

Now, we can generalize Theorem 4.2.2.

Theorem 4.2.4. TC[d]
n,k and |W [d]

n−1,k| are related as follows:

TC
[d]
n,k =

n!

2n−k−1
|W [d]

n−1,k|.
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Proof. First, note that in a network in T C[d]
n,k, the number of free tree node is still n − k − 1;

see Proposition 1.2.7.

Next, generalizing the indexing procedure for path-components from Theorem 4.2.2, for a

network from T C[d]
n,k, we index path-components by the d-th parent of reticulation nodes and

consider free tree nodes as both reticulation nodes and their d-th parents. The reticulation

nodes and their d parents correspond to k letters which occur d + 1 times, the free tree nodes

correspond to n − 1 − k letters which occur 2 times. The rest is the same as in the proof of

Theorem 4.2.2.

Next, we introduce a method to count W [d]
n−1,k. More precisely, we give a recurrence with

which |W [d]
n−1,k| and thus TC

[d]
n,k can be computed for small values of n and k (via the above

theorem).

Theorem 4.2.5. For d ≥ 2 let b[d]n,k,m (1 ≤ m ≤ n, 0 ≤ k ≤ n) be defined recursively as

b
[d]
n,k,m =

m∑
j=1

b
[d]
n−1,k,j +

(
n+m+ dk − k − 2

d− 1

) m∑
j=1

b
[d]
n−1,k−1,j

with initial conditions b[d]n,k,m = 0 for n < m, b[d]n,−1,m = 0 and b[d]1,0,1 = 1. Then,

|W [d]
n,k| =

∑
m≥1

b
[d]
n,k,m.

Remark 4.2.6. This recurrence generalizes both the recurrence from Proposition 3 in [17] (bi-

combining tree-child networks and k = n − 1) and Lemma 3.4 in [7] (d-combining tree-child

networks with k = n− 1).

Proof. Let B[d]
n,k,m denote the subset of words in W [d]

n,k that end with the suffix

ωnωm . . . ωn−1ωn.

Moreover, set b[d]n,k,m := |B[d]
n,k,m|.

For example, B[3]
2,1,1 denotes the subset of words from W [3]

2,1 that end with bab. So,

b
[3]
2,1,1 = 4 : B[3]

2,1,1 = {abbbab, babbab, bbabab, aaabab}.

To prove the recurrence, we divide B[d]
n,k,m into two parts according to whether ωn is a letter

which occurs twice or d+ 1 times.
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If ωn occurs twice, then we construct such words from B[d]
n−1,k,j . Since the suffix of our

words is ωnωm . . . ωn−1ωn, we can collect all words in B[d]
n−1,k,j with suffix ωm . . . ωn−1 and

add one ωn before the last ωm and one ωn after the last ωn−1. Note that in order that this is

possible, we must have j ≤ m. Also recall that |B[d]
n−1,k,j| = b

[d]
n−1,k,j . Thus, we overall obtain∑m

j=1 b
[d]
n−1,k,j words in this case.

Next, if ωn occurs d + 1 times, then we construct such words from B[d]
n−1,k−1,j . The con-

struction is the same as above, but with the difference that we now have to add d− 1 more ωn’s

to words from B[d]
n−1,k−1,j . Since words from the latter set have

(d+ 1)k + 2(n− k)− (n−m+ 2) = n+m+ dk − k − 2

letters in front of the suffix ωm . . . ωn−1, we have(
n+m+ dk − k − 2

d− 1

)
possible choices for the positions of the first d − 1 ωn’s. Thus, the number of words in the

second part are
(
n+m+dk−k−2

d−1

)∑m
j=1 b

[d]
n−1,k−1,j .

We add the two parts together and get the result.

We conclude this section with an observation which might be helpful for proving Conjec-

ture 3.3.3. (We drop the superindex of b[d]n,k,m since d = 2.)

Lemma 4.2.7. The following relation between |Cn,m| and bn,k,m holds:

|Cn,m| =
bn+1,n+1,m+1

2n+m+ 1
.

Proof. Every letter of a word counted by bn+1,n+1,m+1 repeats 3 times. Moreover, every such

word ends with ωm+1 . . . ωn+1. So, if we delete this suffix and the three occurrences of ωn+1,

we obtain a word in Cn,m. In addition, since the first ωn+1 can appear in 2n+m+1 places, we

obtain every word in Cn,m exactly 2n+m+ 1 times. This gives the claimed relation.

4.3 Distributional and asymptotic results for OTC[d]
n,k and TC

[d]
n,k

In the last two sections, we obtained a formula for OT C[d]
n,k and certain words to count networks

from T C[d]
n,k in a bijective way. Now we are going to use these results and tools in asymptotic

combinatorics (such as the Laplace method) to show some distributional and asymptotic results

if we pick one network from OT C[d]
n and T C[d]

n uniformly at random.
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4.3.1 Results for OTC
[d]
n,k

Form Theorem (4.1.1), we obtain the following limit distribution result for the number of retic-

ulation nodes. (Note that the result for d = 2 is already contained in Theorem 3.1.3.)

Theorem 4.3.1. Let R[d]
n be the number of reticulation nodes of network picked uniformly at

random from the set OT C[d]
n,k. Then, we have the following limit distribution result of R[d]

n .

(i) For d = 3, we have

n− 1−R(3)
n

w−→ Bessel(1, 2),

where Bessel(v, a) denotes the Bessel distribution, i.e.,

P(Bessel(1, 2) = k) =
1

I1(2)k!(k + 1)!
, (k ≥ 0).

Here, Iv(a) =
(
a
2

)v∑∞
k=0

1
k!Γ(k+v+1)

a2k

4k
is the modified Bessel function of the first kind.

(ii) For d ≥ 4, the limit law of n− 1−R
[d]
n is degenerate, i.e.,

n− 1−R[d]
n

w−→ 0.

Proof.

(i) For d = 3, by Theorem 4.1.1, we have the formula

OTC
[3]
n,k =

(
n

k

)
(2n+ k − 2)!

3k2n−1(n− k − 1)!
, (0 ≤ k ≤ n− 1).

Note that this sequences is increasing in k. (This is in contrast to d = 2 where this

sequence has a maximum at k = n −
√
n+ 1; see the proof of Theorem 3.1.3.) By

replacing k by n− 1− k and using Stirling’s formula, we obtain that

OTC
[3]
n,n−1−k =

1

k!(k + 1)!
· n(3n− 3)!

6n−1

(
1 +O

(
1 + k2

n

))
(4.2)

uniformly for k with k = o(
√
n). Thus, by a standard application of the Laplace method:

OTC[3]
n ∼

(∑
k≥0

1

k!(k + 1)!

)
· n(3n− 3)!

6n−1
= I1(2) ·

n(3n− 3)!

6n−1
. (4.3)

Now, since

P(R[3]
n = n− 1− k) =

OTC
[3]
n,n−1−k

OTC[3]
n

,

the claimed result follows from the above two expansions.
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(ii) For d ≥ 4, the details of the proof are the same as above, with the main difference that

the expansion now becomes

OTC
[d]
n,n−1−k =

(
d2d!

2dd

)k
1

k!(k + 1)!
· n(3−d)k · n(dn− d)!

d!n−1

(
1 +O

(
1 + k2

n

))
uniformly for k with k = o(

√
n). This expansion, for d ≥ 4, contains the (non-trivial

decreasing) factor n(3−d)k which is responsible for OTC[d]
n being now asymptotically

dominated by OTC
[d]
n,n−1 and the limiting distribution of n − 1 − R

[d]
n being degenerate.

This proves the claimed result also for d ≥ 4.

The above proof also contains the following first-order asymptotic result for OTC[d]
n with

d ≥ 3. (See Corollary 3.1.5 for d = 2.)

Corollary 4.3.2. (i) For d = 3, we have

OTC[3]
n ∼ I1(2) ·OTC

[3]
n,n−1 ∼

I1(2)
√
3

9π
(n!)3

(
9

2

)n

n−3.

(ii) For d ≥ 4, we have

OTC[d]
n ∼ OTC

[d]
n,n−1 ∼

d!

dd−1/2(2π)(d−1)/2
(n!)d

(
dd

d!

)n

n3(1−d)/2.

Proof. For d = 3, the first claim is (4.3) and the second follows from this by Stirling’s formula.

The proof for d ≥ 4 is similar.

4.3.2 Results for TC
[d]
n,k

In Section 3.2, we reviewed the proof of the Θ-result for TCn from [17]. A similar result also

holds for d ≥ 3 since the lemmas and propositions in Section 3.2 can all be extended to d ≥ 3.

For instance, Proposition 3.2.5 was already extended in Section 4.2 and Lemma 3.2.1 holds

(without differences) for d ≥ 3 as well. (We explicitly state this result because we will need it

below.)

Lemma 4.3.3. For any 1 ≤ k ≤ n− 1,

TC
[d]
n,n−1−k ≤

1

2k
TC

[d]
n,n−k.

Proof. The proof is the same as that of Lemma 3.2.1 with the only difference that now d − 1

nodes are inserted in the root edge and connected to the newly created reticulation node.
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The Θ-result for TC[d]
n,k was stated as one of the results in [7].

Theorem 4.3.4. We have,

TC[d]
n = Θ

(
(n!)d γ(d)n e3a1β(d)n

1/3

nα(d)
)
.

where a1 = −2.33810741 . . . is the largest root of the Airy function of the first kind and

α(d) = −d(3d− 1)

2(d+ 1)
, β(d) =

(
d− 1

d+ 1

)2/3

, γ(d) = 4
(d+ 1)d−1

(d− 1)!
.

As for the limit result for the number of reticulation nodes, the result is different from the

one for d = 2; see Theorem 3.2.6.

Theorem 4.3.5. For d ≥ 3, let I [d]n be the number of reticulation nodes of a network picked

uniformly at random from the set T C[d]
n . Then, the limit law of n− 1− I

[d]
n is degenerate, i.e,

n− 1− I [d]n
w−→ 0.

Proof. We restrict to the case d = 3; the case of larger d follows along similar lines.

We first explain a construction of T C[3]
n,n−1 from T Cn,n−1: for a network from T Cn,n−1,

we add a new parent (and corresponding edge) for each reticulation node to an edge on the

path-components we pass before we read the first parent of the recitulation node in the con-

struction of the word from the proof of Theorem 3.2.5. Depending on the choice of the edges,

we get several networks in T C[3]
n,n−1 which all have the same path-component indices and cor-

responding labels with the network of T Cn,n−1 (with respect to the encoding from Section 4.2).

Conversely, removing the first parent (and corresponding edge) of each reticulation node of a

network in T C[3]
n,n−1 gives a network in T Cn,n−1.

Equivalently, when viewing networks as words, any word in W [3]
n−1,n−1 can be obtained by

adding a new ωi at any positon before the first occurrence of ωi in a word from Wn−1,n−1, where

ωi runs through all letters.

For example: {baa1ab2b3} (a word in W2,2 with corresponding permutation) leads to

{bbaaa1ab2b3, babaa1ab2b3, abaa1ab2b3} (words in W [3]
2,2 with corresponding permutations).

Next, construct T C[3]
n,n−2 from T Cn,n−2 in a similar way. In particular, note that according

to what was discussed in Section 4.2, every network in T Cn,n−2 corresponds to two words from

Wn−1,n−2 and using for words of this set the same construction as above (but just applying it to
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1 23

1 23

abb1a3b2

a3abb1b2

1 23 1 23 1 23

(b)abb1a3b2 a(b)bb1a3b2

1 23 1 231 23

(b)a3abb1b2 a(b)3abb1b2 a3a(b)bb1b2

A network in T C3,1

Figure 4.2: Construction of the corresponding networks in T C[3]
3,1 from a network in T C3,1.

ωi which are repeated 3 times), we can obtain all words from W [3]
n−1,n−2. (The permutation is

irrelevant because it is not changed under the construction.)

For example, {abb1a3b2} and {a3abb1b2} encode the same network in T C3,1; {abb1a3b2}

leads to the words {babb1a3b2, abbb1a3b2} from W [3]
2,1 and {a3abb1b2} leads to the words

{ba3abbb1b2, ab3abb1b2, a3abbb1b2} from W [3]
2,1; see Figure 4.2 for a plot of the correspond-

ing networks from T C[3]
3,1.

Next, in the proof of Lemma 3.2.1, it was mentioned that TCn,n−1 = 2TCn,n−2 since a

network in T Cn,n−2 corresponds to exactly two networks in T Cn,n−1. Note that these networks

can be constructed from the two words in Wn−1,n−2 that represent the network in T Cn,n−2

by adding the letter which occurs only twice at the beginning of the word (or conversely, by
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removing the first letter). Thus, to show that TC[3]
n,n−2 = o(TC

[3]
n,n−1), it suffices to show that the

number of words in W [3]
n−1,n−2 generated by a word ω in Wn−1,n−2 is a small o of the number of

words in W [3]
n−1,n−1 generated by the word ω′ in Wn−1,n−1, where ω′ is constructed from ω as

above. In order to prove the latter, we denote by s(ω) the number of words which are generated

from ω and by r(ω′) the number of words which are generated from ω′. Moreover, we drop

the permutation since, as mentioned above, it is irrelevant for our argument. For example, if

ω = abbccabc, then ω′ = aabbccabc and

r(aabbccabc)

s(abbccabc)
=

1 · 4 · 7
2 · 5

.

More generally,
r(ω′)

s(ω)
=

k1 · k2 · · · kn
(k2 − 2) · · · (kn − 2)

,

where i denotes the i-th first parent of the letters in ω′ and ki indicates the number of possibil-

ities of adding an additional parent for i by the above method. Note that k1 = 1 and the ki’s

increase, thus, the ki
ki−2

’s decrease. Moreover, note that for each ki, we have ki ≤ 4(i− 1) + 1

since the upper bound is the extremal case that each of the previous i− 1 letters occur 4 times.

Consequently,

r(ω′)

s(ω)
=

k2 · · · kn
(k2 − 2) · · · (kn − 2)

≥ 5 · 9 · · · (4n− 3)

3 · 7 . . . (4n− 5)
= Θ

(
Γ(n+ 1

4
)

Γ(n− 1
4
)

)
= Θ(n1/2),

where we used Stirling’s formula for the gamma function in the last step. This implies that,

s(ω) = o(r(ω′)) which (as explained above) in turn implies that TC[3]
n,n−2 = o(TC

[3]
n,n−1). Next,

from Lemma 4.3.3,

TC
[3]
n,n−1−k = o(TC

[3]
n,n−1)

for all fixed k ≥ 1. Also, again by Lemma 4.3.3,
n−1∑
k=2

TC
[3]
n,n−1−k = O(TC

[3]
n,n−2) = o(TC

[3]
n,n−1).

Thus,

TC[3]
n = TC

[3]
n,n−1 + TC

[3]
n,n−2 +

n−1∑
k=2

TC
[3]
n,n−1−k ∼ TC

[3]
n,n−1.

Consequently,

P (n− 1− I [3]n = k) = P (I [3]n = n− 1− k) =
TC

[3]
n,n−1−k

TC[3]
n

−→

1, if k = 0;

0, if k ≥ 1

which proves the claim.
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We obtain the following corollary (which once again shows the difference with d = 2; see

Corollary 3.2.7).

Corollary 4.3.6. For d ≥ 3, We have

TC[d]
n ∼ TC

[d]
n,n−1.

4.4 Some open problems

Even though we can count tree-child networks exactly (see Section 4.2) and have found the limit

law for the number of reticulation nodes of a random tree-child network (see Section 4.3.2),

there are still lots of problems left.

In particular, limit law results for shape parameters of random tree-child networks (both bi-

combining and d-combining) are still little explored, e.g., distributional results of reticulation

nodes followed by a leaf in T C[d]
n , height of a network in T C[d]

n , Sackin index of a network

in T C[d]
n (actually we already have a results for this in the one-component case which will be

included in the journal version of [7]; see also [25] for results for d = 2) and distributional

results of the number of patterns in T C[d]
n . All this will be left for future work.
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Chapter 5

Ranked tree-child networks

We have given the definition of ranked tree-child networks (RTCNs) in Section 1.2. In this

chapter, we will review some of the results from [1]. In particular, we will focus on limit

distribution results for the number of occurrences of a pattern which we will improve and

generalize. Most of the material in this section is contained in [16].

5.1 Previous results

First, we recall the result for the number of RTCNs from [1].

Theorem 5.1.1. The number RTCNn,k of RTCNs with n leaves and k reticulation events sat-

isfies

RTCNn,k =

[
n− 1

n− 1− k

]
n!(n− 1)!

2n−1
,

where
[

n−1
n−1−k

]
denotes the unsigned Stirling numbers of first kind.

Note that
[

n−1
n−1−k

]
counts the number of permutations of length n−1 with exactly n−1−k

cycles and n!(n−1)!
2n−1 is the number of ranked trees. Indeed, there is a bijection between RTCNs

with n leaves and k reticulation nodes and these objects; see [3].

Remark 5.1.2. It was proved in [1] that almost no tree-child network is rankable. Also, it is not

clear how many different rankings a rankable network admits.

Next, we introduce a recursive construction (called forward construction in the sequel)

which allow us to study distributional properties of patterns in RTCNs.
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1. Start with a branching event;

2. In the ℓ− 1-st step pick uniformly at random a tuple (ℓ1, ℓ2) of lineages;

3. If ℓ1 = ℓ2 attach a branching event to lineage ℓ1;

4. If ℓ1 ̸= ℓ2 attach a reticulation event to the lineages ℓ1, ℓ2;

5. Stop once n lineages are obtained.

The above construction shows that when going from n lineages to n+1 lineages, a branch-

ing event will be created with probability 1/n and a reticulation event is created with probability

(n− 1)/n.

Note that the leaves of a network resulting from the above construction are not labeled and

incoming edges of reticulation events are ordered. So the resulting network is not a RTCN.

But the following lemma makes it possible to study the number of occurrences of a pattern in

RTCNs by the corresponding number of occurrences in a network constructed as above.

Let Xn denote number of occurrence of a pattern in a network which is constructed by the

procedure above.

Lemma 5.1.3. Xn has the same distribution as the number of occurrences of the pattern in a

RTCN with n leaves which is picked uniformly at random.

Remark 5.1.4. In the sequel, we will call a RTCN with n leaves which is picked uniformly at

random from all RTCNs with n leaves a random RTCN.

5.2 Patterns of height 1

Consider a random RTCN with n leaves. We will describe the number of occurrences of a

pattern via a Markov chain (using the procedure discussed in the last section).

First, we will consider the two patterns of height 1, where the height represents the number

of steps in the evolution process from the definition of a RTCN.

Definition 5.2.1. A cherry is a branching event whose outgoing lineages are leaves (or alter-

natively, it is a tree node with both children leaves).

A trident is a reticulation event with all three outgoing lineages leaves.
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Let Cn and Tn denote the number of cherries and tridents in a random RTCN with n leaves.

The following result was proved in [1].

Theorem 5.2.2. For cherries,

Cn
w−→ Poisson(1/4), as n→ ∞

and for tridents,
Tn
n

P−→ 1

7
, as n→ ∞.

The result for Tn is just a weak law of large numbers. We can improve it to a central limit

law.

Theorem 5.2.3. For the number Tn of tridents in a random ranked tree-child network with n

leaves, we have
Tn − n/7√
24n/637

w−→ N(0, 1), as n→ ∞. (5.1)

Note that cherry and tridents are all the patterns of height 1. Thus, the above two results

clarify the distributional behavior of all patterns of height 1.

The method of moments (see Section 2.2) and induction will be the main tools we use for

proving Theorem 5.2.3. But first, we recall the following Markov Chain about the variation of

the number of tridents when performing one more step in the forward construction.

Lemma 5.2.4. Define a Markov process by T2 = 0 and

(Tn+1|Tn = j) =



j − 1, with probability
3j(3j − 2)

n2
;

j, with probability 1− 3j(3j − 2) + (n− 3j)(n− 3j − 1)

n2
;

j + 1, with probability
(n− 3j)(n− 3j − 1)

n2
.

(5.2)

Then, Tn has the same distribution as the number of tridents in a random ranked tree-child

network with n leaves.

Using this lemma, it is not hard to compute the mean of Tn.

Lemma 5.2.5. Let µn := E(Tn). Then, µn satisfies the recurrence

µn+1 =

(
1− 3

n

)2

µn + 1− 1

n
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whose solution is given by

µn =
(15n3 − 85n2 + 144n− 71)n

105(n− 1)(n− 2)(n− 3)
, (n ≥ 4). (5.3)

Note that this result implies that µn ∼ n/7 as n→ ∞.

Next, we define

ϕn,m := E(Tn − µn)
m.

We focus on the central moments ϕn,m instead of E(Tm
n ) since a random variable Xn with

normal distribution satisfies

E ((Xn − EXn)
m) ∼ E (N(0, 1)m) (Var(Xn))

m/2 nm/2.

Moreover, ϕn,m is actually easier to compute since it already incorporates the cancellations

which arise from E(Tm
n ) ∼ (E(Tn))m.

The sequence ϕn,m satisfies the following recurrence.

Lemma 5.2.6. For m ≥ 2, we have

ϕn+1,m =

(
1− 3m

n

)2

ϕn,m + ψn,m

with

ψn,m =
m−1∑
j=0

ϕn,jΛj(n),

where Λj(n) admits the complete asymptotic expansion

Λj(n) ∼
∞∑
ℓ=0

λj,ℓ
nℓ
, as n→ ∞

with λj,ℓ ∈ R; in particular, λm−1,0 = 0 and

λm−2,0 =

(
m

2

)
× 24

49
.

Proof. Set T̄n := Tn − µn. From (5.2), we have

ϕn+1,m = E(T̄n + µn − µn+1 − 1)m
3(T̄n + µn)(3(T̄n + µn)− 2)

n2

+ E(T̄n + µn − µn+1)
m

× n2 − 3(T̄n + µn)(3(T̄n + µn)− 2 + (n− 3(T̄n + µn))(n− 3(T̄n + µn)− 1)

n2

+ E(T̄n + µn − µn+1 + 1)m
(n− 3(T̄n + µn))(n− 3(T̄n + µn)− 1)

n2
.
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From this, by expanding what is inside the means by the binomial theorem, we see that

ψn,m =
m+2∑
j=0

ϕn,jΛj(n).

However, Λm+2(n) = 0 (because the probabilities in (5.2) sum up to 1). Straightforward

computation (best done with a computer algebra system such as Maple) shows that Λm+1(n) =

Λm(n) = 0. Next, since (5.3) implies that µn − µn+1 ∼
∑

ℓ≥0 λℓ/n
ℓ, we have

Λj(n) ∼
∞∑
ℓ=0

λj,ℓ
nℓ
, as n→ ∞

and by some more computations (again best done with Maple), we obtain that λm−1,0 = 0 and

that λm−2,0 is as claimed.

Note that the above recurrence has the (general) form

ϕn+1 =
(
1− κ

n

)2
ϕn + ψn, (n ≥ κ+ 1) (5.4)

with a suitable initial value ϕκ+1, where κ ∈ N and {ψn}n≥κ+1 is a given sequence. We need a

general result for such a sequence.

Lemma 5.2.7. Assume that ϕn satisfies (5.4). If ψn ∼ cnα with α > −2κ − 1 a real number,

then

ϕn ∼ c

2κ+ α + 1
nα+1, as n→ ∞.

Remark 5.2.8. Throughout the rest of the thesis, the notation f(n) ∼ cg(n) (with g(n) > 0)

means that f(n) = cg(n) + o(g(n)). (Note that this is the usual meaning if c ̸= 0; however, if

c = 0, then f(n) = o(g(n).)

Proof. Iterating (5.4) gives the solution

ϕn =

(
n− 1

κ

)−2
(
ψκ+1 +

n−1∑
ℓ=κ+1

(
ℓ

κ

)2

ψℓ

)
. (5.5)

Note that (
ℓ

κ

)2

∼ ℓ2κ

κ!2
, as ℓ→ ∞. (5.6)

Thus, if ψn ∼ cnα, then

ψκ+1 +
n−1∑

ℓ=κ+1

(
ℓ

κ

)2

ψℓ ∼
c

κ!2

n−1∑
ℓ=κ+1

ℓ2κ+α ∼ c

κ!2(2κ+ α + 1)
n2κ+α+1.
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Plugging this into (5.5) and using once more (5.6) gives the claimed result.

Applying the last result to the recurrence for the central moments (Lemma 5.2.6) and using

induction gives the following asymptotic result for all central moments of Tn. (This method is

called moment pumping.)

Proposition 5.2.9. As n→ ∞, the central moments of Tn satisfy

E ((Tn − µn)
m) ∼ gm

(
24

637

)m/2

nm/2.

Here, gm = E(N(0, 1)m) (see (2.5)).

Proof. The claim (trivially) holds for m = 0 and m = 1. Next, we assume that the claim holds

for all m′ < m. In order to show it for m, note that from the induction hypothesis, we have for

ψn,m from Lemma 5.2.6:

ψn,m ∼
(
m

2

)
× 24

49
× gm−2

(
24

637

)m/2−1

nm/2−1.

Applying Lemma 5.2.7, we obtain that

ϕn,m ∼
(
m

2

)
× 24

49
× gm−2

6m+m/2

(
24

637

)m/2−1

nm/2 ∼ (m− 1)gm−2

(
24

637

)m/2

nm/2

from which the claimed result follows since (m− 1)gm−2 = gm.

Theorem 5.2.3 follows now from the last proposition by the Proposition 2.2.1 and Proposi-

tion 2.2.2. (See also the discussions after these propositions.)

5.3 Patterns of height 2

In this section, we study the behavior of patterns of height 2. There are a total of 9 such patterns

(see Figure 5.1) and we can divide them into 3 groups according to their order of the expectation

and limit distribution.

Theorem 5.3.1. Denote by Xn the number of occurrences of a (fixed) pattern of height 2 in a

random ranked tree-child networks with n leaves. Then, we have the following limit law results.

(A) For the patterns in Figure 5.1-(a), we have that the limit law of Xn is degenerate. More

precisely,

Xn
L1−→ 0, as n→ ∞.
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(a) (b) (c)

(ii)

(ii)

(ii)

(iii)

(iv) (v)

(i)
(i)

(i)

Figure 5.1: All patterns of height 2. In a RTCN with a large number of leaves, the number of

occurrence of these patterns is as follows: (a) do not occur (mean tends to 0); (b) occur only

sporadically (mean is constant); (c) occur frequently (mean is linear).

(B) For the patterns in Figure 5.1-(b), we have

Xn
w−→ Poisson(λ), as n→ ∞,

where

(b-i) (b-ii) (b-iii) (b-iv) (b-v)

λ 1/8 1/28 1/56 1/14 1/28

(C) For the patterns in Figure 5.1-(c), we have

Xn − µn

σ
√
n

w−→ N(0, 1), as n → ∞,

where (µ, σ2) = (4/77, 4575916/137582445) and (µ, σ2) = (2/77, 2930764/137582445)

for the patterns from Figure 5.1-(c-i) and Figure 5.1-(c-ii), respectively.

Note that from the last section, we have the following results:

E(Tm
n ) ∼ µm

n ∼ nm

7m
, as n→ ∞, (5.7)

56



‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i  U

niv

ers
i t

y

DOI:10.6814/NCCU202201049

and

E

(
Tn − n/7√
24n/637

)m

∼ E(N(0, 1))m, as n→ ∞, (5.8)

and

E(Cm
n ) := E(Cn(Cn − 1) · · · (Cn −m+ 1)) ∼ 1

4m
, as n→ ∞. (5.9)

The proof of Theorem 5.3.1 will proceed along similar lines as the proof of Theorem 5.2.3 and

the results above will play an important role in the proof.

In our paper [15], we discussed several cases in detail and in this thesis, we will discuss the

remaining cases as a supplement.

Degenerate Limit Laws. We will consider the pattern in Figure 5.1-(a-i) first. Our method

will be more general than needed since this generality will be used in proof of the other cases.

Type B Type CType A

Figure 5.2: The pattern from Figure 5.1-(a-i) (Type A); A cherry (Type B); The remaining

external lineages (Type C).

(a-i) Call the pattern in Figure 5.1-(a-i) a pattern of type A and a cherry a pattern of type

B in the sequel. Note that each external lineage (which are lineages at the bottom of a RTCN)

belongs either exactly to a pattern of type A or a pattern of type B or to neither of these patterns

(such a lineage will be called a pattern of type C in the sequel). See Figure 5.2. We list what

will happen with the number of patterns of type A and type B when we add a branching or

reticulation event so that n lineages become n+ 1 lineages.

First, if a branching event is added, then we have the cases from Table 5.1.

For instance, if the branching event is attached to any of the three external lineages from

a pattern of type A, then one patterns of type B is created whereas one pattern of type A was

destroyed; this is the first row in Table 5.1 and the probability that this happens is given by the
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type A type B probability

type A −1 +1 3a/n2

type B 0 0 2b/n2

type C 0 +1 (n− 3a− 2b)/n2

Table 5.1: The change of the number of patterns of typeA and typeB (first and second column)

if a branching event is attached to an external lineage belonging to a pattern of type A, type B

or type C (rows). Here, a and b denote the number of patterns of type A and B, respectively.

The probability for each cases is given in the third column if one starts with a ranked tree-child

network with n leaves (and thus the probability of picking a fixed external lineage is 1/n2).

number of possible choices of such a lineage (3a) divided by the number of choices of a pair of

two external lineages (n2). Likewise, the second row is the case where the branching event is

attached to a reticulation event, thus the number of pattern of type A and type B do not change.

Similarly, the remaining row is explained.

Next, if a reticulation event is added, then we have the cases listed in Table 5.2.

For instance, the sixth row of this column is explained as follows: if the reticulation event

is attached to an external lineage belonging to a pattern of type A and an external lineage from

a pattern of type B, then a pattern of type A and type B is destroyed (and no new pattern of

type A or type B is created). The probability that this will happen is given by the number of

choices of the external lineages divided by n2; the number of choices equals 3a · 2b · 2 since

once the patterns of type A and B are chosen (ab choices) there are 3 choices for the external

lineages in the pattern of type A and 2 in the pattern of type B; moreover, the factor 2 comes

from symmetry. Similarly, the other rows are explained.

Table 5.1 and Table 5.2 give the transition probabilities of a Markov Chain for the variation

of the number of patterns of type A and type B in a RTCN with n leaves. From this Markov

chain, by a straightforward computation, we obtain the following.

Lemma 5.3.2. Let Xn be the number of occurrences of the pattern from Figure 5.1-(a-i) in a

random ranked tree-child network with n leaves. Then,

E(Xn+1) =

(
1− 3

n

)2

E(Xn) +
2E(Cn)

n2
, (5.10)
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type A type B probability

A −1 0 6a/n2

A & A −2 0 9a(a− 1)/n2

B +1 −1 2b/n2

B & B 0 −2 4b(b− 1)/n2

C & C 0 0 (n− 3a− 2b)(n− 3a− 2b− 1)/n2

A & B −1 −1 12ab/n2

A & C −1 0 6a(n− 3a− 2b)/n2

B & C 0 −1 4b(n− 3a− 2b)/n2

Table 5.2: Columns: The change of the number of patterns of type A (first column) and type B

(second column); the probabilities of these changes are contained in the last column. Rows: a

single letter means that both external lineages are picked from a pattern of that type; two letters

mean that the external lineages are chosen from (different) patterns of these two types.

where Cn is the number of cherries.

Using this, we can proof one case in Theorem 5.3.1.

Proof of Theorem 5.3.1-(a) for the pattern in Figure 5.1-(a-i). The recurrence (5.10) has the

form (5.4) with

ψn =
2E(Cn)

n2
∼ 1

2n2
,

where the last step follows from (5.9). Applying Lemma 5.2.7 gives

E(Xn) ∼
1

10n

which implies the claimed result.

(a-ii) Here, we consider the pattern in Figure 5.1-(a-ii). The treatment of this pattern is

slightly different from the pattern (a-i). Note that patterns of type A are still the pattern in

Figure 5.1-(a-i), but patterns of type B are cherries which are not contained in patterns of type

A. Since this case has been explained in [15], only the tables for the transition probabilities if a

branching or reticulation event is added are given here.
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type A type B probability

type A
−1 +2 a/n2

0 0 2a/n2

type B +1 −1 2b/n2

type C 0 +1 (n− 3a− 2b)/n2

Table 5.3: The change of the number of patterns of type A and type B for (a-ii) if a branching

event is added.

type A type B probability

A −1 0 6a/n2

A & A

−2 0 4a(a− 1)/n2

−2 +1 4a(a− 1)/n2

−2 +2 a(a− 1)/n2

B 0 −1 2b/n2

B & B 0 −2 4b(b− 1)/n2

C & C 0 0 (n− 3a− 2b)(n− 3a− 2b− 1)/n2

A & B
−1 −1 8ab/n2

−1 0 4ab/n2

A & C
−1 0 4a(n− 3a− 2b)/n2

−1 +1 2a(n− 3a− 2b)/n2

B & C 0 −1 4b(n− 3a− 2b)/n2

Table 5.4: The change of the number of patterns of type A and type B of (a-ii) if a reticulation

event is added.

From these tables, one can find that the number of occurrences of the pattern from (a-ii)

shares the same recurrence as the pattern from (a-i). Thus, they have the same result.

Poisson Limit Laws. The pattern in Figure 5.1-(b-i) is special compared to the other patterns

in Figure 5.1-(b); thus, we will discuss it later. On the other hand, the proof of remaining four

patterns is the same. Consequently, we will only give details for (b-ii).
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Type A Type B Type C

Figure 5.3: The pattern from Figure 5.1-(b-ii) (Type A); A trident (Type B); The remaining

external lineages (Type C).

Similarly as above, we define patterns of type A, type B and type C: the pattern (b-ii) is of

type A, a trident is a pattern of type B and patterns of type C are similarly defined as for (a-i).

Then, we again can find the transition probabilities of the corresponding Markov chain; see

Table 5.5 when a branching event is added and Table 5.6 when a reticulation event is added.

Then, we have the following results for mixed moments.

type A type B probability

A −1 0 4a/n2

B
+1 −1 2b/n2

0 −1 b/n2

C 0 0 (n− 4a− 3b)/n2

Table 5.5: The change of the number of patterns of type A and typeB for (b-ii) (see Figure 5.3)

when the next event is a branching event.

Lemma 5.3.3. Let Xn be the number of occurrences of the pattern from Figure 5.1-(b-ii) in a

random ranked tree-child network with n leaves. Then, for all r, s ≥ 0, we have

E(Xr
n+1T

s
n+1) =

(
1− 4r + 3s

n

)2

E(Xr
nT

s
n) +

2r

n2
E(Xr−1

n T s+1
n )− 2rs

n2
E(Xr−1

n T s
n) +Rn,

where

Rn =
s−1∑
j=0

(
λj,0 +

λj,1
n

+
λj,2
n2

)
E(Xr

nT
j
n).

Here, λj,i are constants which only depend on r and s with λs−1,0 = s.
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type A type B probability

A −1 +1 12a/n2

A & A −2 +1 16a(a− 1)/n2

B 0 0 6b/n2

B & B 0 −1 9b(b− 1)/n2

C & C 0 +1 (n− 4a− 3b)(n− 4a− 3b− 1)/n2

A & B −1 0 24ab/n2

A & C −1 +1 8a(n− 4a− 3b)/n2

B & C 0 0 6b(n− 4a− 3b)/n2

Table 5.6: The change of the number of patterns of type A and typeB for (b-ii) (see Figure 5.3)

when the next event is a reticulation event.

Proof. Assume that Xn = c and Tn = d. Then, we have c patterns of type A and d patterns of

type B.

Using the cases from Table 5.5 and Table 5.6, we can write Xr
n+1T

s
n+1 given Xn = c and

Tn = d as a sum of terms (Xn + k)r(Tn + ℓ)s which are multiplied with the probabilities of

every case and where k ∈ {−2,−1, 0, 1} is the value from the first column and ℓ ∈ {−1, 0, 1}

is the value of the second column for every case.

Next, we replace (Xn + k)r for k = −2 and k = −1 by

(Xn − 2)r =
(Xn − r)(Xn − r − 1)

Xn(Xn − 1)
Xr

n, (Xn − 1)r =
Xn − r

Xn

Xr
n

and for k = 1 by

(Xn + 1)r =
Xn + 1

Xn − r + 1
Xr

n.

Finally, we expand (Tn + ℓ)s by the binomial theorem and simplify the sum of all terms of

the same order in this expansion with Maple. (Note that since ℓ ∈ {−1, 0, 1} this only has to

be done for the first three terms in the expansion; the other terms are the same only multiplied

with different weights). This proves the claimed result.

Proof of Theorem 5.3.1-(b) for the pattern in Figure 5.1-(b-ii). As above, let Xn denote the

number of occurrences of the pattern from Figure 5.1-(b-ii) in a random ranked tree-child net-
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type A type B probability

A −1 0 4a/n2

B
+1 −1 b/n2

0 −1 2b/n2

C 0 0 (n− 4a− 3b)/n2

Table 5.7: The change of the number of patterns of type A and type B for (b-iii) when the next

event is a branching event.

type A type B probability

A −1 +1 12a/n2

B 0 0 6b/n2

A & A −2 +1 16a(a− 1)/n2

B & B 0 −1 9b(b− 1)/n2

C & C 0 +1 (n− 4a− 3b)(n− 4a− 3b− 1)/n2

A & B −1 0 24ab/n2

A & C −1 +1 8a(n− 4a− 3b)/n2

B & C 0 0 6b(n− 4a− 3b)/n2

Table 5.8: The change of the number of patterns of type A and type B for (b-iii) when the next

event is a reticulation event.

work with n leaves. We will use induction to show that for all r, s ≥ 0:

E(Xr
nT

s
n) ∼

ns

28r7s
, as n→ ∞, (5.11)

where the induction is with respect to the lexicographic order of (r, s). Note that the base case,

namely (0, s) with s ≥ 0, is implied by (5.7). Next, by the above lemma E(Xr
nT

s
n) satisfies a

recurrence of the form (5.4) with all terms in ψn being of a smaller lexicographic order. Thus,

by using the induction hypothesis,

ψn ∼ 2r

n2
E(Xr−1

n T s+1
n ) + λs−1,0E(Xr

nT
s−1
n ) ∼ 8r + 7s

28r7s
ns−1.

The induction claim follows now from this by applying Lemma 5.2.7.
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type A type B probability

A
−1 0 3a/n2

−1 +1 a/n2

B 0 −1 3b/n2

C 0 0 (n− 4a− 3b)/n2

Table 5.9: The change of the number of patterns of type A and type B for (b-iv) when the next

event is a branching event.

type A type B probability

A
−1 +1 8a/n2

0 0 4a/n2

A & A

−2 +1 9a(a− 1)/n2

−2 +2 6a(a− 1)/n2

−2 +3 a(a− 1)/n2

B
0 0 2b/n2

+1 −1 4b/n2

B & B 0 −1 9b(b− 1)/n2

C & C 0 +1 (n− 4a− 3b)(n− 4a− 3b− 1)/n2

A & B
−1 0 18ab/n2

−1 +1 6ab/n2

A & C
−1 +1 6a(n− 4a− 3b)/n2

−1 +2 2a(n− 4a− 3b)/n2

B & C 0 0 6b(n− 4a− 3b)/n2

Table 5.10: The change of the number of patterns of typeA and typeB for (b-iv) when the next

event is a reticulation event.

For the remaining three patterns, we will only give their tables and asymptotic recurrence.

First, by Table 5.7 and Table 5.8, we have the recurrence for (b-iii):

E(Xr
n+1T

s
n+1) ∼

(
1− 4r + 3s

n

)2

E(Xr
nT

s
n) +

r

n2
E(Xr−1

n T s+1
n ) + sE(Xr

nT
s−1
n ).
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type A type B probability

A
−1 0 3a/n2

−1 +1 a/n2

B 0 −1 3b/n2

C 0 0 (n− 4a− 3b)/n2

Table 5.11: The change of the number of patterns of type A and type B for (b-v) when the next

event is a branching event.

type A type B probability

A
−1 +1 10a/n2

0 0 2a/n2

A & A

−2 +1 9a(a− 1)/n2

−2 +2 6a(a− 1)/n2

−2 +3 a(a− 1)/n2

B
0 0 4b/n2

+1 −1 2b/n2

B & B 0 −1 9b(b− 1)/n2

C & C 0 +1 (n− 4a− 3b)(n− 4a− 3b− 1)/n2

A & B
−1 0 18ab/n2

−1 +1 6ab/n2

A & C
−1 +1 6a(n− 4a− 3b)/n2

−1 +2 2a(n− 4a− 3b)/n2

B & C 0 0 6b(n− 4a− 3b)/n2

Table 5.12: The change of the number of patterns of type A and type B for (b-v) when the next

event is a reticulation event.

Thus, Xn ∼ Poisson( 1
28
).

Next, by Table 5.9 and Table 5.10, we have the recurrence for (b-iv):

E(Xr
n+1T

s
n+1) ∼

(
1− 4r + 3s

n

)2

E(Xr
nT

s
n) +

4r

n2
E(Xr−1

n T s+1
n ) + sE(Xr

nT
s−1
n ).
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(a) (b)

Type A Type B Type C Type D

Figure 5.4: (a) The overlapping pattern containing two versions of (b-i). (b) Classification

of types of patterns for (b-i): The pattern from (a) (Type A); The pattern (b-i) which is not

contained in a pattern of type A (Type B); A cherry (Type C); The remaining external lineages

(Type D).

Thus, Xn ∼ Poisson( 1
14
).

Finally, by Table 5.11 and Table 5.12, we have for the recurrence for (b-iv):

E(Xr
n+1T

s
n+1) ∼

(
1− 4r + 3s

n

)2

E(Xr
nT

s
n) +

2r

n2
E(Xr−1

n T s+1
n ) + sE(Xr

nT
s−1
n ).

Thus, Xn ∼ Poisson( 1
28
).

Now, we return to (b-i). This pattern is more difficult to study than the other four Poisson

patterns, since two occurrences of this pattern in a RTCN might overlap; see (a) in Figure 5.4.

(In this figure, we do not care about the ranks of the first two events.) So in order to set up

the correct Markov chain, we now have one more type to consider than before, which is the

overlap case; see type A in Figure 5.4. In addition a pattern of type B is a pattern (b-i) which is

not contained in a pattern of type A, a pattern of type B is a cherry and patterns of type C are

all remaining external lineages.

Assume that the number of patterns of type A, type B and type C in a ranked tree-child

network with n leaves is given by a, b and c, respectively. Table 5.13 and Table 5.14 give the

transition probabilities of the Markov chain for the number of patterns of type A, type B and

type C. Note that the number of (b-i) is actually 2a+ b.

We now have the following result.

Lemma 5.3.4. Denote by Yn and X̃n the number of occurrences of patterns of type A and type

B, respectively, in a random ranked tree-child network with n leaves. Then, for r, s, t ≥ 0, we
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type A type B type C probability

A
−1 0 +1 3a/n2

−1 +1 +1 2a/n2

B 0 −1 +1 4b/n2

C 0 0 0 2c/n2

D 0 0 +1 (n− 5a− 4b− 2c)/n2

Table 5.13: The change of the number of patterns of type A, type B and type C for (b-i) when

the next event is a branching event.

have

E(Y r
n+1X̃

s
n+1C

t
n+1) =

(
1− 5r + 4s+ 2t

n

)2

E(Y r
n X̃

s
nC

t
n) +

t

n
E(Y r

n X̃
s
nC

t−1
n ) (5.12)

+
4s

n
E(Y r+1

n X̃
s−1
n Ct

n) +
4s

n
E(Y r

n X̃
s−1
n C

t+1
n ) +

Rn

n2
,

where Rn is given by

t(2− 5r − 4s− 2t)E(Y r
n X̃

s
nC

t−1
n )− 2s(1 + 10r + 8s+ 4t)E(Y r+1

n X̃
s−1
n Ct

n)

+ 4s(2− 5r − 4s− 2t)E(Y r
n X̃

s−1
n C

t+1
n ).

+ 4rE(Y r−1
n X̃s

nC
t+2
n ) + 2stE(Y r+1

n X̃
s−1
n C

t−1
n )− 8sE(Y r

n X̃
s−1
n C

t+2
n )

+ 4s(s− 1)E(Y r+2
n X̃

s−2
n Ct

n) + 8s(s− 1)E(Y r+1
n X̃

s−2
n C

t+1
n ).

Proof. Using the results from Table 5.13 and Table 5.14, E(Y r
n+1X̃

s
n+1C

t
n+1) given Yn, X̃n and

Cn can be written as a sum of terms of the form

(Yn + k)r(X̃n + ℓ)s(Cn +m)t

which are multiplied with the probabilities. Here, k, ℓ and m are suitable integers, e.g., for the

contribution from the third sub-row of column A & A in Table 5.14, we have k = −2, ℓ =

2,m = 0. Then, we rewrite, e.g., this term as

(Yn − 2)r(X̃n + 2)sCt
n =

(Yn − r)(Yn − r − 1)(X̃n + 2)(X̃n + 1)

Yn(Yn − 1)(X̃n − s)(X̃n − s− 1)
Y r
n X̃

s
nC

t
n

and similar for the other terms. The rest of the proof is just a long computation (which is best

done with the help of Maple).

The last lemma implies the following result.
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type A type B type C probability

A −1 0 0 20an2

A & A

−2 0 0 9a(a− 1)/n2

−2 +1 0 12a(a− 1)/n2

−2 +2 0 4a(a− 1)/n2

B 0 −1 0 12b/n2

B& B 0 −2 0 16b(b− 1)/n2

C 0 0 −1 2c/n2

C & C +1 0 −2 4c(c− 1)/n2

D & D 0 0 0 (n− 5a− 4b− 2c)(n− 5a− 4b− 2c− 1)/n2

A & B
−1 −1 0 24ab/n2

−1 0 0 16ab/n2

A & C
−1 +1 −1 12ac/n2

−1 +2 −1 8ac/n2

A & D
−1 0 0 6a(n− 5a− 4b− 2c)/n2

−1 +1 0 4a(n− 5a− 4b− 2c)/n2

B & C 0 0 −1 16bc/n2

B & D 0 −1 0 8b(n− 5a− 4b− 2c)/n2

C & D 0 +1 −1 4c(n− 5a− 4b− 2c)/n2

Table 5.14: The change of the number of patterns of type A and type B for (b-i) when the next

event is a reticulation event.

Proposition 5.3.5. (a) Let Yn be the number of occurrences of the pattern from Figure 5.4-

(a) in a random ranked tree-child network with n leaves. Then,

Yn
L1−→ 0, as n→ ∞.

(b) Define X̃n as in Lemma 5.3.4. Then,

(X̃n, Cn)
w−→ (X̃, C), as n→ ∞,

where X̃ andC are independent Poisson random variables with parameters 1/8 and 1/4,

respectively.
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Proof. We use induction with respect to the lexicographic order on (s, r, t) to show that for all

r, s, t ≥ 0:

E(Y r
n X̃

s
nC

t
n) ∼ 0r ·

(
1

8

)s

·
(
1

4

)t

, (5.13)

where we use the convention that 00 := 1; both claims then follow from this result.

First, note that the second, third and fourth term on the right hand side of (5.3.4) and all

terms in Rn are of a smaller lexicographic order than (s, r, t). Also note that (5.3.4) has the

form (5.4).

Now, the induction base holds because of (5.9). Next, assume that the claim holds for all

sequences (s′, r′, t′) which are lexicographic smaller than (s, r, t).

If r > 0 then the induction hypothesis implies that (5.3.4) satisfies (5.4) with ψn = o(1/n).

Thus, from Lemma 5.2.7, we obtain that E(Y r
n X̃

s
nC

t
n) = o(1) which proves the claim in this

case.

Let r = 0, then again by the induction claim, (5.3.4) is of the form (5.4) with

ψn ∼ t

n
E(X̃s

nC
t−1
n ) +

4s

n
E(X̃s−1

n C
t+1
n ) ∼ 8s+ 4t

8s4tn
.

Thus, by Lemma 5.2.7

E(X̃s
nC

t
n) ∼

1

8s4t
.

which also proves the claim in this case.

Now, we can prove the limit law result for (b-i).

Proof of Theorem 5.3.1-(b) for the pattern in Figure 5.1-(b-i). First note that Xn = X̃n + 2Yn.

Since by Proposition 5.3.5, we have Yn
L1−→ 0 which implies Yn

P−→ 0 and X̃n ∼

Poisson(1/8), by Theorem 2.2.6, we obtain that Xn ∼ Poisson(1/8).

This proves the claimed result.

Remark 5.3.6. Note that it is also feasible to prove directly:

E(Y r
nX

s̃
nC

t
n) ∼ 0r ·

(
1

8

)s

·
(
1

4

)t

. (5.14)

However, computations will be more messy.

Normal Limit Laws. In this paragraph, we consider the patterns in Figure 5.1-(c) which

according to Theorem 5.3.1 are both normal distributed. We will only give details for the
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Type A Type B Type C Type D

(a) (b)

Figure 5.5: (a) The overlapping pattern containing two versions of (c-i). (b) Classification

of types of patterns for (c-i): The pattern from (a) (Type A); The pattern (c-i) which is not

contained in a pattern of type A (Type B); A trident which is not contained in a pattern of type

A or type B (Type C); The remaining external lineages (Type D).

pattern in Figure 5.1-(c-i) since the pattern in Figure 5.1-(c-ii) can be studied in the same way;

see [15].

Note that the pattern in Figure 5.1-(c-i) is similar to the pattern in Figure 5.1-(b-i), namely,

both can overlap; see Figure 5.5-(a). Thus, we will consider again four types of patterns in

the sequel; see Figure 5.5-(b). Assume that a RTCN with n leaves contains a, b and c patterns

of type A,B and C, respectively. We will list the transition probabilities if a reticulation or

branching event is attached to an RTCN with n leaves. However, this time there are a lot more

cases than before. We list all of them in Tables 5.15-5.17.

Using these tables, we can first derive the means of the number of occurrences of the pat-

terns from Figure 5.1-(c-i) and Figure 5.5-(a).

Lemma 5.3.7. Denote byXn and Yn the number of occurrences of the patterns from Figure 5.1-

(c-i) and Figure 5.5-(a), respectively. Let ρn := E(Xn) and τn := E(Yn). Then,

ρn+1 =

(
1− 5

n

)2

ρn +
2

n
E(Tn)−

6

n2
E(Tn)

and

τn+1 =

(
1− 7

n

)2

τn −
1

n2
E(Tn) +

1

n2
E(T 2

n).

The solutions of the above two recurrences are given by

ρn =
(1080n5 − 16668n4 + 96992n3 − 261735n2 + 319471n− 135654)n

41580(n− 1)(n− 2)(n− 3)(n− 4)(n− 5)
, (n ≥ 6)

(5.15)
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type A type B type C probability

A
−1 0 0 3a/n2

−1 +1 0 4a/n2

B
0 −1 0 3b/n2

0 −1 +1 2b/n2

C 0 0 −1 3c/n2

D 0 0 0 (n− 7a− 5b− 3c)/n2

Table 5.15: The change of the number of patterns of type A,B and C (see Figure 5.5-(b)) when

the next event is a branching event.

and, for n ≥ 7,

τn = (4290n7−125730n6+1509970n5−9550275n4+33968326n3−66128140n−24510098)n
3153150(n−1)(n−2)(n−3)(n−4)(n−5)(n−6)(n−7)

. (5.16)

Proof. Assume that Yn = d,Xn = e and Tn = f . Then, we have d patterns of type A, e − 2d

patterns of type B and f + e− d patterns of type C.

Next, we use the transition probabilities from the Tables 5.15-5.17 to get the recurrence for

µn and ρn. Note that both recurrences are of type (5.4) whose exact solution is given by (5.5).

Using the result from Lemma 5.2.5, a corresponding result for E(T 2
n), namely,

E(Tn)2 = (32175n7−594825n6+3960110n5−10054065n4−2875852n3+58833733n2−92961907n+42401933)n
1576575(n−1)(n−2)(n−3)(n−4)(n−5)(n−6)

and straightforward computations (best done with Maple) gives the claimed results for ρn and

τn.

We next derive the recurrence for the mixed moments.

Lemma 5.3.8. Denote byXn and Yn the number of occurrences of the patterns from Figure 5.1-

(c-i) and Figure 5.5-(a), respectively, in a random RTCN with n leaves. Moreover, set µn :=

E(Tn), ρn := E(Xn), τn := E(Yn) and T̄n := Tn − µn, X̄n := Xn − ρn, Ȳn := Yn − τn. Then,

for all r, s, t ≥ 0, we have

E(Ȳ r
n+1X̄

s
n+1T̄

t
n+1) =

(
1− 7r + 5s+ 3t

n

)2

E(Ȳ r
n X̄

s
nT̄

t
n) +Rn (5.17)
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type A type B type C probability

A

−1 0 +1 22a/n2

−1 0 +2 8a/n2

−1 +1 0 8a/n2

−1 +1 +1 4a/n2

A & A

−1 0 0 a(a− 1)/n2

−2 0 +1 4a(a− 1)/n2

−2 +1 0 4a(a− 1)/n2

−2 +1 +1 16a(a− 1)/n2

−2 +2 0 8a(a− 1)/n2

−2 +2 +1 16a(a− 1)/n2

B

0 0 0 4b/n2

0 −1 +1 14b/n2

0 −1 +2 2b/n2

B & B

0 −1 0 4b(b− 1)/n2

0 −1 +1 4b(b− 1)/n2

0 −2 +1 4b(b− 1)/n2

0 −2 +2 8b(b− 1)/n2

0 −2 +3 4b(b− 1)/n2

+1 −2 0 b(b− 1)/n2

C 0 0 0 6c/n2

C & C

0 0 −1 4c(c− 1)/n2

0 +1 −2 4c(c− 1)/n2

+1 0 −2 c(c− 1)/n2

D & D 0 0 +1 (n− 7a− 5b− 3c)(n− 7a− 5b− 3c− 1)/n2

Table 5.16: The variation of the number of patterns of type A,B and C (see Figure 5.5-

(b)) when attaching the next reticulation event to one or two patterns of type X with X ∈

{A,B,C,D} .
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type A type B type C probability

A & B

0 −1 0 2ab/n2

−1 −1 +1 8ab/n2

−1 −1 +2 8ab/n2

−1 0 0 8ab/n2

−1 0 +1 20ab/n2

−1 0 +2 16ab/n2

−1 +1 0 8ab/n2

A & C

0 0 −1 2ac/n2

−1 0 0 8ac/n2

−1 +1 −1 8ac/n2

−1 +1 0 16ac/n2

−1 +2 −1 8ac/n2

A & D

−1 0 +1 4a(n− 7a− 5b− 3c)/n2

−1 +1 0 2a(n− 7a− 5b− 3c)/n2

−1 +1 +1 8a(n− 7a− 5b− 3c)/n2

B & C

0 −1 0 8bc/n2

0 −1 +1 8bc/n2

0 0 −1 8bc/n2

0 0 0 4bc/n2

+1 −1 −1 2bc/n2

B & D

0 −1 +1 4b(n− 7a− 5b− 3c)/n2

0 −1 +2 4b(n− 7a− 5b− 3c)/n2

0 0 0 2b(n− 7a− 5b− 3c)/n2

C & D
0 0 0 4c(n− 7a− 5b− 3c)/n2

0 +1 −1 2c(n− 7a− 5b− 3c)/n2

Table 5.17: The change of the number of patterns of type A,B and C (see Figure 5.5-(b))

when attaching the next reticulation event to a pattern of type X and a pattern of type Y with

(X, Y ) ∈ {(A,B), (A,C), (A,D), (B,C), (B,D), (C,D)}.
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with

Rn =
∑

(s′,r′,t′)

E(Ȳ r′

n X̄
s′

n T̄
t′

n )Λr′,s′,t′(n), (5.18)

where the sum runs over (s′, r′, t′) which are of a smaller lexicographic order than (s, r, t) and

Λr′,s′,t′(n) admits the complete asymptotic expansion:

Λr′,s′,t′(n) ∼
∞∑
ℓ=0

λr′,s′,t′,ℓ
nℓ

, n→ ∞. (5.19)

Moreover, all terms in (5.18) with (r′ + s′ + t′)/2− ℓ ≥ (r + s+ t)/2− 1 are given by

2s

n
E(Ȳ r

n X̄
s−1
n T̄ t+1

n ) +
2r

7n
E(Ȳ r−1

n X̄s
nT̄

t+1
n )

+

(
r

2

)
20992

540225
E(Ȳ r−2

n X̄s
nT̄

t
n) +

(
s

2

)
13564

29645
E(Ȳ r

n X̄
s−2
n T̄ t

n) +

(
t

2

)
24

49
E(Ȳ r

n X̄
s
nT̄

t−2
n )

− 64

539
stE(Ȳ r

n X̄
s−1
n T̄ t−1

n )− 8

343
rtE(Ȳ r−1

n X̄s
nT̄

t−1
n ) +

652

11319
rsE(Ȳ r−1

n X̄s−1
n T̄ t

n). (5.20)

Proof. Assume that Yn, Xn and Tn are given. Then, using the cases listed in the Tables 5.15-

5.17, we can write the conditional expectation of Ȳ r
n+1X̄

s
n+1T̄

t
n+1 given Yn, Xn and Tn as a sum

of terms of the form

(Ȳn + τn − τn+1 + k)r(X̄n + ρn − ρn+1 + ℓ)s(T̄n + µn − µn+1 +m)t (5.21)

multiplied with the probabilities from the Tables 5.15-5.17 (where a = Ȳn+ τn, b = X̄n+ρn−

2(Ȳn + τn), c = T̄n + µn + X̄n + ρn − Ȳn − τn). Here, k, ℓ,m are integers depending on the

case considered. For convenience, we will call this sum S in the sequel.

Now, use the expansion:

(X̄n + ρn − ρn+1 + ℓ)s =
s∑

j=0

(
s

j

)
X̄j

n(ρn − ρn+1 + ℓ)s−j. (5.22)

First, by replacing the middle term in (5.21) by X̄s
n (the first term in the expansion (5.22))

and using Maple to sum up all these terms multiplied with their probabilities (which contain at

most X̄2
n), we find that X̄s+2

n and X̄s+1
n do not appear in this sum. Likewise, by replacing the

middle term in (5.21) by sX̄s−1
n (ρn − ρn+1 + ℓ) (the second term in the expansion (5.22)), we

see that X̄s+1
n does not appear. Thus, the highest power of X̄n in the sum S is X̄s

n. Next, by

collecting these highest terms and repeating the above argument with the first term in (5.21), we

see that terms with Ȳ r+2
n X̄s

n and Ȳ r+1
n X̄s

n do not occur in S. Finally, a similar line of reasoning
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shows that terms with Ȳ r
n X̄

s
nT̄

t+2
n and Ȳ r

n X̄
s
nT̄

t+1
n do not appear in S as well. Overall, this

shows that sum in (5.18) is over the indicated range.

Next, the claimed expansion for Λr′,s′,t′(n) follows by expanding τn − τn+1, ρn − ρn+1

and µn − µn+1 (see (5.3), (5.15) and (5.16), respectively; note that these expansions are all

of the form (5.19)) and pointing out that the probabilities might contain factors of the form

τ 2n, ρ
2
n, µ

2
n, τnρn, τnµn, or ρnµn which are however divided by n2 and thus expanding them

gives also terms of the form (5.19).

Finally, in order to find all terms with (r′ + s′ + t′)/2− ℓ ≥ (r + s+ t)/2− 1, we proceed

as follows: if we expand the first factor in (5.21) and retain only the terms which contain

Ȳ r
n , Ȳ

r−1
n , Ȳ r−2

n , Ȳ r−3
n and Ȳ r−4

n , then we see that we only loose terms Ȳ r′
n X̄

s′
n T̄

t′
n in S with

(r′ + s′ + t′)/2− ℓ ≤ (r′ + s′ + t′)/2 ≤ (r − 5 + s+ t+ 2)/2 < (r + s+ t)/2− 1.

Similarly, we only loose smaller order terms when we keep the terms with X̄s
n, . . . , X̄

s−4
n

and the terms with T̄ t
n, . . . , T̄

t−4
n in the expansion of the second and third factor in (5.21),

respectively. Thus, we only need to retain a fixed number (which does not depend on r, s and

t) of terms in each of the terms of (5.21) from S. Then, the rest of the computation can then be

done with Maple.

The recurrence from the above lemma can now be used to prove the normal limit law of

the pattern in Figure 5.1-(c-i) (which completes the proof of Theorem 5.3.1). In fact, we have

a more general result.

Proposition 5.3.9. Let the notation be as in Lemma 5.3.8. Then, as n→ ∞,

1

n
(Yn − E(Yn), Xn − E(Xn), Tn − E(Tn))

w−→ N(0,Σ),

where N(0,Σ) denotes a trivariate normal distribution with mean vector 0 and covariance

matrix

Σ =


270496

203664825
139276

62537475
− 8

13377

139276
62537475

2930764
137582445

− 304
119119

− 8
13377

− 304
119119

24
637

 .

Proof of Proposition 5.3.9. We use induction with respect to the lexicographic order of (s, r, t)

to show that for all r, s, t ≥ 0:

E(Ȳ r
n X̄

s
nT̄

t
n) ∼ cr,s,tn

(r+s+t)/2,
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where cr,s,t := E(N r
1N

s
2N

t
3) with N = (N1, N2, N3) the trivariate normal distribution with

mean vector 0 and covariance matrix Σ.

First, the base case is implied by Proposition 5.2.9. Thus, we may assume that the claim

holds for all sequences (s′, r′, t′) which are lexicographic smaller than (s, r, t).

In order to prove the claim for (s, r, t), we observe that (5.17) has the form (5.4) with the

sequence ψn satisfying ψn ∼ c̃r,s,tn
(r+s+t)/2−1 where

c̃r,s,t :=2scr,s−1,t+1 +
2r

7
cr−1,s,t+1 (5.23)

+

(
r

2

)
20992

540225
cr−2,s,t +

(
s

2

)
13564

29645
cr,s−2,t +

(
t

2

)
24

49
cr,s,t−2

− 64

539
stcr,s−1,t−1 −

8

343
rtcr−1,s,t−1 +

652

11319
rscr−1,s−1,t. (5.24)

Now, by Isserlis’ theorem (see Thorem 2.2.4) we obtain that

cr,s−1,t+1 = tΣ3,3cr,s−1,t−1 + (s− 1)Σ3,2cr,s−2,t + rΣ3,1cr−1,s−1,t

and

cr−1,s,t+1 = tΣ3,3cr−1,s,t−1 + sΣ3,2cr−1,s−1,t + (r − 1)Σ3,2cr−2,s,t.

Inserting the two equations above into (5.24), we obtain that

c̃r,s,t =

(
r

2

)
270496

7022925
cr−2,s,t +

(
s

2

)
2930764

6551545
cr,s−2,t +

(
t

2

)
24

49
cr,s,t−2

− 304

7007
stcr,s−1,t−1 −

8

637
rtcr−1,s,t−1 +

139276

2501499
rscr−1,s−1,t. (5.25)

Next, again by Isserlis’ theorem, we have the recurrences:

cr,s,t = (r − 1)Σ1,1cr−2,s,t + sΣ1,2cr−1,s−1,t + tΣ1,3cr−1,s,t−1;

cr,s,t = rΣ2,1cr−1,s−1,t + (s− 1)Σ2,2cr,s−2,t + tΣ2,3cr,s−1,t−1;

cr,s,t = rΣ3,1cr−1,s,t−1 + sΣ3,2cr,s−1,t−1 + (t− 1)Σ3,3cr,s,t−2.

Multiplying the first by 29r/2, the second by 21s/2 and the third by 13t/2 gives as right-hand

side exactly (5.25). Thus,

c̃r,s,t =

(
29

2
r +

21

2
s+

13

2
t

)
cr,s,t.

Overall, we have shown that (5.17) has the form (5.4) with

ψn ∼
(
29

2
r +

21

2
s+

13

2
t

)
cr,s,tn

(r+s+t)/2−1.
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The induction claim follows now from this by applying Lemma 5.2.7. This completes the

proof.

5.4 A conjecture for patterns of any height

From Theorem 5.2.2, Theorem 5.2.3 and Theorem 5.3.1, we observe that there are only three

limit laws for patterns of height 1 and 2: degenerate (such degenerate patterns occur not at

all), Poisson (such Poisson patterns occur only sporadically) and normal (such normal patterns

occur frequently). In fact, we believe this behavior will apply to patterns of any height.

In order to formulate this as a conjecture, first define a fringe pattern as a connected sub-

structure of a RTCN which has entirely evolved from a fixed set of lineages by consecutively

adding branching and reticulation events. Then, our conjecture for the limit law for number of

occurrences of any such fringe pattern reads as follows.

Conjecture 5.4.1. Let F be a general fringe pattern. Denote by P resp. P1 and P2 the patterns

obtained by removing the last event. Then we have the following cases.

(a) If P is a normal pattern, then F is a Poisson pattern; in all other cases, F is a degenerate

pattern.

(b) If P1, P2 are both normal patterns, then F is a normal pattern; if P1 is a normal pattern

and P2 is a Poisson pattern or vice versa, then F is a Poisson pattern; in all other cases,

F is a degenerate pattern.

It is not difficult to see that this conjecture holds for all patterns studied in the previous two

subsections, including the patterns of height 2 in Figure 5.1 and the two patterns of height 3

from Figure 5.4-(a) and Figure 5.5-(a).

The patterns in Figure 5.4-(a) was shown to be degenerate; see Proposition 5.3.5. Indeed,

if we remove the last reticulation event of this pattern, then it splits into two Poisson patterns.

Likewise, the pattern in Figure 5.5-(a) was shown to be normal; see Proposition 5.3.9; it splits

into two normal patterns, namely, tridents, when the last reticulation event is removed.

Our method of proof of the results in this chapter (coupling with a Markov chain and using

the method of moments) is rather computation-intensive; we believe that a different method is

needed to be able to prove the above conjecture.
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Chapter 6

Conclusion

Here, we will review the whole thesis and summarize our main contributions.

We started the thesis by recalling the definition of phylogenetic trees which have been used

in phylogenetics since Darwin and which have been extensively studied from an algorithmic,

combinatorial and probabilistic point of view. We next introduced the main objects of this the-

sis, namely, phylogenetic networks which have been proposed since the evolutionary process is

not always tree-like. Furthermore, of the many subclasses of phylogenetic networks, we con-

centrated on tree-child network (first introduced in [4]) and their variants as the main research

subject of this thesis, because they have become one of the most prominent network classes in

the last decade.

Most of the progress on enumeration and distributional properties of tree-child networks

has happened the last few years; see [1, 5, 12–14, 17, 20, 22, 25]. In particular, in this thesis,

we have further investigated results presented by Fuchs, Yu and Zhang in [17] and by Bien-

venu, Lambert and Steel in [1]. More specifically, the main contributions of the thesis are in

Chapter 3, Chapter 4, and Chapter 5.

In Chapter 3, we first reviewed the exact and asymptotic counting formulas for OTCn and

the asymptotic result for TCn. In addition, we also explained a recent conjecture of Pons and

Batle (see [22]) for TCn,k. Our main contribution in this section is a proof of the conjecture of

Pons and Batle for one-component tree-child networks. (This was recently submitted; see [15].)

Moreover, we also announced a Poisson limit law result for the number of reticulation nodes

of a random tree-child network which will be contained in the journal version of [7] (which is

currently under preparation).
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Next, in Chapter 4, we extended previous results to d-combining tree-child networks. One

of the main new contributions in this part is an encoding of tree-child networks by certain words

(which are different than the ones used in the conjecture of Pons and Batle). This encoding lead

to recurrences (which extend the recurrence for TCn,n−1 from [17]) and in particular allowed

us to prove that the limit law of the number of reticulation nodes of a random d-combining tree-

child network is degenerate when d ≥ 3. The results from this chapter have been announced in

the recent extended abstract [7] or are stated there as conjectures. They (together with additional

results) will be included into the journal version of [7].

Finally, in Chapter 5, we reviewed previous results on the limit behavior of the number

of patterns of height 1 in random RTCNs. Moreover, we used an extension of the method

in [1] (which was based on coupling with a Markov chain and the method of moments) to do

further research on limit laws for the number of occurrences of patterns of height 1 and also

height 2. In addition, we also gave a conjecture for patterns of any height. This is actually

the first general study on statistical properties of patterns in a class of phylogenetic networks.

(Corresponding studies for phylogenetic trees are plentiful; for instance see [6]). This part was

recently submitted; see [16].
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