
‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i  U

niv

ers
i t

y

DOI:10.6814/NCCU202200797

國立政治大學應用數學系

碩士學位論文

Transformer應用於中文文章摘要
Using Transformer for Chinese Article Summarization

指導教授：蔡炎龍 博士

研究生：林奕勳 撰

中 華 民 國 111 年 6 月



‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i  U

niv

ers
i t

y

DOI:10.6814/NCCU202200797

中文摘要

自從 Transformer 發表後，無疑為自然語言處理領域的立下新的里程

碑，許多的模型也因應而起，分別在各自然語言處理項目有傑出的表現。

如此強大的模型多數背後依靠巨量的參數運算，但各模型皆以英文為發展

主軸，我們很難訓練一個一樣強的中文模型，在缺乏原生中文模型的情況

下，我們利用現有的資源及模型訓練機器做中文文章摘要，使用 BERT及

GPT-2，搭配中研院中文詞知識庫小組的中文模型，並採用新聞資料進行訓

練。先透過 BERT從原文章獲得抽取式摘要，使文章篇幅縮短並保留住重

要資訊，接著使用 GPT-2從抽取過的摘要中再進行生成式摘要，去除掉重

複的資訊並使語句更平順。在我們的實驗中，我們獲得了不錯的中文文章

摘要，證明這個方法是有效的。

關鍵字：Transformer、BERT、GPT-2、中文文章摘要、抽取式摘要、

生成式摘要、深度學習
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Abstract

Since the publication of Transformer, it has undoubtedly set a new milestone

in the field of Natural Language Processing, and many models have also been

released depending on it and performed outstandingly in various Natural Language

Processing tasks. Most of such powerful models rely on a large number of

parameter operations, but most of them are developed in English, and it is difficult

for us to train a Chinese model that is equally strong. In the absence of native

Chinese models, we use existing resources and model to train the machine to make

Chinese article summaries: using BERT and GPT-2 model, with the Chinese model

of the Chinese Knowledge and Information Processing of the Academia Sinica

of Taiwan, and using news datasets for training. First, use BERT to obtained an

extractive summarization from the original article, so that the length of the article

is shortened and important information is retained, then use GPT-2 to generate a

summarization from the extracted summary to remove duplicate information and

make the sentence smoother. In our experiments, we obtained decent Chinese

article summaries, proving that this method is effective.

Keywords: Transformer, BERT, GPT-2, Chinese article summarization,

Extractive summarization, Abstractive summarization, Deep learning
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Chapter 1

Introduction

In recent years, artificial intelligence is used in various fields, whether in image recognition,

semantic analysis, recommendation systems, image creation, etc., and has achieved impressive

results even better than humans. For example, Go is an abstract strategy board game with

innumerable ways to play, even computer cannot completely simulate all the steps with the

development now. However, in 2017, the artificial intelligence of playing Go named AlphaGo

[28], which is created by DeepMind, defeated Ke Jie the number one ranked Go player in the

world at the time, and AlphaGo cost only about two years to surpassed human performance.

With the help of artificial intelligence, people can save a lot of time to do some tedious things,

or even humans can’t do it.

Transformer is a relatively new model in deep learning released by in 2017. The difference

from Recurrent Neural Networks (RNN) model and Long Short-Term Memory (LSTM) model,

it only uses self-attention mechanism, which make model recognize things more like a human.

Nowadays, there are lots of model have been developed depending on Transformer: BERT,

GPT, XLNet, BART, T5, etc., each with its own field of expertise.

Because of most models only support English. In this paper, we try to make a summary of

Chinese article with two kinds of model, BERT and GPT-2, in extractive and abstractive ways,

then train the model with Chinese news data.

1
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Chapter 2

Deep Learning

How to let the computers work smarter or more like human being than before? It’s a big

issue we want to figure out. Machine learning which represent that machine learn by itself.

More accurate, Machine learning is to find the best function for the training data. Deep learning

is a method of machine learning which depends on neural networks (NN) [7] [11] [12]. It can

be roughly divided into three types, supervised, semi-supervised, and unsupervised learning [3]

[27]. Here are some examples of how deep learning works.

1. Image Recognition

f(“ Image of a dog ”) = “ dog ”

When we use deep learning to recognition images [8], the image will be restructure into

matrices represented by number. Then, the machine will find the characteristic of the

image and classify it into the correct category. The image of dog is the input of the

function, and will become the category “dog” as the output of the function.

2. Stock Price Prediction

f(“ Stock price for the past 20 days ”) = “ Stock price for the next day ”

If we want to use deep learning to predict the future price of stock, we will give the

machine the target date, then the machine will find some relations or trends of prices and

news from past time. Actually, machine get the date as the input, but learn from the past

information, and give the prediction of price as the output.

2
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3. Playing Game

f(“ Current chess game ”) = “ Knight moves to D-3 ”

We use deep learning to predict the next step of game. Give the situation of game as input,

then the machine will calculate numerous steps as it can and find the way with highest

probability of winning. Now, the most famous deep learning model of playing games is

AlphaGO created by DeepMind which beat Lee Sedol one of the best players at Go.

4. Translation

f(“你好世界 ”) = “ Hello World ”

When we want to solve the problem of languages with deep learning, the most difficult

part is getting themachine to understandwhat texts or sentencesmean. In translation [2], it

is most important to preserve the original meaning in the assigned language. In the above

case, we give the sentence in Mandarin as input and let machine find the corresponding

sentence in English as output.

Now, there are lots of applications with deep learning in our life. To realize how deep

learning works, we can take the following three steps in the figure below to understand.

Figure 2.1: Three steps of deep learning

We can divide the process of deep learning into three steps. First, construct a neural network

model and set a function determined by the structure of network. Then, select a suitable loss

function which can identify the most proper function by evaluating all of the candidates. Finally,

let the machine train by itself, the machine will learn from training data and be modified itself

to get the best function.

3
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2.1 Neurons and Neural Networks

Neural network (NN) is the most important core of deep learning. Neural network is similar

to human brain neurons, it is constructed by many connected computing units, like biological

neurons, that send signals to others. The following section will explain how neural networks

work.

(a) (b)

Figure 2.2: (a)Biological Brain; (b)Architecture of NN

Every computing unit which called neuron is a simple function, evaluate inputs and then

gives an output to other linked neurons as an input. Weights represent how strong the connection

of each two linked neurons are.

Figure 2.3: The Operation of a Neuron

The operation of each neuron can be divided into two components, the affine transformation

and the activation function. Calculating the input data with corresponding weights and biases,

4
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then use the activation function on the result value. The activation function can be chosen by

different network architectures. There are some popular choices of activation functions such as

logistic function, the hyperbolic tangent function, the sigmoid function and rectified linear unit

function (ReLU).

As the following example with Figure 2.3, we can easily understand the operation of a

neuron. Suppose x1 = 1 and x2 = 2 as the input of the neuron in Figure 2.3, weightsw1 = 3 and

w2 = −1, bias b = 4, and let the activation function beReLUwhichwill get the same value as the

input if positive. The result value of affine transformation is [1×3+2×(−1)]+4 = 5. Applying

the activation function ReLU. Hence, the output is 5. Deciding the parameters, the values

of weights and bias, is the main purpose on the learning algorithms, and the backpropagation

algorithm is a popular learning algorithm.

Figure 2.4: Fully Connected Feedforward Network

The simplest type of structure in deep learning models is a fully connected feed-forward

network. The network can be divided into three parts, input layer, hidden layers and output

layer. We give an example in Figure 2.4. There are three neurons in input layer, five and four

neurons in each hidden layer, and two neurons in output layer. Note that there may be more than

one layer in hidden layers, depends on the structure of neural network. In this structure, each

neuron receives the inputs which are the outputs from all neurons of the previous layer, then

pass down its output to the next layer in the same forward direction. There is no cycle or loop

in this network. Every neuron connects to all other neurons from previous one layer and next

5
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one layer except the layer it belongs.

Each neuron in the network can be written as

alj = σ(
∑
k

wl
jka

l−1
k + blj)

• alj: the output of the jth neuron in the lth layer

• wl
jk: the weight from the kth neuron in the (l− 1)th layer to the jth neuron in the lth layer

• blj: the bias of the jth neuron in the lth layer

Given a neural network structure, the structure will define a function set. According to

the training process, machine will decide the most suitable parameters to match the function set

we provide. Hence, deciding the structure of a neural network beforehand in deep learning is

still necessary. The function set decided not well might not have the ability to find a suitable

function. For different types of problems, there are different suitable model to deal with.

2.2 Activation Function

In real world, most results of problems are not linear. Without activation function [14],

usually a non-linear function, in the neuron network, all inputs of neurons is a linear combination

of outputs from the previous layer which is linear, and its output is still linear. Therefore,

activation function can let them have non-linear relationship. Followings are some famous

activation function:

1. Sigmoid function

Equation:

f(x) =
1

1 + e−x

Range: (0, 1)

Graph:

6
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Figure 2.5: Sigmoid function

We usually use sigmoid function as the activation function when predicting the probability

as outputs.

2. Hyperbolic tangent function (tanh)

Equation:

f(x) =
ex − e−x

ex + e−x

Range: (−1, 1)

Graph:

Figure 2.6: Hyperbolic tangent (tanh)

7
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Hyperbolic tangent function is similar with sigmoid function, but they have different

range. The advantage is that it can put more emphasis on negative and zero inputs

3. Rectified linear unit function (ReLU) [19]

Equation:

f(x) =

x, if x ≥ 0

0, if x < 0

Range: [0,∞)

Graph:

Figure 2.7: Rectified linear unit (ReLU)

ReLU function is the most popular activation function now since it is widely used in many

famous deep learning model.

2.3 Loss Function

The loss function is the key point of deep learning. After deciding the structure of a neural

network, we have to adjust parameters, including weights and biases. DenoteD = {(xi, yi)}ki=1

as a set of training data and θ = {w1, w2, ..., wp, b1, b2, ..., bq} as the set of parameters. Let Θ be

the set of collection of all parameters θ. For a certain neural network structure, we want to find

the optimal function fθ∗ ∈ {fθ|θ ∈ Θ} so that fθ∗(xi) = yi for all 1 ≤ i ≤ k

8



‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i  U

niv

ers
i t

y

DOI:10.6814/NCCU202200797

To achieve our goal, denote loss function as L(θ). Our purpose is to make the predicted

values (outputs) as close as the real values (input), which means we have to minimize the loss

function L. Therefore, deciding a suitable loss function is important. Followings are some

common used loss functions:

1. Mean absolute error (MAE)

L(θ) =
1

k

k∑
i=1

||yi − fθ(xi)||

where k is the total number of data, and yi ∈ Rn.

2. Mean squared error (MSE)

L(θ) =
1

k

k∑
i=1

||yi − fθ(xi)||2

where k is the total number of data, and yi ∈ Rn.

3. Cross-entropy

L(θ) = − 1

m

m∑
i=1

log(fθ(xi))

wherem is the total number of data, and fθ(xi) ∈ R is the predicted value corresponding

to yi ∈ R.

4. Binary cross-entropy

L(θ) = − 1

m

m∑
i=1

[yi log(fθ(xi)) + (1− yi) log(1− fθ(xi))]

where m is the total number of data, each yi = 0 or 1, and fθ(xi) ∈ R is the predicted

value corresponding to yi.

9
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2.4 Gradient Descent Method

No matter in real life or building software products, optimization is out main goal. There

are some differences between deep learning and normal cases. Normally, we can know how

the data exactly looks like and where we want to improve. But in deep learning, we have have

no idea about how the new cases looks like, so we need to optimize with training data and use

validation data to evaluate its performance. To achieve the goal, we use “Gradient Descent”

which is one of the most common used method to optimize the values of the parameters in the

neural network that can minimize the loss function L(θ).

Gradient Descent is an algorithm to reach a local minimum of differentiable function. It

is easy to imagine how gradient descent work. Imagine that if we want to move to the ground

from the top of mountain, we will look for somewhere nearby that is lower than where we

stand now, then we move to the lower place and repeat the previous process. Same as gradient

descent, assume that the parameters of the neural network is θ = {w1, w2, ..., wn, b1, b2, ..., bm},

and choose randoms values for wh and bk, denote by w
(1)
h and b

(1)
k . Evaluate the first-order

derivative ∂L

∂w
(1)
h

and ∂L

∂b
(1)
k

, then update the parameter as w(2)
h = w

(1)
h − η ∂L

∂w
(1)
h

for 1 ≤ h ≤ n,

and b(2)k = b
(1)
k − η ∂L

∂b
(1)
k

for 1 ≤ k ≤ m, where η is called learning rate and will introduced later.

Repeating this process until it reaches the parameters that L(θ) is small enough. The gradient

∇L and the new θ will be as following:

∇L =



∂L
∂w1

∂L
∂w2

...

∂L
∂wm

∂L
∂b1

∂L
∂b2

...

∂L
∂bn



, θnew =



wnew
1

wnew
2

...

wnew
m

bnew1

bnew2

...

bnewn



=



w1

w2

...

wm

b1

b2

...

bn



− η∇L =



w1 − η ∂L
∂w1

w2 − η ∂L
∂w2

...

wm − η ∂L
∂wm

b1 − η ∂L
∂b1

b2 − η ∂L
∂b2

...

bn − η ∂L
∂bn


The learning rate η is like how big the steps we move, which controls the speed of the

10
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movement. Usually, learning rate is not quite large. If the learning rate is too large, it may miss

the minimum values or move back and forth around the minimum values. Otherwise, if it is

too small, it costs lots of time to reach the minimum values or stuck in some relatively high

minimum values. Hence, decide the learning rate is important to our training of neural network.

11
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Chapter 3

Word Embeddings

In Natural Language Processing (NLP) tasks, words are usually used as inputs, but machine

can only compute with numbers. How to transfer words into numerical data to use in model is

the main problem. Moreover, not only transfer words into number, but also keep meaning and

unique fo words. There is a method called word embedding, which can represent complicated

language by numbers. Intuitively, use one-hot encoding, a n-dimensional vector, to embed

the word. For example, we can count how many different words appear in the data we use,

supposed n. Then we denote every word as n-dimensional vector like [ 1, 0, 0, · · · , 0] or

[ 0, 1, 0, · · · , 0] , which let each different word correspond to a independent vector. In this way,

we have done word embedding for n-dimensional one-hot encoding to every words. However,

this approach lacks utility. In English, there are more than a hundred thousand words in total and

counting. Twenty to thirty thousand words are typically used by native speaker. If there is a text

with millions of words, the input will be too large and the embedding result may not useful for

other texts. Most important, words are represented as one-hot encoding which don not capture

the relationship between them. Hence, there are many research try to make the dimensions of

word vector lower and embed by the relation between words. Followings are some introduction

of famous embeddings of word vectors:

3.1 Word2Vec

The Word2Vec [18] model captures both syntactic and semantic similarities between the

words. It use two model to train: Continuous Bag-of-Words Model (CBOW) and Continuous

12
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Skip-gram Model (Skip-gram), CBOW model predict the middle word when given previous

words and future words, and Skip-grammodel predict the previous and future words withmiddle

word.

One of the well known examples of the vector algebraic on the trained Word2Vec vectors

is V ector(‘‘King”)−V ector(‘‘Man”)+V ector(‘‘Woman”) results in a vector that is closest

to the vector representation of the word “Queen”. This shows that the model not only knows the

similarity of “King” and “Queen”, but also the opposing relationship of “Man” and “Woman”.

There is a single hidden layer in Word2Vec, it has weights like other neural networks.

Word2Vec uses these hidden weights as the word vectors. In the original paper, it uses vector of

dimension 640 as default, and as the dimension increases, the accuracy also increases.

3.2 GloVe

GloVe, abbreviation of Global Vectors for Word Representation [21], take the co-

occurrence count of words to train. The main idea is: the relationship between two words (Wi

andWj) is examined by finding co-occurrence probability with some probe words (Wk). Denote

X as the matrix of word-word co-occurrence counts, Xij as the number of times word j occurs

in the context of the word i, Xi =
∑

k Xik as the number of times any word appears in the

context of the word i, and Pij = P (j|i) = Xij/Xi as the probability that word j appear in the

context of word i. For example in the paper, we have two wordsWi as “Ice” andWj as “Steam”

and some probe words Wk as “Solid”, “Gas”, “Water”, “Fashion”. We know that “Solid” is

more related to “Ice” (Wi) and “Gas” is more related to “Steam“ (Wj) while “Fashion” is not

related to both “Ice” and “Steam”, “Water” is related to both “Ice” and “Steam”. When Wk is

“Solid”, the probability Pik will be higher and Pjk will be lower, so Pik/Pjk will be higher as

8.9 in the paper. Conversely, when Wk is “Steam”, Pik/Pjk will be lower as 8.5 × 10−2. For

Wk is “Water” or “Fashion” which is almost same related to Wi and Wj , Pik/Pjk will be close

to 1. Actually, it uses a decreasing weighting function, so that word pairs contribute 1/d to the

total count as they are d words apart.

To take advantage of the co-occurrence matrix without calculating it directly, GloVe

13
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consider a function

F (wi, wj, w̃k) =
Pik

Pjk

where the ratio Pik/Pjk depends on three words Wi, Wj , and Wk. wi, wj and wk represent the

word vectors, w̃ denotes the separate context word vector. Since vector spaces are inherently

linear structures, the most natural way to do this is with vector differences. The function F is

modified to

F ((wi − wj)
T w̃k) =

Pik

Pjk

Due to the operation of homomorphism of F ,

F ((wi − wj)
T w̃k) =

F (wT
i w̃k)

F (wT
j w̃k)

F (wT
i w̃k) = Pik =

Xik

Xi

then let F = exp, so that

wT
i w̃k = log(Pik) = log(Xik)− log(Xi)

However, log(Xi) is independent of k, so it can be converted to bias bi for wi, and add an

additional bias b̃k for w̃k to satisfy the symmetry,

wT
i w̃k + bi + b̃k = log(Xik)

Finally, use the Mean Square Error to calculate the error in the ground truth and the predicted

co-occurrence counts. After training, use wi to be the word vector representing the wordWi.

3.3 FastText

The structure of FastText [4] is similar to Word2Vec. Different from CBOW inWord2Vec,

in FastText, each word is represented as a bag of character n-grams in addition to the word itself.

For example, for the word “<matter>” which is added the special symbols “<” and “>”, with

14
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n = 3, the FastText representations for the character n-grams is “<ma”, “mat”, “att”, “tte”, “ter”,

“er>”. Then sum up the character n-grams of the word to represent itself. This helps preserve

the meaning of shorter words that may show up as n-grams of other words, and this also capture

meaning for suffixes and prefixes. Hence, this make some out-of-vocabulary (OOV) words

have word vectors even if they are not present in the training set. To reduce computing time,

FastText uses negative sampling and hierarchical softmax. Negative sampling only updates a

small number, use 5 in the model, of negative words in Skip-grammodel. For one actual context

word, 5 random negative words are sampled. Hierarchical softmax use the binary tree, where

leaves represent probabilities of words, more specifically, leaf with the index i is the ith word

probability and has position i in the output softmax vector. Each of the words can be reached

by a path from the root through the nodes, which represent probability along that way, instead

of calculating all nodes. These makes FastText can be trained faster and has better performance

in text classification.

15
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Chapter 4

Transformer

“Transformer”, which is the whole new model in deep learning, was announced in 2017

[29]. This is a major breakthrough by using nothing about the architecture of Recurrent Neural

Networks (RNN) [26] or Convolutional Neural Network (CNN) [13]. Transformer uses self-

attention mechanism with its encoder and decoder structure. At that time, it became the most

advanced model in machine translation task and a popular construct in NLP. Following is the

introduction of framework.

4.1 Embeddings

Figure 4.1: Difference of without or with teacher forcing

First, introduce the input and output of Transformer. As the other tasks for machine

translation, we input the original sentence into encoder and get the translation be input of

decoder. While model predicting, the output word at time t will be the input at time t + 1. We

call this property as auto-regressive. However, this makes training to be inefficiency because

16
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the wrong result of prediction will make the next incorrect one. Therefore, we train the model

with teacher forcing [30]. That is, no matter what model output at time t, we always input the

correct result to be input at time t+ 1, so model will be trained with the right things.

Transformer uses the method called wordpiece embedding which divides every word into

sub-word units [31] and switch them to index sequence. For example, the word “attention” will

be split to “atten” and “tion” and the sequencewill be [1, 2]. To use thismethod, we can constitute

any word easily. Then we give them the index “begin of sequence” ([BOS]) in the beginning

and “end of sequence” ([EOS]) in the end. Since the lengths of each batch of input sequence are

usually different, we will decide a maximum number of sequence length and wipe all the part

of sequence which is longer than the number out in the next step. We also make other sequence

be longer to the maximum number, by filling up the index of “padding” ([PAD]). Finally, every

token will be embedded to dmodel dimension. For sure, there are several ways of embedding for

each language. Transformer cam also generate multiple words at the same time.

Except word embedding, the Transformer also keep the information about position, which

can tell the model where a word in the sentence. Word embedding and position embedding will

be summed as the final input. Each value of positional embedding will be

PE(pos, 2i) = sin(
pos

10000
2i

dmodel

)

PE(pos, 2i− 1) = cos(
pos

10000
2i−1
dmodel

)

where 1 ≤ pos ≤ dmodel and 1 ≤ i ≤ dmodel
2

. The combination of two embedding make the

model pay attention to not only the word value but also the order, which let model understand

the sentence more like human.

17
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4.2 Encoder

Figure 4.2: Encoder in Transformer

Next, referring to Figure 4.2, we introduce layers in the encoder. There two sub-layers in

the encoder, first is multi-head self attention and second is a fully connected feed-forward neural

network (FFN) noted FD. There is still a residual connection [9] and layer normalization [1]

after each sub-layers. For each input vector xi in self-attention layer, it will be separated into

three parts: query qi, key ki and value vi by multiplying different parameter matrices. For

example, suppose x1, x2, ..., xn are n input word vectors of dimension dmodel. Then we get the

queries, keys and values by:

Q : query (to match others)

qi = xi ·WQ

K : key (to be matched)

18
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ki = xi ·WK

V : value (information to be extracted)

vi = xi ·W V

for 1 ≤ i ≤ n where WQ and WK ∈ Rdmodel×dk and W V ∈ Rdmodel×dv . Q and K have same

dimension, dk and dv are the dimension of key and value. Set q1, use each key, then make the

scaled dot-product attention α1,i by

α1,i =
q1·ki√

dk
for 1 ≤ i ≤ n

We use softmax function to get the attention scores α̂1,i from α1,i for 1 ≤ i ≤ n, which the

coefficients are related to vi for 1 ≤ i ≤ n. Then we compute output b1 by the summation of

these weighted values. The equations are:

α̂1,i =
exp(α1,i)

n∑
j=1

exp(α1,j)

b1 =
n∑

i=1

α̂1,i · vi

The summation of α̂1,i which is calculated via softmax function is 1, so the output b1 is a convex

combination, a linear combination with all coefficients are non-negative and sum to 1, of vi.

By the same method, we can compute the other outputs b2, b3, ..., bn. This process is called

self-attention, which the outputs come from the information of itself different from the method

in RNN case. Obviously, the model can finish the computation of all inputs at the same time.

Let there be N word vector of dimension dmodel be the input denoted by X ∈ RN×dmodel .

The matrix computation can be expressed as following:

Q = X ·WQ

K = X ·WK

V = X ·W V

Attention(Q, K, V ) = [softmax(
QKT

√
dk

−M · P )]V

where Q, K,V are query, key and value which include all qi, ki, vi together ∀ 1 ≤ i ≤ N .

19
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WQ ∈ Rdmodel×dk , WK ∈ Rdmodel×dk , W V ∈ Rdmodel×dv are parameter matrices for query, key and

value, respectively. dk is the dimension of query and key. According to the token sequence,

make a padding mask matrix P ∈ RN×N which the i-th column of matrix is 1 if the i-token is

[PAD], others are all 0. Then multiply a huge positive number M like 109 and let QTK minus

M ·P such that the attention weights of those padding position will be 0 with softmax function.

This method can help the model skip those padding position. After all, the model will output

a weighted values vector of dimension dv. GPU can speed up the training progress effectually

based on outstanding ability in parallel computing.

The research team think only one attention is not enough, they found that it is useful to

compute several attention at the same time. Each attention function has itsQ,K, V which same

as above, they will give different weights to these matrices. We denote each output as a head.

Suppose there are h heads, then concatenate them to become one matrix and reshape the matrix

to dmodel dimension by multiplying a parameter matrix, which is:

MultiHead(Q, K, V ) = [concatenate(head1, head2, · · · , headh)] ·WO

where headi = Attention(Q ·WQ
i , K ·WK

i , V ·W V
i )

where the parameter matrices WQ
i ∈ Rdmodel×dk , WK

i ∈ Rdmodel×dk , W V
i ∈ Rdmodel×dv and WO ∈

Rhdv×dmodel for 1 ≤ i ≤ h. Multi-head self-attention let model understand sentence more, each

head can focus on different characters, as humankind.

Before we import the output into FFN, we need to do some preprocessing. First, let the

output from multi-head attention add the original input vector, then execute layer normalization

LayerNorm(X +MultiHead(Q, K, V )):

µj =
1

dmodel

dmodel∑
i=1

xij

σj =

√√√√ 1

dmodel

dmodel∑
i=1

(xij − µj)2

x̂ij = gij
xij − µj

σj

+ bij for all1 ≤ i ≤ N, 1 ≤ j ≤ dmodel

where xij is the element of X + MultiHead(Q, K, V ) matrix. After layer normalization, we

obtain x̂ij , where gij and bij are parameters learned during training.

20



‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i  U

niv

ers
i t

y

DOI:10.6814/NCCU202200797

To the next sub layer, fully connected feed-forward neural network, which dimension of

input and output is dmodel. Use activation function ReLU in the middle of a only hidden layer of

dimension dff. Input each vector x̂1, x̂2, · · · , x̂N . Then FD(x̂i) can be write as:

FD(x̂i) = ReLU(xi ·W +B) ·W ′
+B

′

where ReLU(xi ·W +B) = max(0,
dmodel∑
j=1

xnjwnj + bn)

∀ 1 ≤ i ≤ N, 1 ≤ j ≤ dmodel, 1 ≤ n ≤ dff where W ∈ Rdmodel×dff , B ∈ R1×dff , W
′ ∈

Rdff×dmodel , B
′ ∈ Rdmodel×1. The n-th element in xj, W and B are denoted as xnj, wnj and bn,

respectively. Like above, execute residual connection and layer normalization after FFN. Hence,

we obtain output of this layer and will input to the next layer. There are Ne layers in encoder.

In the original paper, Ne = 6, dmodel = 512, h = 8, dv = dk = dmodel/h = 64 and dff = 2048.

We can see the structure in Figure 4.2.

21
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4.3 Decoder

Figure 4.3: Decoder in Transformer

Moving forward to decoder. Figure 4.3 is the structure of decoder. Like encoder, there

several layers in decoder, each layer has three sub-layers in itself. The first one is called masked

multi-head self-attention, the second one is multi-head self-attention, the third one is feed-

forward neural network, which second and third one are similar to encoder. Residual connection

and layer normalization will be executed in each sub-layers. Multi-head self-attention obtains

keys and values from the output of encoder and query from the previous sub-layer. This can

let decoder learn from the base of encoder. Last, adjust masks in the self-attention in each first

sub-layers to let model cannot know the answer. We need to confirm that the i-th token can only

participate to the token before i. Otherwise, from input, the model can know the answer of i+1-

th word. Therefore, we hide the information by using a look-ahead mask. The mask denoted

22
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L ∈ RM×M is an lower triangular 0-1 matrix. Multi-head self-attention with combination of

mask L and padding mask P ∈ RM×M is called masked multi-head self-attention which is in

first sub-layer. In the original paper, there are Nd = 6 layers in decoder.

We will input the output of last layer in decoder to a linear layer which can transfer it to the

shape in Rddict×M where ddict is the number of all sub-words in the dictionary constructed by our

embedding way. By the softmax function, we choose the relative index which has the maximum

values in the distribution. Calculate the sum of cross entropy between output and the correct

answer, then use optimizer called Adam to update the model.

Transformer uses self-attention structure different to CNN or RNN and can be trained

quickly by parallel computing. Hence, transformer have good performance in NLP tasks.

23
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Chapter 5

Contextualized Word Embeddings

A word can be multiple senses depending the context. For example, “It is safest to deposit

your money in the bank.”, and “They stood on the river bank to fish”, same word “bank” have

different meaning. To solve this problem, here are some model that can realize the meaning of

words in different context.

5.1 ELMo

ELMo, abbreviation of Embeddings from Language Model [22], is a RNN-base language

model which trained from lots of sentences. It uses bidirectional LSTM [10] not only to learn

from the start to the end of sentences but also form the end to the start. Then combine the two

ways information of the surrounding words as a context-dependent word vector, which a word

can have different embeddings according to the context.

Compared with the traditional word embeddings which the word vector is fixed that can

only express one meaning, the ELMo model focuses on solving that a word may have different

meanings in different context. Since the word vector generated by ELMo uses contextual

information. According to the downstream tasks, the word vector can be adjusted by weights to

suit different tasks.

24
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5.2 BERT

BERT, abbreviation of Bidirectional Encoder Representations from Transformers [6], is a

new embedding model with structure of encoder in Transformer. BERT has its own embedding

way which depends on the context. BERT can fine-tune the parameters depend on the different

NLP tasks with pre-trained model. These things makes BERT become a good model to handle

several tasks. Following, We will introduce more detail about BERT.

In unsupervised NLP model, there two common methods: feature-based and fine-tuning.

The same character of them is that using a huge amount of unlabeled language data to pre-

train the model. There are two methods to train the model: In feature-based, we will set all

the parameters in language model (LM) and add an output layer to become the task-specific

model as final model to solve out task. In fine-tuning, all the parameters will be trained to

be the best for our task. We also have to adjust input and output. Therefore, BERT can be

applied to various tasks. If the pre-trained model is powerful, the model will be easy to have

better performance.We train the model to know about language in BERT by two tasks: Masked

Language Model (MLM) and Next Sentence Prediction (NSP). Suppose the input of pre-trained

model ia a pair of sentences A and B. Mask some tokens in each sentence randomly, then what

model have to do is find the best choices for the correct words be masked at these positions,

which is like fill-in-the-blank questions. At the same time, let model predict whether sentence

B is the next sentence of sentence A, which is like a yes-no question, to realize the relationship

between sentence A and B.
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Figure 5.1: The architecture of pre-trained model in BERT

We have to reform the input embedding of BERT for these two tasks. In the beginning,

separate the sentence into sub-words units just like in Transformer. We set some special

tokens: [CLS] will be put in the beginning of each input sequence, [SEP] locate in the end

of two sentences and [MASK] is used to hide tokens. Then, embedding the tokens, there three

kinds of embedding method in BERT. Token embedding, which transfers each word become an

corresponding index. Segment embedding, which distinguishes the word in different sentence.

Position embedding, which provides the relative position of words, same as in Transformer.

Last, summarize these embedding to be the final input. Actually, the BERT layer is the encoder

in Transformer.

We use the final output vector of BERT layer to be the embedding of input in next step. This

representation include the information of context different from the one-to-oneword embedding.

Add a linear classifier on each relative position of [CLS] and [MASK] tokens. The classifier for

[CLS] will evaluate the relation between sentences by using sigmoid function. Other classifiers

for [MASK] are same as the final output in Transformer, the classifiers will output a distribution

of all possibility of all words in the dictionary, then we choose the corresponding word with

26
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highest possible value as the output. Also, evaluate loss and optimize the model. Then we can

fine-tune this pre-trained model by setting the input and output to fit our task and adjust the

parameters.

5.3 GPT-2

GPT, abbreviation of Generative Pre-Training Transformer [23] [24] [5] , is a language

model (LM) with structure of decoder in Transformer. Natural Language Tasks include various

tasks such as natural language inference, question answering, semantic similarity assessment

and text classification. Previously to train models on these tasks, special data set curated for

such tasks were required. But, the datasets are very difficult to acquire and even if we have such

datasets, we can’t have large corpus. The other problem is that such models cannot be used on

the other NLP tasks as they were trained for specific tasks.

GPT is a transformers model pre-trained with very large corpus of English data in a self-

supervisedmethodwhich themodel takes input data and tires to generate an appropriate response

without any human labeling, and then allowing users to fine-tune the language model so that it

can perform downstream tasks. More precisely, the model was trained to predict the next word

in sentences.

As a result of its pre-training, one of the significant achievements of GPT model is it can

reach few-shot learning even zero-shot learning on various tasks. It means that we can give

model an example we want it to predict or just give the target of the task, then GPT model can

finish the task. This capability shows that language model served as an effective pre-training

objective which could help model generalize well. With Transfer learning, GPT becomes a

powerful model to perform NLP tasks with very little fine-tuning. It generates paths for other

models that can further enhance its potential for generative pre-training on larger datasets and

parameters.

Currently, there are three generations of GPT.With the evolution of generation, the number

of parameters has also increased a lot. GPT-1 has 117 millions parameters. GPT-2 has 1.5

billions parameters which is about 5 times as many as BERT and 10 times more than GPT-1.

GPT-3 even has exaggerated 170 billions parameters ,so that is almost impossible for us to use

GPT-3 model in our personal computer. Therefore, we will use GPT-2 in our experiment.
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Chapter 6

Summarization

6.1 Two methods of summarization

To shorten the time required for reading, we summarize the article and extract the key

points. Here are two methods of summarization methods:

Figure 6.1: Two methods of summarization

1. Extractive Summarization:

In extractive summarization, the summary was created by selecting a subset of all

sentences in article. Easily to say, we split the article into sentences, then identify and

choose sentences based on a score of importance in whole article. Finally, connecting

the chosen sentences together. In model training, it is used as the task of sentence
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classification. Obtain the sentences as a summary by classifying whether each sentence

is important.

2. Abstractive Summarization:

Abstractive summarization is a method of feeding the original article to the model and

generate a summary directly, which is a sequence to sequence task. First, machine

analyzed the article and get interpretation, then predicts a summary based on this

interpretation.The difficulty of abstractive compared to extractive is that abstractive needs

to be able to generate words or sentences that do not originally exist in the article, andmust

conform to the rules of the language.

6.2 TextRank

TextRank [17] is a graph-based ranking model for graphs extracted from natural language

text. TextRank is a keyword or key-sentence extraction method based on PageRank [20]. Its

essence is to construct nodes and edges according to the window for the text token, actually the

co-occurrence relationship of nodes within a certain window range. The basic idea implemented

is “voting” or “recommendation”. When one vertex links to another, it is basically casting a vote

for that other vertex. The more votes that are cast for a vertex, the more importance of the vertex.

Formally, letG = (V,E) be a directed graph with the set of vertices V and set of edgesE which

is a subset of V × V . Select a vortex Vi, denote In(Vi) as the set of vertices that point to Vi and

Out(Vi) as the set of vertices that Vi points to. The score of a vertex Vi is defined as follows:

S(Vi) = (1− d) + d×
∑

j∈In(Vi)

1

Out(Vj)
S(Vj)

where 0 ≤ d ≤ 1 is a damping factor ,which is the probability of jumping from Vi to another

random vertex. Denote wij as the “strength” of the connection between two vertices Vi and Vj .

The formula of weighted score is as following:

WS(Vi) = (1− d) + d×
∑

Vj∈In(Vi)

wji∑
Vk∈Out(Vj)

wjk

WS(Vj)

However, in key-sentences extraction in TextRank which used in natural language texts,
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instead of counting incoming links, the similarity between sentences is used. First we build

a graph of the sentences in the article, which the vertices denoted the sentences. The co-

occurrence relation used for keyword extraction can not be used here, since the sentences are

significantly larger than one or few words, and co-occurrence is meaningless for such large

contexts. Instead, we use “similarity” to determine the connection between two sentences,

where“similarity” is measured as a function of their content overlap. This relationship can be

see as “recommendation”: a sentence with some concepts gives the reader a “recommendation”

to refer to other sentences with the same concepts, so we can link two such sentences which

have common content. Formally, let two sentences Si and Sj . Si is represented by the set of Ni

words that appear in the sentence: Si = wi
1, w

i
2, ..., w

i
Ni
, so is Sj . The similarity of Si and Sj is

defined as :

Similarity(Si, Sj) =
|{wk|wk ∈ Si&wk ∈ Sj}|
log(|Si|) + log(|Sj|)

Finally, the sentences with the highest rank are selected for inclusion in the summary.

6.3 BERTSUM

Recall the BERT model, we used [CLS] token in the beginning and [SEP] in the end of

two sentences, then we did token embeddings, segment embeddings and position embeddings,

and input these into BERT model. Applying BERT directly to summarization is obviously

problematic. First of all, when doing summary, we usually use sentence embeddings to do

related tasks, but the training method of BERT is MLM (Masked Language Model), and the

focus of learning is on word, not sentence. Another issue is that only sentence pairs are used for

training In the original BERT. To do summarization, more than two sentences are usually used

as required input.

The extractive summary is created by identifying the most important sentence in the article

then concatenating subsequently. Neural network models consider extractive summarization as

a sentence classification problem that the classifier predicts which sentences should be selected

as summaries.
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Figure 6.2: Structure of Bert for Summarization

In BERTSUM [16], BERT architecture for Summarization, an extra [CLS] token is inserted

before each sentence in the article. This is done here for two reasons: one is to highlight

individual sentences, and the other is to use these [CLS] tokens as the outputs of the sentence

embeddings of each sentence which is used for subsequent prediction tasks. Segmentation

embeddings was also bee modified to “interval segment embeddings” to distinguish multiple

sentences better. The method is that separate sentence senti, where senti is the i-th sentence,

into EA and EB depending on whether i is odd or even. For example, an article contains [sent1,

sent2, sent3, sent4, sent5], the interval segment embeddings of these sentences are [EA, EB,

EA, EB, EA]. With these embeddings, the model can learn about representation of sentences,

adjacency of sentences and meaning of entire article. Let an article containing sentences [sent1,

sent2, ..., sentm]. Extractive summarization can be defined as the task of assigning a label

yi ∈ {0, 1} to each senti, indicating whether the sentence been selected in the summary. With

BERTSUM, the vector of the i-th [CLS] token from the top layer denoted as ti can be used as

the representation for senti. Then input these ti into several Transformer layers to captain the

features for extracting summaries:

h̃1 = LayerNorm(hl−1 +MultiHead(hl−1))

hl = LayerNorm(h̃1 + FFN(h̃1))

where h0 = T denotes the sentence vectors output by BERTSUM with position embeddings.
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The final output layer is a sigmoid classifier :

ŷi = σ(Woh
L
i + bo)

where hL
i is the vector for senti from the top layer of Transformer. Finally, use greedy algorithm

to obtain an oracle summary from given summary of each article, and maximize the similarity

between extractive summary and the oracle summary to train the model.

32



‧
國

立
政 治

大

學
‧

N
a

t io
na l  Chengch i  U

niv

ers
i t

y

DOI:10.6814/NCCU202200797

Chapter 7

Experiments

In this chapter, we will use BERTSUM model and GPT-2 model to make a summarization

of articles without human reading that can reduce much time to get the key point. Since there

are already many pre-trained models support for English article summarization originally like

BART [15], T5 [25], etc., and it is difficult to train a Chinese BART or T5 model personally

which requires lots of hardware resources to compute, we will focus on how to use existing

pre-trained model to achieve goals in Chinese data. The main concept is to extract the article

first and then do the abstract. Following will introduce how our method do.

Figure 7.1: Pipeline of experiments
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7.1 Data Preparation

Because of the lack of Chinese corpus, we found that there are several labeled datasets in a

competition which called Natural Language Processing and Chinese Computing in China. This

competition provides a lot of training materials about Chinese like emotion detection, question

answering, etc., including document summarization surely. After checking the training data, we

found that the data is a large collection of news articles and headlines, where the headlines is a

kind of summary of articles.

Before using these data, we still have to do some data preprocessing. Since we have to input

these data into BERT model, we only choose the articles, including the addition of [CLS] and

[SEP] tokens, less than 512 words. There are 15, 906 articles with average length 306.5 words

left in the end.We reverse 10 articles for test, then split remaining data into 15, 101 for training

and 795 for validating, which the ratio is twenty to one. Compared with English punctuation,

Chinese punctuation is more complex and also includes halfwidth and fullwidth forms, we have

organized the data by cleaning up some strange words or punctuation and replacing punctuation

from halfwidth form into fullwidth form ,then split article into paragraphs with some punctuation

like，,；,！,？,。, etc. There is sill some useless information in articles like (圖片), (記者),

etc., so we remove these from articles. Finally, these data can be used for training.

7.2 Extractive Summarization with BERTSUM

The research team have released the pre-trained Chinese BERTmodel named “BERT-Base-

Chinese”, thuswe have the pre-trainedChinese BERTmodel and tokenizer, so that we don’t have

to train a Chinese BERT model to use by ourselves which is almost impossible. There is also a

pre-trained BERTSUMmodel which is trained in English, we have to change the segmentationer

from English into Chinese, then we use BERT-Base-Chinese to be the base BERT model and

tokenizer. After modifying article as the input we want, we set the ratio of extractive as 0.3

which means we will extract at most 30% of article as a summary to use in next step. If we

extractive too many sentences, it is almost as if we used the whole article. Then we let the

selected sentences must be more than 5 words, which can remove some sentences that are too

short or meaningless, and also let the selected sentences must less than 100 words. Hence, we

have the extractive summarization that can be used in the next step.
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7.3 Abstractive Summarization with GPT-2

Because of extracting from the segment of article, the consecutive sentences may be

incoherent, so we use generation model GPT-2 to improve this situation. As we did in previous

step, we use BERT-Base-Chinese model as the tokenizer, but we use “ckiplab/ gpt2-base-

chinese” which is released by Chinese Knowledge and Information Processing team of Taiwan

Academia Sinica as the base GPT-2 model .

Figure 7.2: Pipeline of abstractive summarization with GPT-2

Since ckiplab/ gpt2-base-chinese model was created by Taiwanese who used to use

traditional Chinese, we have to transfer words in simplified Chinese into traditional Chinese

before using ckiplab/gpt2-base-chinese model. Next, we connect the extractive summary from

previous step and the original headline of each article form original datasets with a [SEP] token

as the training data, this trains the machine to generate the abstractive summary after seeing

[SEP] token. With training, the default weights of ckiplab/gpt2-base-chinese will be adjusted to

fit the condition for summarization tasks. After some parameters adjusting and trying, we set

the epochs to 50 instead of 100 or bigger number to prevent overfitting, and set batch size to 256

with learning rate to 5 · 10−5, train the model with 100 warm-up steps and 2950 total steps.
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7.4 Result

With this method, we found some news articles, then make summary, followings are three

example results:

Figure 7.3: Example result of experiments
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Figure 7.4: Example result of experiments

Figure 7.5: Example result of experiments

These three news are technology news, entertainment news, and local news, respectively.

We use different kinds of news to show that the model can handle different kinds of articles.

After reading the article and summary, we can see the extractive summary contains most of

information in the article. There are still some inconsistencies and repetitive information. With
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the second summarization by abstracting, we got a more smooth summary. However, some

important information shown in extractive summary was dropped, and some irrelevant words

were generated in the abstractive summary.
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Chapter 8

Conclusion

In this paper, we restudy the methods of summarize Chinese article. We remove the less

useful information, then we generate better summaries with the remaining useful information.

Honestly, the results shown in previous chapter are better results after model training. In

extractive summarization, we can get a common summary most of time, but in abstractive

summarization, we sometimes get a weird summary which even less related to the article. To

compare with doing abstract summary from article directly which may generates disorganized

summary, our method still work much better. However, our experiments still have some

advantages and disadvantages. The datasets with lots of news make training data have more

variety, let our model can be applied in more fields. Variety brings another problem, the model

may be confused about what it should generate, then generates a strange summary. For example,

computer might generate a summary with some technology segments from a weather news.

To get the better performance and application, there are several points we can discuss in

the future. One is to try more combinations of models to summarize the article. The other is to

use more kinds of articles for training, such as novels, poems, lyrics, etc. that can make model

more generally used in any articles. Last is trying to increase the length of data that model can

read, so that the model can do longer article summary.
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