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     The new challenges of “Agile Manufacturing” and distributed decision making entailed by
decentralized organizations led to our interest in the study of computational cooperative problem
solving models and coordination techniques for distributed production management. The goal
of our research is to address the technical need of distributed production management and develop
appropriate computational approaches to support adaptive, cost-effective responsiveness. In
particular, we focus on the challenging problem of job shop scheduling, which has been one of
the primary foci of production scheduling research. This paper presents a multi-agent problem
solving model and an effective coordination technique for job shop scheduling. The model
involves a group of agents; each agent is associated with either a job or a resource. A solution to
a production scheduling problem is the result of coordinated conflict resolution in the iterative
and asynchronous multi-agent decision making process. It is well known in distributed systems
research that for tightly interacting, non-decomposable problems, such as job shop scheduling,
the need for communicating partial solution results among parts of the system rapidly degrades
system performance. On the other hand, limiting communication degrades solution quality.
One can limit communication by employing shared memory, but this has the drawback that the
shared memory becomes a bottleneck and, in addition, using shared memory limits
decentralization. In our approach, we judiciously balance the above concerns. We limit inter-
agent communication through a scheme that employs efficient, small and distributed shared
memories, each of which is associated with and shared by a limited number of agents. We also
exploit problem characteristics (e.g. disparity among subproblems) to design an effective
coordination technique for the job shop scheduling problem. We have evaluated the utility of
our approach through extensive experimentation on a variety of job shop constraint satisfaction
and optimization problems with different optimization objectives. Our results show that our
approach outperforms or gives comparative results with other state-of-the-art scheduling
techniques on benchmark problems.
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1. Introduction

In the era of global economic markets, overseas competition has impelled the
manufacturing industry to move toward the concept of “Agile Manufacturing” [17].
The capabilities to effectively and adaptively operate modern production facilities
become increasingly important to the survival and success of business organizations.
The need for new logistics and production management techniques to respond rapidly
to changing market demands has spawned decentralized organizations and entailed
distributed decision making for the common organization goals, e.g., reduce inventory,
meet order due dates, reduce resource idleness, etc. Advances of communication
services, both for human decision makers and computational devices, further enhance
the plausibility of de-centralization. However, success of distributed management
hinges on effective coordination, which has not been well studied and well understood
in computational approaches. This new challenge leads to our interest in the study of
computational cooperative problem solving models and coordination techniques for
distributed production management.

Distributed Artificial Intelligence (DAI) is concerned with the coherent problem
solving behavior of a group of related individuals (computational agents) [12,14]. As
computer applications begin to permeate into our everyday activities, DAI research
receives more and more interest. Recent DAI research has studied important issues,
such as negotiation [40], interaction protocol [7], coordination [8,18], when to com-
municate with other agents, what to communicate, and how to model other agents, etc.
These studies have produced significant results and laid the foundation for real-world
cooperative problem solving. Facilitated by the development of networked computer
systems and practical concurrent processing architectures, realistic cooperative prob-
lem solving has been realized in increasingly complex domains, such as design [1,2],
flexible manufacturing systems [30,32], office information systems [25,29,31], and
communication network management [15,39], etc.

The goal of our research is to address the technical need of distributed production
management and develop appropriate computational approaches to support adaptive,
cost-effective responsiveness. In particular, our current study focuses on the challeng-
ing problem of job shop scheduling, which has been one of the primary foci of
production scheduling research. Production scheduling has significant implications in
manufacturing management. The effective scheduling of a facility enables faster
response to customer demands, reduces its work-in-process, and increases its through-
put and, therefore, is instrumental in achieving objectives such as gaining increased
market share and increasing return on investment.

This paper presents a multi-agent problem solving model and an effective
coordination technique for job shop scheduling. The model involves a group of agents;
each agent is associated with either a job or a resource. Lateral coordination among
agents defines the process of distributed production management. A solution to a
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production scheduling problem is the result of coordinated conflict resolution in the
iterative and asynchronous multi-agent decision making process.

It is well known in distributed systems research that for tightly interacting, non-
decomposable problems, such as job shop scheduling, the need for communicating
partial solution results among parts of the system rapidly degrades system perform-
ance. On the other hand, limiting communication degrades solution quality. One can
limit communication by employing shared memory, but this has the drawback that the
shared memory becomes a bottleneck and, in addition, using shared memory limits
decentralization. In our approach, we judiciously balance the above concerns. We limit
inter-agent communication through a scheme that employs efficient, small and distri-
buted shared memories, each of which is associated with and shared by a limited
number of agents.

We argue that design of appropriate coordination strategies should be based on
characteristics of the problem structure. We examine one of the recurrent problem
structures that involves task disparity among agents, e.g., some of the agents have
dominant effects on the process of solution generation. We developed coordination
techniques that take advantage of disparity among agents to conduct effective lateral
coordinated negotiation. We use negotiation as a metaphor so that constraint conflict
resolution can be viewed as a repeated negotiation process. This view has been
expressed in other DAI conflict resolution situations [5].

The cooperative problem solving model and the coordination technique are
applied to both job shop scheduling constraint satisfaction (with non-relaxable time
windows) and constraint optimization (with objectives) problems. We conducted com-
putational experiments on benchmark job shop scheduling problems and compared the
results to other centralized scheduling techniques. The goal is to rigorously verify the
effectiveness of our cooperative problem solving approach on predictive scheduling,
which is an essential component of production management. We intend to build upon
the results and further develop our cooperative problem solving approach to address
other areas of production management, such as reactive scheduling, inventory control,
job routing, resource allocation, etc.

In the remainder of the paper, section 2 defines job shop scheduling (JSS) prob-
lems and describes a cooperative problem solving model for the problem. Section 3
presents the design of the coordination techniques for the JSS constraint satisfaction
problem, which include the disparity structure of job shops, the coordination proce-
dure, and the set of useful coordination information. Section 4 describes the conflict
resolution heuristics of the agents. Section 5 gives an overview of the group negotia-
tion process. In section 6, we extend the coordination techniques to the JSS constraint
optimization problem. In sections 7 and 8, we report the experimental results of our
approach on benchmark JSS constraint satisfaction and constraint optimization prob-
lems, respectively. In section 9, we discuss the evaluation of the experimental results.
In section 10, we overview representative related work. Finally, in section 11, we
conclude the paper.
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2. Job shop scheduling

Production scheduling deals with organizing possibly related production opera-
tions over time and across limited resources. The diversity of human and machine
activities are modeled in a wide range of scheduling problems of different conditions.
We are concerned with a subset of scheduling problems, known as job shop, that has
been one of the primary foci of production scheduling research.

2.1. Classic job shop model

To present the classic job shop model, we introduce several basic notions. We
adopt the definitions given in [6].

Operation: An operation is an elementary task to be performed.

Processing time: The processing time of an operation is the amount of time required
to process the operation; in most cases, setup times are independent
of operation relations and are included in the processing times.

Job: A job is a set of operations that are interrelated by precedence con-
straints derived from technological restrictions.

Machine: A machine is a piece of equipment, a device, or a facility capable of
performing an operation.

Release time: The release time (or release date) of a job is the time at which the
job is released to the shop floor; it is the earliest time at which the
first operation of the job can begin processing.

Due date: The due date of a job is the time by which the last operation of the
job should be completed.

Completion: The completion time of a job is the time at which processing of the
last operation of the job is completed.

Schedule: A schedule is a specification of the execution of each operation on
a particular machine at a specific time interval. A feasible schedule
is a schedule that observes all problem constraints, e.g., job release
time, operation precedence relations, and machine capacity.

Classic job shop represents a manufacturing production environment where a set
of m jobs J = {J1,…,Jm} have to be performed on a set of n machines (or resources)
R = {R1,…,Rn}. Each job Ji is composed of a set of sequential operations oprij , j =
1,…,mi, mi ≤ n, and can only be processed after its release date RDi . Each resource Rs

has only unit capacity and can process only one operation at a time. Each operation
opri j  has a deterministic processing time pij and has been pre-assigned a unique
resource which may process the operation. Since a job consists of a set of operations
that has to be performed in sequential order, it is conceptually convenient to envision
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a job entering the shop, visiting different machines to have its correspondent opera-
tions performed, and then leaving the shop. A job’s routing is the sequential set of
resources that the job visits before its completion. The arrival time of a job at a
machine is the time at which the job leaves the previous machine in its routing, and is
equivalent to the ready time of the operation to be performed on the machine.

The model provides only a basic description of actual job shops and does not
elaborate on more complex conditions. In order to focus the study on the effects of
scheduling and to allow generalization of the experimental results, most research on
job shop scheduling share the following assumptions to simplify the model.

(1) A job has a fixed ordering of operations.

(2) A job does not visit the same machine twice.

(3) An operation may have at most one other operation immediately preceding or
succeeding it. (No assembly operations.)

(4) An operation of a job can be started only if its immediate preceding operation, if
any, is completed. (No overlapped operations.)

(5) An operation can be processed by only one machine. (No alternative resource.)

(6) An operation can not be preempted during its processing.

(7) Operations do not require explicit setup times.

(8) The machines have unit capacities in the entire interval of scheduling (no machine
down time).

Job shop scheduling problems [10] involve synchronization of the completion of
m jobs J on n resources R (machines). The problem (hard) constraints of job shop
scheduling include (1) operation temporal precedence constraints, i.e., an operation
must be finished before the next operation in the job can be started, (2) release date
constraints, i.e., the first operation of a job can only begin after the release date of the
job, and (3) resource capacity constraints, i.e., resources have only unit processing
capacity. A solution of the job shop scheduling problem is a feasible schedule, which
assigns a start time stij and an end time etij to each operation oprij , that satisfies all
problem constraints.

Formally, job shop scheduling problems are defined as:

Given

• Ji , i = 1,…,m, a set of m jobs.

• Rk, k = 1,…,n, a set of n resources (with unit capacity).

• Ji = {oprk
ij}, j = 1,…,mi , mi ≤ n. Each job Ji  consists of a set of sequential opera-

tions. An operation oprk
ij  is the j th operation in the job Ji  and requires the use of

resource Rk for a processing time of pij .

• rti, i = 1,…,m, a set of release times, where rt i is the release time of Ji .
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Find stij , i = 1,…,m, j = 1,…,mi , such that

• rt i ≤ sti1, and

• stij ≥ eti ( j –1) (or equivalently, stij ≥ sti( j –1) + pi ( j –1), and

• (etkpq ≤ stkij) ∨ (etki j ≤ stkpq), p ≠ i.

A schedule can be visualized using Gantt charts, where operations are organized
along the time line from the perspectives of either jobs or resources. Each box repre-
sents an operation with length proportional to its processing time and is marked by a
unique identification code. We use a three-digit code, where the first digit is the job
number, the second digit is the operation number within the job, the third digit is the
resource that processes the operation. For example, oprB

21 represents the first operation
of J2 and is processed by RB.

Figure 1 shows the job Gantt chart of a schedule where only operation precedence
constraints and job release date constraints are considered. A vertical arrow in front of
each time line represents the release date of each job. The schedule is infeasible
because resource capacity constraints are not respected. For example, according to

Figure 1. Job Gantt chart of an infeasible schedule.

the schedule, RB will process part of oprB
11 and oprB

31 at the same time, which is not
feasible. Figure 2 shows the resource Gantt chart of a schedule where only resource
capacity constraints are considered. The schedule is also infeasible because job release
date constraints and operation precedence constraints are not respected. For example,
according to the schedule, RC will process oprC

12 before oprB
11 has been finished by RB,

which is not feasible. Also, RC will not be able to process oprC
21 as scheduled because

J2 has not been released at time 0.

Figure 2. Resource Gantt chart of an infeasible schedule.
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We use the above examples to illustrate that when solving job shop scheduling
problems, two aspects of constraints that involve job and resource, respectively, must
be considered simultaneously. A feasible schedule is shown in figure 3. The job Gantt
chart of the schedule displays when the operations of a given job are processed. The
resource Gantt chart of the schedule lays out the process of a given resource perform-
ing on various operations.

In general, scheduling problems are NP-hard [11]. They require time exponential
in the input length. Consequently, the time required to solve problem instances of
reasonable size can be on an astronomical scale. For example, consider an exponential
relation of time 2n to problem size in the number of operations n, and a time unit of a
microsecond. The worst case time required to solve the problem grows rapidly from
0.001 second for size 10 (n = 10), to 18 minutes for size 30, and to 35.7 years for size
50. This exponential explosion can not be alleviated by realistic speed increase of
computation. To double the size of a problem that can be solved within 18 minutes
would require a 109-fold increase in speed. A practical job shop scheduling problem
typically involves hundreds of operations. Therefore, almost all realistic scheduling
techniques resort to heuristic search that does not guarantee completeness.

Given a job shop scheduling problem, the number of feasible solutions can be
enormous. For example, for a problem with m jobs of n operations on n resources,
each resource has m! possible processing sequences. The total number of possible
schedules is (m!)n since all precedence constraints between operations can be satisfied
by right shifting operations toward the end of the time line. We need to specify condi-
tions that restrict admissible schedules.

In general, there are two types of scheduling problems, e.g., satisfaction problems
and optimization problems. In satisfaction problems, each job is assigned a non-
relaxable due date. An admissible solution is a schedule in which all jobs are finished

Figure 3. Job and resource Gantt charts of a feasible schedule.
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before their due dates. All admissible solutions are equally good. Usually, we
are looking for any one and only one of the admissible solutions. In optimization
problems, feasible schedules are evaluated according to objective criteria that reflect
the economic goals of organizations. The best solution is a schedule with minimum
objective cost. Usually, it is not realistic to find an optimal schedule1) because of the
enormous numbers of feasible schedules. The practical goal is to find a schedule as
good as possible. In this study, we consider both job shop scheduling satisfaction and
optimization problems.

2.2. Objective criteria

We introduce two objective functions that are most commonly used in the
literature of job shop scheduling. First, we describe two primitive measures that are
essential for the objective functions that we consider.

Completion time Ci is the time at which a job Ji completes its processing. It is the end
time of the last operation of Ji .

Tardiness Ti is the non-negative amount of time by which the completion time of Ji

exceeds its due date ddi. If Ji  is completed earlier than ddi, the tardiness is zero.
(Ti = max[0, (Ci – ddi)].

We consider two objective functions:

Inventory INV  is the in-progress inventory cost of jobs.

1)Except for small sized problems and special objective functions, such as makespan.

INV = × −
=
∑ inv C dd sti i i i
i

m

( [ , ] ),max 1
1

where m is the number of jobs, invi is a marginal inventory cost introduced to
each job by its first operation, sti1 is the time at which a job Ji begins its
processing, or the start time of the first operation of Ji .

Weighted tardiness Twt is the sum of proportional tardiness multiplied by job impor-
tance.

T w Twt i i
i

m

=
=
∑ ,

1

where wi is the weight of a job Ji .

We study job shop scheduling optimization problems based on a cost function
that combines both inventory cost and weighted tardiness cost of the schedule. This
cost function was proposed in [33] as a more realistic cost model that directly accounts
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for the tardiness cost, in-process inventory cost, and finished-goods inventory cost
introduced by each job. Weighted tardiness cost and inventory cost are usually con-
flicting objectives.2) In general, it is more difficult to optimize a composite objective
than just one objective. We adopt this cost function in order to test the capability of our
cooperative problem solving approach to optimize conflicting objective.

2.3. A cooperative problem solving model for job shop scheduling

Job shop scheduling problems involve job and resource constraints. Intuitively, it
is convenient to assign separate agents that would be in charge of these two aspects of
constraints. We propose a model of distributed job shop scheduling in which each job
is assigned to a job agent and each resource to a resource agent. Therefore, the number
of agents involved in solving a job shop problem is equal to the sum of the number
of jobs and the number of resources in the problem. Job agents are concerned with
constraints of a job’s aspect, e.g., job release dates, due dates, and operation prece-
dence relations. Resource agents take care of constraints of a resource’s aspect, e.g.,
resource capacity. These agents engage in a coordinated decision making process to
solve a scheduling problem. This model seems to be appropriate for the following
reasons.

(1) Each agent corresponds to a real entity. This provides a closer management of an
entity in its situated environment and, therefore, facilitates potential real-time
responsiveness. For example, a resource agent can monitor its local condition
(e.g., machine breakdown, processing time variation) and update its processing
decisions accordingly. A job agent can respond to due date changes and make
necessary revisions on operation processing.

(2) Each agent can make decisions based on its own strategies and its local situation.
This provides modularity for constructing the system. For example, we may want
a resource agent to manage the resource differently depending on its contention
level. Similarly, we may want a job agent to act with different strategies accord-
ing to the job’s importance.

(3) This model provides an appropriate level of granularity to disentangle the prob-
lem constraints and analyze how they interact with each other. By examining how
a job interacts with a resource and scrutinizing how resources interact with each
other through jobs, and vice versa, we hope to obtain information that can facili-
tate our understanding of the interaction structure of job shop and the design of
communication messages and coordination strategies that enable more effective
problem solving.

This model has three unique features for cooperative problem solving. First, each
agent is concerned with only one type of constraint among a subset of decision vari-

2)This composite objective demands just-in-time scheduling, which is one of the irregular objectives [24].
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ables (operations). A study based on this model may provide implications to other
group decision problems that involve several parties of different interests or concerns.
Second, an operation is governed both by a job agent and a resource agent. Changes of
operation start times by job agents may result in constraint violations for resource
agents and vice versa. Therefore, the start times of operations must be negotiated by
job and resource agents. Third, there is no authority among agents. All agents have
equal right to assign a value (start time) to a decision variable (operation) under its
jurisdiction. Therefore, a solution is a value assignment of all decision variables that
all agents agree upon.

We consider a cooperative problem solving approach based on an iterative
negotiation process of agents’ value assignment to decision variables. Negotiation
proceeds by proposal and counter-proposal of value assignment between resource
agents and job agents. Resource agents are concerned with resource capacity con-
straints only. Job agents are concerned with job release dates, due dates, and operation
precedence constraints. In optimization problems, job due date constraints are relaxed
by job agents. Whenever an agent is not satisfied with the current value assignment, it
presents a counter-proposal by actually changing the values of a subset of decision
variables to satisfy its own constraints. If an agent is satisfied with the current value
assignment, it does not change any value assignment. Within a round of negotiation
(or an iteration cycle), resource agents and job agents take turns in being active in the
negotiation, e.g., they each have one chance to examine the current value assignment
and propose necessary changes. While agents of different types of constraints negotiate
alternatively, agents of the same type can be active simultaneously, each working
independently. A solution to the satisfaction problems is the result of a successful
negotiation process between job agents and resource agents. In optimization problems,
one of the resource agents assumes a special role of presenting a proposal of low global
objective cost. The approach is called COordinated Negotiation Agents (CONA).

3. The design of coordination techniques

Since the agents are engaged in an iterative negotiation process, their proposals
must be coordinated to facilitate convergence to an agreement. We developed a co-
ordination scheme that exploits task disparity in job shop. We distinguish between
coordination procedure and coordination information that constitute a coordination
scheme. A coordination procedure is a desired negotiation pattern of agents. Coordi-
nation information is the set of exchanged information among agents that affects
agents’ proposals and facilitates desired negotiation results.

3.1. Task disparity

In many application domains, problems often exhibit special structures that can
be exploited to facilitate more effective problem solving. One of the most recurrent
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structures involves disparity among subproblems. We define disparity as the condition
where some quantifiable characteristics of subproblems exhibit noticeable deviation
from the average. In the context of CONA, disparity of subproblems is exhibited by
different levels of agents’ flexibility to accept a proposal without constraint violation.
For example, if a resource is used only occasionally for a short period of time, chances
are the resource agent would not detect a capacity constraint violation when a job agent
changes the start time of its operation using the resource. On the other hand, if the
resource is a bottleneck resource which is used most of the times for a long interval,
a start time change on an operation would most likely create constraint violation for
the resource. In other words, agents that are assigned to bottleneck resources are more
constrained than agents that are assigned to non-bottleneck resources in the negotiation
process. Therefore, there is a disparity between bottleneck resource agents and non-
bottleneck resource agents.

Besides disparity of ease of accepting proposals in the negotiation process, bottle-
neck resources also have dominant effects on both the admissibility and the quality of
a schedule. For example, figure 4 shows a simple job shop scheduling problem which
includes only three jobs, Ji , i = 1, 2, 3, on three resources, Rj , j = x, y, z. Each box is an

Figure 4. Dominant effects of bottleneck resources.

operation, with the first number representing the number of the job and the second
number representing its sequence within the job, i.e., opr23 is the third operation of J2.
An operation is under the jurisdiction of a job agent and a resource agent. RY is
considered as a bottleneck resource because of its high contention. If the problem is a
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satisfaction problem, the schedule in (a) is not admissible because J1 is not finished
before its due date. If the problem is a tardiness optimization problem, the schedule in
(b) is a better schedule than the schedule in (a) since it does not have any tardiness.
The decision of RY agent to process opr12 before opr22 is most critical in generating the
schedule in (b).

3.2. Coordination procedure

In view of the iterative proposal, counter-proposal process based on resolving
constraint conflicts of individual agents and the task disparity on bottleneck resources,
we developed a coordination procedure that promotes rapid convergence of negotiation
by considering the following principles of interaction control.

(1) Least disturbance – Each agent’s proposal of actually changing the start time of
an operation potentially disturbs others’ constraint satisfaction status. To mini-
mize reciprocal harmful interaction, agents’ proposals should take into account
the constraints of others regarding current value assignment.

(2) Islands of reliability – A proposal by the most constrained agent is more likely to
be part of a global solution than that of less constrained agents. In traditional
constraint satisfaction literature [27], there was a notion of a most constrained
variable which has the fewest possible values. The intuition was that instantiating
the most constrained variable seemed to be more critical than instantiating other
less constrained variables; in addition, the instantiation would be more likely to
be correct than the instantiation of variables with large domains of possible
values. We extend this intuition to CONA, in which a proposal from the most
constrained agent seems to be more reliable and, therefore, can serve as an anchor
of interaction. This intuition also incorporates domain knowledge of job shop
scheduling where the processing sequence on the bottleneck resource has the
most impact on the admissibility and quality of the schedule. This policy suggests
that group agreement should be reached by a process of negotiation based on
islands of reliability, and modifying islands of reliability only when group
agreement is heuristically determined as infeasible under the current anchoring
proposal.

(3) Loop prevention – Looping behaviors, such as oscillatory value changes by a
subset of agents, should be prevented. This is a common desired property of all
distributed systems.

We now give a conceptual overview of how these principles guide coordination
of the negotiation agents.

3.2.1. Least disturbance
Least disturbance corresponds to an attempt to minimize ripple effects of

agents’ proposals of actual value changes. To reach group agreement, the number of
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unsatisfied agents within a round of negotiation should be gradually reduced to zero.
While an agent always becomes satisfied in an iteration cycle since it assigns values to
its variables to satisfy only its own constraints, its proposal may cause constraint
violations to other agents. Therefore, an agent should resolve conflicts in a way that
minimizes the extent of causing disturbances to other agents. Least disturbance is
incorporated in an agent’s heuristics of conflict resolution (see section 4). The least
disturbance principle is operationalized during conflict resolution in two ways. First,
an agent changes the values of as few variables as possible. Second, for a given
selected variable, an agent changes the value assignment such that it deviates from the
previous value the least possible.

3.2.2. Islands of reliability
An island of reliability is a proposal by the most constrained agent and is more

likely than others to be part of the solution. Islands of reliability provide anchoring for
reaching group agreement in terms of propagating more promising partial solutions
and are changed less often.3) In CONA, the island of reliability refers to start times
assignment on operations using the bottleneck resource by the agent in charge of the
resource. An island of reliability is used as an anchor of interaction during the iterative
negotiation process between job agents and resource agents.

Recall that each operation is governed by both a job agent and a resource agent.
Therefore, the island of reliability is part of every job agent’s concerns in satisfying its
constraints. To use the island of reliability as an anchor of negotiation, we design job
agents in such a way that they would not propose to change value assignment on the
island of reliability during their conflict resolution unless special conditions occur.
Instead, they would propose to resolve their conflicts by changing the value assign-
ment on operations that are not using the bottleneck resource. We use the negotiation
efforts between job agents and non-bottleneck resource agents as conditions of when
job agents can propose to change value assignment on the island of reliability. To
measure the negotiation efforts between job agents and non-bottleneck resource
agents, we associate a counter with each operation using the non-bottleneck resources.
The counter associated with an operation records the number of times that a non-
bottleneck resource agent has changed the value assignment of the operation. In other
words, when a non-bottleneck resource agent proposes to change the value assignment
of an operation during its conflict resolution, it increases the counter associated with
the operation by one. We assign a heuristic threshold of counter value to contain the
negotiation efforts of job agents and non-bottleneck resource agents between each

3) Blackboard systems (e.g., Hearsay-II speech-understanding system [9]) have used the notion of solution
islands to conduct an incremental and opportunistic problem solving process. Partial solution islands
emerge and grow into larger islands, which it is hoped will culminate in a hypothesis spanning the entire
solution structure.
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configuration of the island of reliability. When a job agent detects an operation with
a counter value exceeding the threshold in conflict with an operation using the bottle-
neck resource, the job agent would change the value assignment of the operation using
the bottleneck resource. In response to the proposal by the job agent, the bottleneck
resource agent, if it finds itself in conflicts, would propose a new configuration of the
island of reliability. All counters are reset to zero by the non-bottleneck resource
agents. The job agents and the non-bottleneck resource agents resume their negotiation
in the hope of an agreement under the new anchoring proposal.

3.2.3. Loop prevention
Under the principles of least disturbance and islands of reliability, the system

exhibits only two types of cyclic behavior. First, a subset of job and non-bottleneck
resource agents may be involved in cyclic proposals of value changes in order to find
an agreement with bottleneck resource agents’ decisions. Secondly, the bottleneck
resource agent might propose value changes in a cyclic way.

The first type of looping behavior is interrupted by job agents when the counter
of a conflicting non-bottleneck operation exceeds a threshold. To prevent the second
type of looping behavior, the bottleneck resource agent keeps a history of its value
changes so that it does not repeat the same proposal.

3.2.4. Negotiation pattern
With the three principles of interaction control, the coordination procedure of the

negotiation agents is designed to emulate a hierarchical organization with the bottle-
neck resource agent(s) on the top level and the job agents and the non-bottleneck
resource agents on the bottom level. Job agents interact vertically with the bottleneck
resource agent(s) and laterally with the non-bottleneck resource agents. There is no
direct interaction between bottleneck and non-bottleneck resource agents. By propos-
ing a configuration of the island of reliability, the bottleneck resource agent(s) exerts
constraints to job agents, who then negotiate with the non-bottleneck resource agents
for an agreement. When an agreement is heuristically determined as infeasible, job
agents break the restriction of the bottleneck resource agent(s) by modifying the
configuration of the island of reliability. If a bottleneck resource agent finds itself not
satisfied with the configuration of the island of reliability modified by job agents, it
would propose a new configuration, which again is regarded as new constraints by job
agents. The negotiation process continues until all agents are satisfied, which means
that an agreement has been found.

The coordination procedure is intended to quickly find an agreement among
agents in problems with a very large combinatorial space, such as job shop scheduling,
but cannot guarantee that the agents will find a solution if the solution exists. However,
in our experimental study, we show that CONA usually converges very fast in
problems with noticeable bottlenecks.

J.S. Liu, K.P. Sycaray Agile manufacturing248



3.3. Coordination information

In order to coordinate their proposals of value changes, agents need to exchange
information. We developed a set of useful coordination information for negotiation
agents in job shop scheduling. In DAI research, two types of communication have been
used, e.g., message passing and shared memory. Message passing limits unnecessary
communication. However, in situations such as tightly coupled problems, where fre-
quent communication is required, message passing results in great computational
overhead. Shared memory reduces computational overhead but may become a com-
munication bottleneck and limit decentralization.

We judiciously balance the above concerns. We limit inter-agent communication
through a scheme that employs efficient, small and distributed shared memories, each
of which is associated with and shared by a limited number of agents. In particular,
coordination information is associated with each operation and is used to express
agents’ views with regard to current value assignment of the operation. Coordination
information written by a job agent on an operation is referenced by a resource agent,
and vice versa, as shown in figure 5.

Job agents provide the following coordination information for resource agents:

(1) Boundary of an operation is the interval between the earliest start time and latest
finish time of the operation (see figure 6). It represents the overall temporal
flexibility of an operation within the time window of a job’s release date and due
date and is calculated only once during initial activation of job agents.

(2) Temporal Slack of an operation is an interval between the current finish time of
the previous operation and current start time of the next operation (see figure 7).
It indicates the temporal range within which the start time of an operation may
be assigned to without causing precedence constraint violations. (This is not
guaranteed since temporal slacks of adjacent operations are overlapping with
each other.)

Figure 5. Coordination information.
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(3) Weight of an operation is the weighted sum of relative temporal slack with respect
to operation boundary and relative temporal slack with respect to the interval
bound by the closest bottleneck operation. Denote the boundary of an operation
oprij  by (stbij , etbij). Denote the temporal slack of oprij  as (sttsi j , ettsij ). Denote the
interval of oprij  restricted by the closest bottleneck operation as (sti j

bb, eti j
bb).

If there is no bottleneck operation before opri j , then sti j
bb = stbi j . If there is a

bottleneck operation oprik before oprij , k < j, then stij
bb= etik + pihh k

j ,=
−∑ 1 where

etik is the current end time of oprik . If there is no bottleneck operation after oprij ,
then eti j

bb= etbij . If there is a bottleneck operation oprik after oprij , k > j, then etij
bb=

stik – pihh j
k ,= +

−∑ 1
1 where stik is the current start time of oprik . The weight of an

operation is defined as

Figure 6. Coordination information: Boundary.

Figure 7. Coordination information: Temporal Slack.
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where pij is the processing time of the operation oprij ; k1 and k2 are adjusting
parameters. We arbitrarily set k1 to 10 and k2 to 5.

Weight of an operation is a measure of the likelihood of the operation “bumping”
into an adjacent operation and an adjacent bottleneck operation, if its start time
is changed. Therefore, a high weight of an operation represents a job agent’s
preference for not changing the current start time of the operation. In figure 8,
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both opri3 and oprj 3 are bottleneck operations. Oprj1 of Jj will have a higher
weight than that of opri1 of Ji. If both operations use the same resource and are
involved in a resource capacity conflict, the resource agent will change the start
time of opri1 rather than start time of oprj1.

Resource agents provide the following coordination information for job agents:

(1) Bottleneck Tag is a tag which marks that this operation uses a bottleneck
resource. It indicates the status of operation being a bottleneck operation.

(2) Resource Slack of an operation is an interval between the current finish time of
the previous operation and the current start time of the next operation in the
resource’s processing sequence (see figure 9). It indicates the range of the time
interval in which the start time of the operation may be changed without causing
capacity constraint violations. (This is not guaranteed since source slacks of
adjacent operations are overlapping with each other.)

Figure 8. Coordination information: Weight.

(3) Change Frequency of an operation is a counter of how many times the start
time of this operation set by a job agent has been changed by a non-bottleneck
resource agent. Whenever a non-bottleneck resource agent changes the start time
of an operation, it increases change frequency of the operation by one. Con-
ceptually, change frequency measures the negotiation effort of job and non-

Figure 9. Coordination information: Resource Slack.
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bottleneck resource agents between each modification on start times of bottleneck
operations. In addition, when a non-bottleneck resource agent detects a highly
contended resource interval, change frequency can be used by the non-bottleneck
resource agent to propagate its decisions on the dynamically arising bottleneck
resource intervals4) by setting the counter to a number larger than some pre-
determined threshold. We heuristically set the threshold of change frequency to
3. When a job agent encounters a conflicting operation with change frequency
larger than 3, it resolves conflict by changing the start time of the bottleneck
operation and, therefore, signals to the bottleneck resource agent that a new
configuration of the anchor proposal is required.

Coordination information among agents is associated with each operation by its
responsible agents. When an agent is resolving constraint violations on an operation
under its responsibility, the coordination information provided by the other agents that
govern the same operation is used in proposing a new value assignment.

4. Agents’ negotiation heuristics

Agents’ negotiation heuristics attempt to minimize the ripple effects of causing
conflicts to other agents as a result of fixing the current constraint violations. Conflict
minimization is achieved by minimizing the number and extent of operation start time
changes. The design of agents’ negotiation heuristics incorporates the coordination
procedure and the use of coordination information.

4.1. Negotiation heuristics of job agent

Job agents resolve precedence constraint violations using the following heuris-
tics:

(1) Identify conflict pairs of two adjacent operations whose current start times violate
the precedence constraint between them (see figure 10).

(2) Resolve first conflict pairs involving a bottleneck operation.

(3) Change the start time of one operation only to resolve a conflict pair.

4) In job shop scheduling, the notion of bottleneck usually corresponds to a particular resource interval
demanded by operations that exceeds the resource’s capacity. Most state-of-the-art scheduling tech-
niques emphasize the capability to identify dynamic bottlenecks that arise during the construction of the
solution [33,38]. In our approach with agents’ dynamic local interaction, we utilize both notions of
static (i.e., fixed resource contention ratio) and dynamic bottleneck. Static bottleneck corresponds to a
resource within the entire interval specified by the problem. Dynamic bottleneck is a resource interval
that is highly contended by operations as a result of job agents’ proposals and is identified by non-
bottleneck resource agents.
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(4) For a conflict pair including a bottleneck operation and a regular operation, if the
change frequency counter on the regular operation is still under the threshold,
change the start time of the regular operation; if not, change the start time of the
bottleneck operation.

(5) For a conflict pair of regular operations, if one of the two operations can be
changed within its boundary and resource slack, change that operation; if not,
change the operation with lower change frequency.

(6) Change the start time of an operation such that it deviates from the previous value
the least possible.

In figure 10, the conflict pair of opri3 and opri4 will be resolved first since opri3
is a bottleneck operation. If the change frequency of opri4 is still below a threshold,
start time of opri4 will be changed by an addition of T2 (the distance between current
start time of opri4 and current end time of opri3) to its current start time. Otherwise,
start time of opri3 will be changed by a subtraction of T2 from its current start time. In
both cases, start time of opri5 will be changed to the end time of opri4. To resolve the
conflict pair of opri1 and opri2, either start time of opri1 will be changed by a sub-
traction of T1 from its current start time or start time of opri2 will be changed by an
addition of T1 to its current start time. The decision is based on the boundary, temporal
slack, resource slack, and change frequency of both operations.

4.2. Negotiation heuristics of non-bottleneck resource agents

Non-bottleneck resource agents resolve capacity constraint violations using the
following heuristics:

(1) Re-allocate the over-contended resource intervals to the competing operations.

Figure 10. Conflict resolution of job agent.
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(2) Keep changes to the start times of these operations to a minimum.

(3) Allocate operations in a sequence based on the weight information associated
with them. If their original resource intervals have been preempted by other
operations, a most adjacent resource interval within their boundaries is allocated,
considering the preference of staying within their temporal slacks.

(4) If a conflicting resource interval involves more than three operations, assign high
change frequency (higher than the threshold) to these operations after conflict
resolution.

For example, in figure 11, opra4 was preempted by opre2, which has higher
weight. A most adjacent resource interval is allocated to opra4. In addition, when a
resource agent detects a high resource contention during a particular time interval
(such as the conflict involving oprc3, oprd1, and oprg1), it allocates the resource inter-
vals and assigns high change frequency (higher than the threshold) to these operations,
and thus dynamically changes the priority of these instantiations.

Figure 11. Conflict resolution of non-bottleneck resource agent.

4.3. Negotiation heuristics of bottleneck resource agents

A bottleneck resource agent has high resource contention. This means that most
of the time, a bottleneck resource agent does not have resource slack between opera-
tions. In job shop scheduling, two operators, exchange(i, j) and right-shift(i, t), have
been used [21,22,24,28] to modify the processing sequence of operations on a re-
source. Exchange(i, j) switches (or swaps) the start times of a pair of operations (i, j).
Right-shift(i, t) re-assigns the start time of operation i to a later time t. Bottleneck
resource agents resolve capacity constraint violations using the following heuristics:

(1) Examine the amount of overlap of conflicting operation resource intervals.
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(2) If the overlap is considered as small, right-shift operations that follow the
changed operation.

(3) If the overlap is considered as not small, swap the changed operation with an
appropriate operation.

In figure 12(i), opre3, oprb3, and oprc3 are all right-shifted to resolve capacity
conflicts because the conflicted interval is small and there are slacks before the latest
finish time of oprc3. In figure12(ii), the changed oprd3 is swapped with oprb3 since the
changed start time of oprd3 is later than the start time of opre3. Resource intervals are

Figure 12. Conflict resolution of bottleneck resource agent.

then allocated to the new sequence – oprb3, opre3, oprd3. The intuition behind the
heuristics is to keep the number of changed variables as minimum as possible. Note
that the new start time of oprd3 is in the same direction (on the time line) of modifi-
cation made by a job agent on oprd3. This is to comply with the job agent’s constraints
of not being able to process the preceding operations of oprd3 earlier.

5. Group negotiation process

Given a job shop scheduling problem, agents are created to represent jobs and
resources. The group negotiation proceeds as follows:

Step 1. Initialize agents.
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(a) Job agents become active. Each job agent calculates a boundary for each
operation under its jurisdiction considering its release and due date con-
straints.

(b) Resource agents become active.

• Each resource agent calculates the contention ratio for its resource by
summing up the processing times of operations on the resource and
dividing it by the interval length between the earliest and latest bound-
ary time among the operations.

Denote the set of operations using a resource Rk by {oprk
ij}. Denote

the boundary of an operation by (stbij , etbij). A resource’s contention
ratio r is calculated by

r
p

et st
ij

i j
b

ij
b=

−
∑

( ( ) ( ))
,

max min

where pij is the processing time of an operation oprij . If the resource
contention ratio r is larger than a certain threshold, a resource agent
concludes that it is a bottleneck resource agent5) and marks the opera-
tions under its jurisdiction as bottleneck operations.

• Each resource agent heuristically allocates the earliest free resource
interval to each operation under its jurisdiction according to each
operation’s boundary.

All operations are assigned a start time. This initial value assignment of all
variables represents the initial proposal of the tentative schedule.

Step 2. Job agents are active. Each job agent looks for constraint violations. If it does
not find any, it announces that it is in a satisfaction status. Otherwise, it
proposes changes to the current value assignment.

Step 3. Resource agents are active. Each job agent looks for constraint violations. If
it does not find any, it announces that it is in a satisfaction status. Otherwise,
it proposes changes to the current value assignment.

Step 4. If all agents are in the satisfaction status, stop the process. The current value
assignment of variables represents an agreement of all agents and is a solution
to the problem. Otherwise, go to step 2.

5.1. An illustrative example

We illustrate, in more detail, the negotiation process through an example. This
example features detection of dynamic bottlenecks and reconfiguration of the island of

5) If no bottleneck resource is identified, the threshold value is lowered until the most contended resource
is identified.
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reliability. The input scheduling problem consists of five jobs on five machines with
the same due date. During initialization, job agents calculate boundary information
for each operation according to the releaseydue dates and the processing times of
operations. In figure 13, t1 is the earliest time opr00 can start; t4 is the latest time opr00

should finish if job0 is to meet its due date. Therefore, (t1, t4) is the boundary of opr00.
Denote the boundary start time and boundary end time of opr00 by stb00 and etb00,
respectively. We have stb00= t1 and etb00= t4.

Figure 13. Initialization of job and resource agents.

With this boundary information associated with each operation, resource agents
build an initial schedule with a heuristic, e.g., allocate free resource intervals to opera-
tions with earliest boundary start time at the beginning and then with earliest boundary
end time if there is no idleness. For example, in resource0, both opr00 and opr20 have
the earliest boundary start time. Opr00 is arbitrarily chosen for allocation. Then, opr20

is allocated next because it has the earliest boundary end time among the remaining
operations. The allocation sequence is followed by opr31, opr41, and opr13. Note that
opr13 is assigned to its earliest start time. In resource1, after the allocation of opr10

which has the earliest boundary start time, the allocation sequence of opr30, opr21,
opr01, and opr40 is established according to earliest boundary end time. Among the five
resources, R2 identifies itself as the bottleneck resource since it has the largest resource
contention ratio. All five operations using R2 are marked as bottleneck operations.

Figure 14 shows the first cycle of the negotiation process. In job agents, opera-
tions represented by two boxes are those involved in constraint violations and whose
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start times are changed. The dotted boxes represent their previous locations assigned
by resource agents. The solid boxes represent their new locations assigned by job
agents after conflict resolution. J0 detects two conflict pairs – (opr01, opr02) and
(opr02, opr03). Since opr02 is a bottleneck operation and change frequencies of opr01

and opr03 are zero, both opr01 and opr03 are assigned to new locations (heuristics 3 and
4). Opr04 is also assigned to a new location in order to comply with the conflict
resolution between opr02 and opr03. In J3, two conflict pairs (opr30, opr31) and
(opr32, opr33) are detected. The conflict between opr32 and opr33 is resolved as in J0.
The conflict between opr30 and opr31 can not be resolved within their resource slacks
(heuristic 5). Since change frequencies of both operations are zero, J3 heuristically
chooses opr30 to change its start time.

Resource agents become active after all job agents have made necessary modifi-
cations on the tentative schedule to ensure no violation of their constraints. In resource
agents, the dotted boxes represent operations’ previous locations assigned by job
agents. The solid boxes represent operations’ new locations assigned by resource
agents after conflict resolution. In resolving conflicts, resource agents allocate opera-
tions to a location as close to the original location as possible (heuristics 1 and 2). In
R0, a capacity constraint violation between opr00 and opr20 is detected. Since opr20 has
a higher weight than opr00, opr00 is changed to a new location (heuristic 3). R1 detects
a high resource contention between opr10, opr21, opr30, and opr40. Opr21  and opr01 are
allocated to their original locations because they have higher weight information than
other operations (heuristic 3). Next, opr30 is allocated to a location just after opr01

because its processing time is longer than the free resource interval between opr21

Figure 14. Cycle 1 of an example negotiation process.
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and opr01 (heuristic 2). The allocation is followed by opr40 and opr10. Opr10 is
allocated to the free resource interval between opr21 and opr01 since its processing time
is equal or smaller than the interval (heuristic 2). After conflict resolution, the R1 agent
assigns a change frequency higher than the threshold to opr10, opr30, and opr40 in order
to propagate its decisions on the dynamic bottleneck interval (heuristic 4). In R4, the
agent allocates opr34 and opr24 to a later start time, instead of an earlier start time, by
considering their temporal slack information (heuristic 3).

Figure 15 shows the second cycle of the negotiation process. J1 changes the
location of opr11 because opr11 has a high change frequency (heuristic 4). J3 changes
the locations of opr31, opr32, and opr33 because opr30 has a change frequency higher
than the threshold (heuristic 4). J4 also assigns a new start time to opr41 because

Figure 15. Cycle 2 of an example negotiation process.

opr40 has a high change frequency. J0 and J2 are satisfied with the current solution and
make no modification. During resource agents’ negotiation activities, only the R2 (the
bottleneck resource) agent finds constraint violation. Since the interval of capacity
constraint violation is small, R2 right-shifts opr42 and opr12 (heuristic 2). This repre-
sents a new configuration of the islands of reliability. All operations’ change frequency
counters are reset to zero.

Figure 16 shows the third cycle of the negotiation process. In both J1 and J4,
opr13, opr14 and opr43, opr44 are assigned to a later start time because opr12 and opr42

are bottleneck operations and all these non-bottleneck operations have a change fre-
quency of zero (heuristic 3). R4 is the only resource agent which finds constraint
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Figure 16. Cycle 3 of an example negotiation process.

Figure 17. Cycle 4 of an example negotiation process.
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violation when resource agents become active. R4 assigns new start times to opr34 and
opr24 because they have lower weight information than opr43.

Figure 17 shows the fourth cycle of the negotiation process. All job and resource
agents are satisfied with the current solution. Therefore, the current value assignment
is an admissible schedule for the job shop scheduling constraint satisfaction problems.

6. Negotiation for optimization

Recall that in job shop scheduling, bottleneck resources have the dominant
effects on both the admissibility and quality of the schedule (see figure 4). In constraint
optimization problems with a tardiness objective, a job’s tardiness is mostly due to its
delay on the bottleneck resource. In other words, the operation processing sequence on
the bottleneck resource is responsible for most of the tardiness cost of jobs. Therefore,
CONA can be naturally extended to the job shop scheduling constraint optimization
problems with a tardiness objective.

We developed a negotiation mechanism for group optimization, called Anchor&
Ascend, where a globally favorable solution is found by iterative local negotiation of
an initial proposal based on an anchor sub-solution with monotonically increased local
objective cost. In Anchor&Ascend, one of the bottleneck resources is selected and
assigned the role of anchor (agent) by heuristic, e.g., assign the role of anchor agent
to the last bottleneck in jobs’ processing sequence. The non-bottleneck resources
together with the not selected bottleneck resources will be referred to as regular re-
sources. Suppose every uth operation in each job uses the selected bottleneck resource.
For each job Ji , we define pre-anchor operations to be {oprij}, j = 1,…,u – 1, the
anchor operation to be opriu, and post-anchor operations to be {oprij}, j = u + 1,…,n.
A valid sub-solution for the anchor agent is a sequence of the anchor operations
{ opriu}, i = 1,…,m, with specified start times {stiu}, in which none of the intervals
(stiu, stiu + piu) overlaps with others and all stiu ≥ estiu. The local tardiness objective
function for the anchor agent is Canchor = ∑m

i =1{ wi × max[0, (stiu – lstiu)]} = ∑m
i =1ciu,

where ciu is the tardiness cost of opriu, m is the number of jobs, and lstiu = ddi –
∑n

k=upik. The local cost Canchor is used by the anchor agent to evaluate its sub-solution
and estimate the global weighted tardiness cost of the current solution. In other words,
we assume all the tardiness of jobs is due to tardiness on the bottleneck resource and
we use ciu to predict the cost ci of the job Ji by assuming all post-anchor operations
in the job will be processed with no delay, i.e., sti j = stiu + pikk u

j ,=
−∑ 1 i = 1,…,m,

j = u + 1,…,n. Of course, any actual delay will certainly increase ci and increase the
overall weighted tardinesscost C, i.e., Canchor ≤ C.

Anchor&Ascend expands CONA by incorporating local optimization in the
selected bottleneck resource. The anchor agent conducts a local best first search for
configuring its local sub-solution. Initially, the anchor agent constructs an optimal
local sub-solution by heuristic local search. This anchor sub-solution is used as an
island of reliability in CONA for constructing a feasible global solution. If the CONA
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session is not successful and the anchor sub-solution is changed by some job agent, the
anchor agent employs a set of modification operators to construct new configurations
of the anchor sub-solution, and store these potential configurations into a candidate
list. Then the anchor agent selects a configuration with the lowest Canchor from the
candidate list. A new CONA session begins with the new anchor sub-solution as the
island of reliability. The process is repeated until an agreement is found.

Anchor&Ascend controls the distributed local negotiation for global optimization
by assuming disparity among agents and going through a process of testing the feasi-
bility of constructing a global solution based on different configurations of the anchor
sub-solution with monotonically increased objective costs. It does not guarantee
optimal solutions. We must emphasize that in job shop scheduling, most techniques do
not provide guarantee for optimality in most objective functions. In practice, the goal
is to find a high-quality solution with reasonable computational cost. In addition,
Anchor&Ascend is not designed as a general mechanism for distributed optimization.
It focuses on a subset of job shop scheduling problems, i.e., problems with clear
bottlenecks, where it performs effectively.

The following subsections present the Anchor&Ascend distributed optimization
procedure in more detail.

6.1. Initial optimization of anchor sub-solution

Initially, the anchor agent generates a processing sequence {opriu} on the bottle-
neck resource according to the initial resource allocation heuristics in CONA. Being a
highly contended resource, the bottleneck resource usually processes the sequence
{ opriu} without any slack (gap) between adjacent operations, oprpu

k–1, oprk
qu, and

oprru
k+1, where the superscripts (k – 1, k, k + 1) denote the processing sequence on the

bottleneck resource. In other words, stpu + ppu = stqu, and stqu + ppu = stru. To optimize
the sequence {opriu} with minimal Canchor, the anchor agent goes through an iterative
process of switching pairs of anchor operations opriu to reduce Canchor.

6) During this
process, two heuristic subroutines7) jump forward and jump backward, are used. In
jump forward, an anchor operation opriu in the sequence is repeatedly moved forward
toward the time origin by switching with one of the preceding operations to reduce
Canchor. In jump backward, an anchor operation opriu in the sequence is repeatedly
moved backward toward time infinity by switching with one of the succeeding opera-
tions to reduce Canchor. Given a sequence of operations, S= {oprk

iu}, the subroutines
are described as follows:

6) For other objective functions (e.g., makespan), exact methods are available for this one-machine
sequencing problem. However, to guarantee optimality for weighted tardiness where no exact method
is available, it requires a more elaborate branch and bound procedure which is exponential in the worst
case. We choose to rely on heuristics for efficiency.

7) A similar heuristic, pairwise interchange, is also used in neighborhood search [24].
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Jump Forward

Step 1. Calculate ciu for each opriu. Select an operation, oprυ
pu, in S with the largest

cpu.

Step 2. For each oprk
iu, k from υ – 1 to 1. If stiu < estpu, go to step 3. Otherwise, if

switching oprpu with oprk
iu would reduce Canchor, then switch them.

Step 3. Remove oprpu from S. If S is empty, stop. Otherwise, go to step 1.

Jump Backward

Step 1. Calculate ciu for each opriu. Select an operation, oprυ
pu, in S with the smallest

cpu.

Step 2. For each oprk
iu, k υ + 1 to m. If stiu < estpu, go to step 3. Otherwise, if switch-

ing oprpu with oprk
iu would reduce Canchor, then switch them.

Step 3. Remove oprpu from S. If S is empty, stop. Otherwise, go to step 1.

To obtain a near optimal sub-solution, the anchor agent repeats the course of
applying both the jump forward and jump backward subroutines to the current
sequence {opriu} until Canchor can no longer be reduced.

6.2. Modification of anchor sub-solution

The changes to a subset of start times {stiu} by a subset of job agents signal to
the anchor agent that a reconfiguration of {stiu} is required. The anchor agent uses
exchange(i, j) and right-shift(i, t) to modify the processing sequence. In determining
the scope of applying the two operators, we consider the following: (1) since the
current anchor sub-solution has the minimal local objective cost, it is desirable to
modify it as little as possible in order to limit the increase in the objective cost, (2) the
modification should also correspond to the changes made by job agents so that new
anchor sub-solutions have a better chance of leading to a successful constraint satis-
faction iteration. Therefore, right-shift(i, t) is applied to only the changed anchor
operation, while exchange(i, j ) is applied to a heuristic neighborhood of the changed
anchor operation.

The local proposal guided by application of the two modification operators
generates a set of candidate anchor sub-solutions. These new sequences are put into
the list of candidate sequences if they do not duplicate existing sequences in the list.
The list of candidate sequences is sorted by increasing local objective cost. Then the
anchor agent chooses the first one (with the least cost) from the list to be the next
anchor sub-solution and the process of constraint satisfaction by the non-anchor agents
repeats until a global solution is found where all constraints are satisfied. Since the
anchor agent searches for a proper sequence with monotonically increased objective
cost, the global solution represents the best solution that the Anchor&Ascend pro-
cedure can find.

J.S. Liu, K.P. Sycaray Agile manufacturing 263



In particular, suppose the anchor agent has a current operation processing
sequence of (A,B,C,D,E,F). If B was changed by a job agent to a later start time t ′, the
anchor agent first restores its original valid sequence by changing start times of those
changed by job agents back to their original start times. Then the anchor agent applies
right-shift(B, t ′) to the current processing sequence. This results in a new sequence
with a gap between A and B, and all operations after B are right-shifted accordingly
with B. The anchor agent also applies exchange(i, j ) to the current processing
sequence, with i = B, C, j = i + 1, i + 2, and i = D, j = i + 1. In other words, five
exchange operations, exchange(B,C), exchange(B,D), exchange(C,D), exchange(C,E),
and exchange(D,E), are individually performed on the current processing sequence,
which results in five new sequences, e.g., exchange(B,C) results in (A,C,B,D,E,F),
exchange(C,D) results in (A,B,D,C,E,F).

These six applications of the two modification operators (five exchanges and
one right-shift) represent a heuristic balance between minimizing cost increase (solu-
tion quality) and increasing chances of leading to successful search by other agents
(search efficiency). In particular, exchange(B,C), exchange(B,D), and right-shift(B,t ′)
directly respond to the job agent’s constraint violation (unable to meet constraint
imposed by the start time of B) by assigning B to later start times. Exchange(C,D),
exchange(C,E), and exchange(D,E) attempt to change the condition of resource
contention of regular resources such that the preceding operation of B in the job might
start earlier and B might start at its original start time. For example, if one of the pre-
anchor operations of C was competing with the preceding operation of B for the same
resource such that the preceding operation of B could not finish before B’s start time,
by exchanging C with D and moving C to a later start time, the resource may schedule
the preceding operation of B being processed before the pre-anchor operation of C so
that B will not be bumped by its preceding operation. When there is more than one
anchor operation being changed by job agents, the anchor agent only performs modifi-
cations on the earliest changed anchor operation in order to limit cost increase since
anchor operations in the later sequence of the anchor agent’s sub-solution have later
start times and may have larger tardiness cost than anchor operations in the earlier
sequence.

6.3. Algorithmic procedure of distributed optimization

The anchor agent is primarily searching for a proper sequence {opriu} with mini-
mal Canchor that would result in a successful negotiation by job and regular resource
agents in CONA. Below, we give the algorithmic procedure of Anchor&Ascend.
Suppose A is the set of agents and Ac ∈A is the selected anchor agent. Sol( ) is an
instance of a (sub)solution generated by an (or a set of) agent(s). OP is a set of
modification operations that are designed to generate a neighborhood of  Sol(Ac). Si is
a state characterized by a Soli (A

c).
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Initialization : OLD_STATES, NEW_STATES are empty lists.

Step 0. Ac generates and optimizes a sub-solution Sol0(Ac). Ac generates a state S0 to
record Sol0(Ac) and puts S0 in NEW_STATES.

Step 1. Ac picks the first state Si in NEW_STATES. This is the current anchor sub-
solution Soli (Ac).

Step 2. All agents in A – {Ac} engage in a session of negotiation for distributed
satisfaction by CONA with Soli (Ac) anchored. If the session is successful,
then an globally high quality solution Sol(A) is found. Terminate the proce-
dure. Otherwise, Ac puts Si in OLD_STATES.

Step 3. Ac performs the set of modification operations OP to Soli (Ac), which results
in a set of newly configured sub-solutions {Soli +1(Ac),…,Soli +q(Ac)}.

Step 4. For each new Soli + j (Ac), Ac checks if there is an identical instance in either
OLD_STATES or NEW_STATES. If not, Ac generates a state Si + j to record
Soli + j (Ac). Ac calculates the local objective cost of Soli + j (Ac) as the state cost
of Si + j and puts Si + j in NEW_STATES.

Step 5. Ac sorts NEW_STATES according to increasing state cost. Go to step 1.

The following sections present experimental studies of our cooperative problem
solving approach to distributed job shop scheduling. We experimentally compare the
results of our work against centralized scheduling techniques. The results show that
multi-agent coordination techniques can provide substantial gains in terms of problem
solving efficiency and solution quality.

7. Experimental evaluation in job shop satisfaction problems

We evaluated the performance of CONA on a suite of job shop scheduling satis-
faction problems proposed in [33]. The benchmark consists of 6 groups, representing
different scheduling conditions, of 10 problems, each of which has 10 jobs of 5 opera-
tions and 5 resources. Each group of problems differs in two respects: (1) spread of the
release and due dates among jobs; (2) number of a priori bottlenecks. The spread is
controlled by varying the amplitude of the intervals within which release and due dates
are generated. Three spread levels are introduced: wide (w), narrow (n), and null (0),
i.e., both release and due date intervals are collapsed to single points. Aside from
different spread levels of release and due dates, the benchmark also considered one
and two a priori bottleneck conditions. Each problem in the benchmark has at least one
feasible solution.

The purpose of this experimental study is to (1) investigate the effects of coordin-
ation information in the system, (2) compare CONA’s performance to other constraint-
based as well as priority dispatch scheduling methods, (3) investigate the effects of
initial solution configuration in the system, (4) investigate CONA’s scaling up charac-
teristics on problems of larger sizes.

J.S. Liu, K.P. Sycaray Agile manufacturing 265



7.1. Effects of coordination information

In order to investigate the effects of coordination information on the system’s
performance, we constructed a set of four coordination configurations.

• C0 represents a configuration in which the system ran with no coordination
information at all. Without boundary information, when initially activated,
resource agents allocate resource intervals according to random sequences. When
job agents become active, they resolve conflicts by randomly changing the
instantiation of one of the two operations in each conflict pair. Similarly, resource
agents resolve conflicts based on random priority sequences.

• C1 represents a configuration in which only boundary information is available.
Resource agents use this information for heuristic initial allocation of resource
intervals. After the initial schedule is generated, no other information is available
for conflict resolutions.

• C2 represents a configuration in which boundary and bottleneck tag information
is available. Resource agents use the boundary information for heuristic initial
allocation of resource intervals. Job agents use the bottleneck tag information to
bias resolution of conflict pairs.

• C3 represents a complete configuration in which all coordination information is
provided for resource agents and job agents.

The set of configurations of coordination information is shown in table 1, with
the additional coordination information for each configuration underlined. Table 2
reports the comparative performance of different configurations on the suite of bench-
mark problems in terms of the number of problems solved out of the 60 problems and
the average iteration cycles to solve a problem. The number of iteration cycles that the
system was allowed was limited to 100. If there were still conflicts at cycle 100, the
system gave up solving the problem. Since system operations in C0, C1, and C2 have
a random nature, they were ran on each problem 10 times. The numbers reported are
the average number, e.g. 15.8 out of 60 problems were solved means that there were
158 successful runs among 600 (10 runs for each problem). C3 is deterministic and
here each problem was tried only once. C0 was only able to solve 8 problems with an
average of 33.3 iteration cycles for solution evolution, while C3 was able to solve all
60 problems with an average of 5.8 iteration cycles. As a light increase in the average
iteration cycles in C1 (compared to C0) stems from the fact that while C1 was able to
solve twice the number of problems than C0 due to boundary information during initial
resource interval allocation, it had no other advantages over C0 to resolve subsequent
conflicts. We confirm that adding coordination information enables the system to
solve more problems within fewer iteration cycles. The results show the utility of
coordination information.
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Figure 18 shows, for different coordination configurations, the successful overall
problem solving processes8) in terms of the number of operations involved in conflicts
at each cycle. As the coordination information increases, the shape of the curve

8) For C0, C1, and C2, only successful overall problem solving processes are averaged and shown.

Table 1

A set of coordination configurations.

C0 No coordination information

C1 Boundary

C2 Boundary +Bottleneck tag

C3 Boundary +Temporal slack +Weight
Bottleneck tag +Resource slack +Change frequency

Table 2

Comparative performance between coordination configurations.

Overall Coordination configuration

Performance C0 C1 C2 C3

Avg. no. of prob. solved 8.0 15.8 36.3 60

Avg. no. iter. cycles 33.3 36.3 24.7 5.2

Figure 18. Convergence processes of different coordination configuration.
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indicates a steeper drop in the number of conflicts in fewer cycles. This indicates that
increasing rates of convergence are facilitated by more coordination information. The
curve for deterministic C3 has a peak at cycle 5. This reveals that when the problem
was not solved within the first few cycles, a modification on the start times of the
operations using bottleneck resources typically occurred. The curves for C0, C1, and
C2 do not exhibit a peak because the system does not have a particular pattern of
interaction in those coordination configurations.

7.2. Comparison with other scheduling techniques

CONA was compared to four other constraint-based heuristic search scheduling
techniques, ORRyFSS, MCIR, CPS, and PCP. ORRyFSS [33] incrementally constructs
a solution by a chronological backtracking search guided by specialized variable and
value ordering heuristics. ORRyFSS+ is an improved version augmented with an
intelligent backtracking technique [42]. Min-Conflict Iterative Repair (MCIR) [20]
starts with an initial, inconsistent solution and searches through the space of possible
repairs based on a min-conflicts heuristic which attempts to minimize the number of
constraint violations after each step. Conflict Partition Scheduling (CPS) [26] employs
a search space analysis methodology based on stochastic simulation which iteratively
prunes the search space by posting additional constraints. Precedence Constraint
Posting (PCP) [36] conducts the search by establishing sequencing constraints between
pairs of operations that share a common resource based on a slack-based heuristic. We
also include three frequently used and appreciated priority dispatch rules – EDD,
COVERT, and ATC [24] in the comparison.

Table 3 reports the performance of each technique. Each row displays the number
of problems solved by each technique in each problem category, followed by the total
number of problems solved and the average CPU times used. Note that the results of
ORRyFSS, ORRyFSS+, CPS, and PCP were obtained from published reports of the
developers of the techniques. The performance of MCIR has been shown to be signifi-
cantly affected by initial solutions. MCIR used in the SPIKE system [16] with heuristic
initialization can solve all 60 problems. However, with randomly generated initial
solutions, MCIR can only solve about 24 problems [26]. We adopt the results reported
in [26] as the main result of MCIR. All CPU times, except PCP, were obtained from
Lisp implementations on a DEC 5000y200. In particular, CONA was implemented in
CLOS (Common Lisp Object System).CPS, MCIR, ORRyFSS, and ORRyFSS+ were
implemented using CRL (Carnegie Representation Language) as an underlying frame-
based knowledge representation language. CPU times of CPS, MCIR, ORRyFSS,
and ORRyFSS+ were divided by six from the published numbers as an estimate of
translating to straight Common Lisp implementation.9) Sadeh and Fox [34] report that

9) ORRyFSS and ORRyFSS+ obtained 30 times speedup in CyC++ implementation [34]. We assumed a
factor of five between Common Lisp and CyC++ implementations.
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the CPU times of a more recent version of ORRyFSS+ fell between 1.5 and 2.5
seconds. PCP was implemented in C and can solve 58 to 60 problems depending on
the parameters that specify search bias. Although CONA can operate in partial
parallelism, it was sequentially implemented for fair comparison. The fact that dispatch
priority rules can solve up to 52 problems seems to indicate that the set of benchmark
problems are not particularly difficult. Nevertheless, the results show that CONA is
quite competitive as compared to the other constraint-based scheduling techniques,
both in feasibility and efficiency in finding a solution.

7.3. Effects of initial solution configuration

CONA essentially employs negotiation agents to iteratively propose changes to
the current solution until a valid solution evolves. Agents’ local interaction direct the
solution repairing process. This is different from iterative improvement (hill-climbing)
methods [19,43] that make local changes to reduce a cost function. A previous study
[23] indicates that the goodness of a rough initial solution has great effects on the
performance of iterative improvement methods. The performance difference of MCIR
based on heuristic and random initial solutions provides evidence for this observation.

In order to investigate the effects of initial solution on the system’s performance,
we conducted experiments with both heuristic and random initial solutions. In the
heuristic initial solution, resource agents allocate free resource intervals to operations
with earliest boundary end times after the initial allocation to an operation with earliest
boundary start time. In random initial solutions, the selection of operations for free
resource intervals was random among the eligible operations (i.e., those operations

Table 3

Performance comparison.

ORRy ORRy
CONA  CPS MCIR  FSS  FSS+ PCP EDD COVERT ATC

wy1 10 10 9.8 10 10 10 10 8 10

wy2 10 10 2.2 10 10 10 10 7 10

ny1 10 10 7.4 8 10 10 8 7 9

ny2 10 10 1 9 10 10 8 6 9

0y1 10 10 4.2 7 10 10 3 4 7

0y2 10 10 0 8 10 8, 10 8 8 8

Total 60 60 24.6 52 60 58, 60 47 40 52

Avg.
4.8 13.07 49.74 39.12 21.46 0.3 0.9 0.9 0.9

CPU
sec. sec. sec. sec. sec. sec. sec. sec. sec.

time
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with earliest boundary start times before the current start time of free resource inter-
val). CONA was ran on each problem for 10 randomly generated initial solutions.

CONA was able to solve all 60 problems with both heuristic and random initial
solutions, although the number of iteration cycles required to solved a problem is
slightly different. Table 4 shows CONA’s performance on both heuristic and random
initial solutions in terms of the number of average iteration cycles required to find a
solution for a problem in each problem category. CONA has almost equal overall

Table 4

Comparative averaged iteration cycles between initial solutions.

Initialization wy1 wy2 ny1 ny2 0y1 0y2 Overall

Heuristic 5.6 6.3 4.0 4.9 4.4 6.2    5.2

Random 5.4 6.5 4.9 4.7 4.3 6.2    5.3

performance with heuristic and random initial solutions. The results, combined with
the fact that the simple dispatch EDD priority rule can solve 47 out of 60 problems,
reveal that most instances in Sadeh’s problem set are not particularly difficult. There
seems to exist quite a number of solutions for each problem. Therefore, even with
random initial solutions, CONA can still find a solution in a few iteration cycles.
However, the experimental results indicate that CONA’s repairing approach, based on
the interaction of local negotiation, is certainly more effective than other iterative
repairing methods, such as MCIR.

7.4. Scaling up performance

In order to experimentally investigate CONA’s scaling up performance, we used
the same problem generator function producing the benchmark problems10) to produce
four sets of problems that involve 250 (10 jobs 25 resources), 500 (10 jobs 50 re-
sources), 1000 (10 jobs 100 resources), and 3000 (10 jobs 300 resources) operations.11)

These problems exhibit similar scheduling conditions to the benchmark problems.
Table 5 reports the average CPU times CONA spent on each problem size.

CONA implemented in Lisp can solve problems of three thousand operations
within 14 minutes on a Dec 5000y200 workstation. Assuming the computation speed-
up on more powerful machines and with C implementation, it is very likely that CONA

10)The code was kindly provided by Dr. Sadeh.
11) Although we expand the problem size along one dimension (e.g., number of resources) only, we expect

that CONA will have similar scaling up performance along the other dimension (e.g., number of jobs)
since the CONA mechanism does not depend on the ratio of jobs and resources. The primary factor of
CONA’s performance is the disparity structure of the problem (see section 7.1).
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would be able to solve problems of several thousand operations within one minute.
Figure 19 shows CONA’s CPU time increase on these larger sized problems, which
exhibits favorable, near-linear scaling-up performance. The results seem to suggest
that CONA’s search mechanism is polynomial to the size of the search space in the
type of problems we tested. In fact, in scaling up evaluation based on empirical study,
most systems’ performance vary with the difficulty of test problems. We suspect that
CONA would not do as well in problems that are more difficult (with more tight job
due dates). However, it appears that CONA does have an edge to techniques based on
global search in the type of problems that are moderately difficult.

8. Experimental evaluation on job shop optimization problems

The purpose of this experimental study is to (1) evaluate the performance of
Anchor&Ascend using both dispatch priority rule and simulated annealing as bench-
marks, (2) examine the applicability conditions of Anchor&Ascend.

Table 5

CONA’s CPU time on different problem sizes.

Problem size CPU time

50 operations 4.8 seconds

250 operations 26.2 seconds

500 operations 60.2 seconds

1000 operations 137.6 seconds

3000 operations 814.3 seconds

Figure 19. CONA’s scaling up performance.
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8.1. Performance comparison

We evaluated the performance of Anchor&Ascend on a suite of job shop
scheduling optimization problems similar to that proposed in [33]. The benchmark
consists of 8 groups, representing different scheduling conditions, of 10 problems,
each of which has 20 jobs of 5 operations and 5 machines. Each job goes through each
machine exactly once with randomly generated visiting sequence, except for the bottle-
neck machines, which were always visited after a fixed number of operations. Each
group of problems differs in three respects: (1) tardy factor; (2) due date range; (3)
number of a priori bottlenecks. Tardy factor controls the average tightness of job due
dates. Two levels of tardy factor are used to generate problems with loose average due
date or tight average due date. Due date range is controlled by varying the amplitude
of the intervals within which job due dates are generated. Two levels of due date range
are introduced: wide, narrow. The benchmark also considered one and two a priori
bottleneck conditions. In the one-bottleneck problems, the 4th operation of each job
uses the bottleneck machine; in the two-bottleneck problems, the 2nd and 5th opera-
tions use the bottleneck machines.

Each job Ji has a tardiness weight wi that proportionally penalizes the job’s
tardiness Ti . In addition, a marginal inventory cost invi is introduced to each job by its
first operation. The objective of this experiment is to minimize the total schedule cost,
which is the sum of the weighted tardiness cost and inventory cost of each job,

COST WT INVi i
i

m

= +
=
∑ ,

1

where m is the number of jobs in the problem (see section 2.2). Table 6 categorizes the
problem set by the parameters.

Anchor&Ascend essentially tries to find a feasible solution based on different
configurations of processing sequence on the bottleneck resource with monotonically

Table 6

Problem set categorization based on parameter settings.

Problem Number of Tardy Due date
set bottlenecks  factor range

1 1 tight narrow
2 1 tight wide
3 1 loose narrow
4 1  loose wide
5 2 tight narrow
6 2 tight wide
7 2 loose narrow
8 2 loose wide
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increased local objective cost. For problems with two bottleneck resources used by the
2nd and the 5th operations in each job, Anchor&Ascend needs to select one of the
bottleneck resources as the anchor agent. Anchor&Ascend operates on the assumption
that the anchor agent can use its local objective cost to estimate the actual global
objective cost. This assumption dictates that the latest bottleneck resource be selected
as the anchor agent. Therefore, for problems with two bottleneck resources, Anchor&
Ascend selects the one used by the 5th operation of each job as the anchor agent.
Anchor&Ascend may take quite a long time to find a solution for problems with two
bottleneck resources. In order to keep the experiments within a reasonable time frame
and to report meaningful computational results, we limit the state space search of the
anchor agent to 800 states, which approximately corresponds to 10 minutes on a
SPARC IPX workstation. As a result, Anchor&Ascend can only solve parts of the
problems with two bottleneck resources.

Although the objective of the problems is to minimize the total schedule cost of
weighted tardiness and inventory, the anchor agent only considers weighted tardiness
as its local objective cost. In order to take inventory cost into account in the optimi-
zation process of Anchor&Ascend, we incorporate additional local optimization
heuristics to job agents. When a new configuration of the anchor sub-solution is con-
structed by the anchor agent, e.g., the application of exchange(i, j ) and right-shift(i, t),
and the selection of the new configuration with the lowest objective cost, job agents
re-assign start times for their non-anchor operations based on a just-in-time&no-delay
policy. Denote opriu as the anchor operation in a job Ji with n operations. The start
times of the pre-anchor operations oprij , j = 1,…,u – 1, are re-assigned so that they
will be processed just in time for the anchor operation to start as assigned by the anchor
agent. In other words,

st st p j uij iu
k j

u

ij= − = … −
=

−

∑
1

1 1,   , , .

The start times of the post-anchor operations oprij , j = u + 1,…,n, are re-assigned so
that they will be processed with no delay after the anchor operation has finished. In
other words,

st st p j u nij iu
k u

j

ij= + = + …
=

−

∑
1

1,   , , .

Job agents’ just-in-time&no-delay start time re-assignment right after a new configu-
ration of the anchor sub-solution represents a simultaneous effort to reduce both the
inventory cost and the weighted tardiness cost.

We chose to evaluate our Anchor&Ascend method against dispatch scheduling
because of its conceptual simplicity and ease of implementation. Briefly, dispatch
scheduling is a way of generating schedules by simulating the process of jobs being
performed on the resources. A job is completed after it has visited all the resources in
its routing. A production schedule is a description of when jobs visit each resource
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Table 7

Experimental results on problems with one bottleneck resource.

Problem Instance
Anchor&Ascend X-ATC rule

set Tardy  Inv. Total CPU sec. Tardy Inv. Total

1 10780 5986 16766 9.8 14840 11322 26162
2 1640 4288 5928 5.5 3150 7335 10485
3 2410 4478 6888 10.2 4030 7895 11925
4 3700 5068 8768 17.8 5580 8895 14475

1 5 1200 4665 5865 12.3 2180 6432 8612
6 4880 5347 10227 8.9 5940 9326 15266
7 2090 4110 6200 21.4 3010 6963 9973
8 1040 4247 5287 16.3 2400 7355 9755
9 5290 4311 9601 6.2 6370 7720 14090

10 8580 5764 14344 13.5 11860 11147 23007

1 4920 5449 10369 21.2 8230 10446 18676
2 4020 3559 7579 7.9 3630 6743 10373
3 180 4859 5039 6.3 150 7638 7788
4 390 4582 4972 5.2 1840 8344 10184

2 5 1160 4625 5785 17.5 40 5608 5648
6 630 5201 5831 9.4 740 9048 9788
7 330 3488 3818 16.1 830 6474 7304
8 1500 3989 5489 22.8 2240 6429 8669
9 4450 3617 8067 10.6 5240 6977 12217

10 7630 4450 12080 16.1 9730 10011 19741

1 5250 6659 11909 20.0 8280 11839 20119
2 270 5206 5476 4.4 810 8068 8878
3 780 5668 6448 3.2 1540 8737 10277
4 1390 5983 7373 3.4 2640 9406 12046

3 5 0 4754 4754 15.8 350 7191 7541
 6 1900 5948 7848 15.9 2440 10121 12561
7 140 4879 5019 9.2 500 7701 8201
8 1150 5780 6930 3.0 570 7773 8343
9 1270 5052 6322 6.2 2770 8347 11117

10 4590 6269 10859 12.2 7500 11813 19313

1 1320 6059 7379 21.4 2520 11123 13643
2 1870 4704 6574 20.0 1520 7811 9331
3 0 5642 5642 3.4 10 9129 9139
4 300 5976 6276 3.8 110 9464 9574

4 5 690 5686 6376 16.4 0 6776 6776
6 0 6314 6314 4.2 0 10314 10314
7 0 4099 4099 6.2 140 7661 7801
8 860 4523 5383 5.0 910 7384 8294
9 1770 3644 5414 18.4 1970 7414 9384

10 3980 4874 8854 33.7 5720 10396 16116
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before leaving the shop. The quality of the schedule is controlled by the priority rule
with which resources select the next job to process in the queue. Since no priority rule
is good for optimizing conflicting objectives, we focused on weighted tardiness cost to
select a priority rule. We used the X-ATC rule to obtain the benchmark performance.
The X-ATC rule has been shown to be one of the best priority dispatch rules for
weighted tardiness problems [24] because of its successful priority index function and
its capability to strategically insert idleness for important jobs, which is very helpful in
reducing weighted tardiness. The index function of an operation oprij is defined by
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where rdtij  is the ready time, pm is the minimum processing time in the queue, wi is the
weight of the job, pij is the processing time, sij is the slack time, wtiq is the waiting
time, and p is the average processing time in the queue. The X-ATC rule requires
parameter settings of the look-ahead parameter k and the penalty parameter B. We ran
the X-ATC rule with k in the range of (1.0–3.0) with a granularity of 0.25 and with B
in the range of (0.4–2.0) with a granularity of 0.2, e.g., k has 9 different values, 1.0,
1.25,…,3.0, and B also has 9 different values, 0.4, 0.6,…,2.0. In other words, each
problem was run 81 times with different combinations of parameter values. For each
problem, the best result (the lowest schedule cost) was recorded.

Tables 7 and 8 show the results of Anchor&Ascend and the X-ATC rule on the
problems. For each problem, we report the weighted tardiness cost, the inventory cost,
and the total schedule cost of the generated schedule, and the computational cost
in terms of CPU seconds for Anchor&Ascend to solve a problem. Anchor&Ascend
solved all 40 one-bottleneck problems, but solved only 18 out of 40 two-bottleneck
problems within 800 search states of the anchor agent. For all problems solved by
Anchor&Ascend, it always finds schedules with substantially less inventory cost than
that of the X-ATC rule. Except for problem number 5 in the second subset of the prob-
lems, the schedules found by Anchor&Ascend have considerably lower total schedule
cost than that of the X-ATC rule. In the one-bottleneck problems, Anchor&Ascend
solved 33 out of 40 problems with less weighted tardiness cost. In the two-bottleneck
resource problems, Anchor&Ascend solved 11 out of 18 problems with less weighted
tardiness cost.

We examined Anchor&Ascend’s performance on the 14 problems in which it
produced higher weighted tardiness cost than the X-ATC rule. We found that in half of
the problems, Anchor&Ascend started from an initial configuration of the anchor sub-
solution with higher weighted tardiness cost than that of the schedule generated by the
X-ATC rule. For example, in problem number 5 of the second subset, the weighted
tardiness cost of the initial anchor sub-solution in Anchor&Ascend is 780, while the
X-ATC rule generated a schedule with weighted tardiness cost of 40. Similarly, in
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Table 8

Experimental results on problems with two bottleneck resources.

Problem Instance
Anchor&Ascend         X-ATC rule

category Tardy  Inv. Total CPU sec. Tardy Inv. Total

5
1 16370 5227 21597 678.3 21430 10408 31838
2 8720 4802 13522 65.8 9680 10061 19741

1 6460 4663 11123 196.2 8740 9818 18558

6
2 11230 3742 14972 195.4 10760 7219 17979
3 17390 3749 21139 173.7 14010 7969 21979
4 5950 4261 10211 385.1 7670 9529 17199

1 7400 5950 13350 54.8 10500 11067 21567
2 1800 5428 7228 73.1 3230 8623 11853

7 3 1620 4939 6559 189.7 2840 9215 12055
4 2860 4916 7776 667.8 2690 8896 11586
5 2720 5778 8498 96.0 3050 10653 13703

1 2410 5185 7595 20.9 1980 10598 12578
2 3430 3521 6951 147.4 4540 7155 1169
3 760 4609 5369 91.8 820 8639 9459

8 4 12040 4091 16131 20.3 8490 8080 16570
5 7010 4634 11644 4.2 6000 8292 14292
6 1290 3675 4965 396.1 1840 9050 10890
7 3960 4894 8854 3.2 2690 10020 12710

problem number 8 of the third subset, Anchor&Ascend started from a weighted tardi-
ness cost of 1150, while X-ATC produced a weighted tardiness cost of 570; in problem
number 5 of the fourth subset, Anchor&Ascend started from a weighted tardiness cost
of 670, while X-ATC produced a weighted tardiness cost of 0. This indicates that our
heuristic optimization procedure (iterative jump forwardybackward) on the bottleneck
resource is inadequate to find a very good sub-solution in some cases. Since iterative
jump forwardybackward does not consider inserting idleness, it may miss some better
configuration of operation processing that requires strategic idleness for more impor-
tant jobs. Another factor is the deviation of the estimated weighted tardiness cost from
the anchor agent and the actual weighted tardiness cost of the schedule. Since the
anchor agent calculates the estimated weighted tardiness cost by assuming all down-
stream operations will be processed immediately, any actual delay will cause an
increase in the final weighted tardiness cost. In the one-bottleneck problems where the
4th operation of each job uses the bottleneck resource, the final weighted tardiness
cost may be somewhat higher than the estimated weighted tardiness cost of the anchor
agent.

Table 9 shows the average results in each problem category. Table 10 reports
Anchor&Ascend’s improvement performance over the X-ATC rule. We first examine
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Table 9

Average results in each problem category.

Problem
         Anchor&Ascend    X-ATC rule

Tardy Inv. Total CPU sec. CPU sec.  Tardy   Inv. Totalcategory
 avg. avg.  avg.     avg.     dev.   avg.   avg.  avg.

1 4161.0 4826.4 8987.4 12.2 1.5 5936.0 8439.0 14375.0
2 2521.0 4381.7 6902.7 13.3 1.9 3267.0 7771.8 11038.8
3 1674.0 5619.8 7293.8 9.3 1.9 2740.0 9099.6 11839.6
4 1079.0 5152.1 6231.1 13.2 3.1 1290.0 8747.2 10037.2

5 12545.0 5014.5 17559.5 372.0 216.6 15555.0 10234.5 25789.5
6 10257.5 4104.0 14361.5 237.6 42.8 10295.0 8633.8 18928.8
7 3280.0 5402.2 8682.2 199.0 103.4 4462.0 9690.8 14152.8
8 4414.3 4372.7 8787.0 97.7 49.7 3765.7 8833.4 12599.1

Table 10

Performance improvement of Anchor&Ascend over
the X-ATC rule in each problem category.

Problem     Tardy       Inv.     Total
category improvement improvement improvement

     (%)      (%)      (%)

1 29.9 42.8 37.5
2 22.8 43.6 37.5
3 38.9 38.2 38.4
4 16.4 41.1 37.9

5 19.4 51.0 31.9
6 0.4 52.5 24.1
7 26.5 44.3 38.7
8 – 17.2 50.5 30.3

All (avg.) 17.2 45.5 34.5

the results in weighted tardiness cost. Anchor&Ascend performed considerably better
in the one-bottleneck problems (categories 1, 2, 3, 4) than in the two-bottleneck prob-
lems (categories 5, 6, 7, 8). The results were as expected because the coordination
strategy of anchoring on one bottleneck resource would not be as effective when
there are two bottleneck resources. For either one- or two-bottleneck problems,
Anchor&Ascend performed better in problems with narrow due date range (categories
1, 3, 5, 7) than in problems with wide due date range (categories 2, 4, 6, 8). We
examined the difference of the initial optimal weighted tardiness cost and the final
weighted tardiness cost of each category of the one-bottleneck problems compared to
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that of the X-ATC rule. We found that for one-bottleneck problems with a narrow due
date range, the difference was only 0.5%, while the difference was 17% for problems
with a wide due date range. In other words, using weighted tardiness cost produced
by the X-ATC rule as benchmark, Anchor&Ascend found schedules with weighted
tardiness cost very close to the initial optimal weighted tardiness cost in problems with
a narrow due date range. But the weighted tardiness cost of the final solution for
problems with a wide due date range were moderately increased from the initial opti-
mal weighted tardiness cost. We conclude that Anchor&Ascend finds less optimal
solutions in problems with more variation of job due dates. For the parameter of the
tardy factor, we did not find significant overall performance difference in problems
with tight due dates (categories 1, 2, 5, 6) or loose due dates (categories 3, 4, 7, 8).

Anchor&Ascend substantially reduces the inventory cost on all problems. This is
due to job agents’ just-in-time&no-delay policy of re-assigning operation start times
whenever the bottleneck resource agent configures a new bottleneck operation process-
ing sequence. Therefore, the final schedule is a result of the balanced optimization by
both job agents and the bottleneck resource agent with respect to inventory cost and
weighted tardiness cost, respectively. Overall, Anchor&Ascend finds schedules with
reduced weighted tardiness cost and substantially less inventory cost in most problems.

As an additional evaluation, we also compare, on a smaller scale, Anchor&
Ascend against the Focused Simulated Annealing Search (FSAS) proposed in [35],
whose study was conducted on the same set of job shop scheduling optimization
problems. Table 11 reports the comparison on a representative problem instance in
each problem category.12) Table 12 shows the improvement performance of Anchor&
Ascend over FSAS. Note that FSAS is a stochastic procedure. The reported results
were the best results over 10 FSAS runs of each problem. Overall, Anchor&Ascend
always found solutions with reduced weighted tardiness cost, slightly increased inven-
tory cost, and better total cost than the best results of FSAS.

As to computational cost, Anchor&Ascend required only 12 seconds on average
for a one-bottleneck problem, but consumed almost 4 minutes on average for a two-
bottleneck problem. Both CPU times were based on Lisp implementation on a SPARC
IPX workstation. A single run of the FSAS procedure in C implementation required
about 5 to 8 minutes on a DECstation 5000y200. Although there are substantial effici-
ency differences in problems with a different number of bottlenecks, Anchor&Ascend
is still more efficient than the FSAS procedure. In fact, Anchor&Ascend is extremely
efficient in one-bottleneck problems. The results show the significant achievement of
Anchor&Ascend with its capability to optimize conflicting objectives simultaneously
and effectively find a very good solution in the job shop scheduling optimization
problems.

12)Unfortunately, we have FSAS results only on the first problem instance in each problem category,
which was kindly provided to us by Mr. Nakakuki.
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Table 11

Comparison between Anchor&Ascend and Focused Simulated Annealing Search (FSAS).

Problem        Anchor&Ascend FSAS

category Tardy  Inv. Total Tardy  Inv. Total

1 10780 5986 16766 12620 5899 18519
2 4920 5449 10369 7660 5200 12860
3 5250 6659 11909 7260 6342 13602
4 1320 6059 7379 2020 5517 7537
5 16370 5227 21597 18040 5189 23229
6 6460 4653 11113 8300 4741 13041
7 7400 5950 13350 8090 6419 14509
8 2410 5185 7597 3360 4978 8338

Table 12

Performance improvement of Anchor&Ascend over
Focused Simulated Annealing Search (FSAS).

Problem     Tardy       Inv.     Total
category improvement improvement improvement

     (%)      (%)      (%)

1 14.6 – 1.5 9.5
2 35.8 – 4.8 19.3
3 27.7 – 5.0 12.4
4 34.7 – 9.8 2.1
5 9.3 – 0.7 7.0
6 22.2 1.9 14.8
7 8.5 7.3 8.0
8 28.3 – 4.2 8.9

All (avg.) 22.6 – 2.1 10.2

8.2. Applicability conditions

The fundamental coordination strategy of Anchor&Ascend is to exploit disparity
among agents. Job shop scheduling problems with clear bottleneck resources naturally
involve disparity between bottleneck resources and non-bottleneck resources. The
previous experimental results show Anchor&Ascend’s performance on one-bottleneck
and two-bottleneck problems. However, in order to get a complete picture of the
relation of Anchor&Ascend’s performance and disparity conditions of the problems,
we need to quantify disparity conditions of job shop scheduling

We denote a bottleneck resource as BRi, a non-bottleneck resource as NBRi. The
average processing time pi

av of a resource (BRi or NBRi) is the average processing time
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of operations requiring the use of the resource (BRi or NBRi). In addition, numb is the
number of bottleneck resources, and numnb is the number of non-bottleneck resources
in the shop. pb

AV is the average pi
av of bottleneck resources, i.e.,  p numav

i
bi

numb y .=∑ 1 pAV
nb

is the average pi
av of non-bottleneck resources, i.e.,  p numav

i
nbi

numnb y .=∑ 1 We define two
disparity characteristics in job shop scheduling as follows:

Disparity Ratio  is the ratio of the average pi
av of bottleneck resources to the average

pi
av of non-bottleneck resources, i.e., pb

AVy pAV
nb .

Disparity Composition Ratio is the ratio of the number of bottleneck resources to the
number of resources in the shop, i.e., numby(numb + numnb).

These two parameters quantify disparity conditions of job shop scheduling prob-
lems and specify the job shop conditions that our distributed optimization heuristics
(described in section 3.1) is designed for. Anchor&Ascend is intended for shops with
at least one bottleneck resource, e.g., (Disparity Composition Ratio > 0)∧ (Disparity
Ratio > 1).

To study the performance of the Anchor&Ascend procedure under different dis-
parity conditions, we constructed a set of test problems13) with a disparity ratio ranging
from 1.25 to 5.0 with a granularity of 0.25, and a disparity composition ratio ranging
from 0.2 to 0.8 with a granularity of 0.2. Each combination of the two parameters is
represented by a subset of 10 problems that are randomly generated while controlling
the disparity condition. Therefore, the problem set includes 64 subsets and a total of
640 problems. Each problem consists of 20 jobs on 5 resources with 100 operations to
be scheduled. The disparity ratio represents the ratio of average processing times
between the subgroup of bottleneck resources and the subgroup of non-bottleneck
resources. A disparity composition ratio of 0.4 means that 2 out of 5 resources are
bottleneck resources. Table 13 specifies the sequence (in bold) of using bottleneck
resources in each job for each disparity composition ratio. For example, in the disparity
composition ratio of 0.4, the second operation uses the first bottleneck resource, the
fourth operation uses the second bottleneck resource, in each job. In cases of more
than one bottleneck resource, the Anchor&Ascend mechanism requires the selection
of a particular bottleneck resource as the anchor agent. In this study, the latest bottle-
neck resource is selected to be the anchor agent.

Experimental results are evaluated by both computational cost and solution
quality. We use the total number of search states14) the anchor agent explored before a
global solution was found as an estimate of the computational cost. CPU times of

13)This is similar to the set of problems we used to evaluate Anchor&Ascend in the previous experiments,
except we manipulated the number of bottleneck resources and the average processing times of each
resource. The tardy factor and due date range were fixed at a tight and narrow level, respectively. The
problem generator code was kindly provided by Dr. Sadeh.

14)Each search state represents a configuration of the anchor agent’s sub-solution.
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(1 100 300 500) states explored approximately correspond to (0.522 105 420) seconds
in Common Lisp implementation on an HP-715y100 workstation. For problems of
high disparity composition ratio and low disparity ratio, the anchor agent usually
needs to explore a large number of search states before a solution can be found. In
order to keep the experimentation within a reasonable time frame, we set a limit of 500
search states, upon which the procedure would terminate even if a global solution
has not been found. Solution quality is measured by weighted tardiness cost only.
Anchor&Ascend’s solution quality (SA) is evaluated by comparing it to that of the
naive First Come First Served (FCFS)15) dispatch rule (SF) and indicated by an
improvement measure, (SF – SA)ySF. As a more serious evaluation, the solution quality
of Anchor&Ascend is also compared to that of the X-ATC heuristic dispatch rule [24].
For each subset of problems representing a combination of a disparity ratio and a
disparity composition ratio, an average computational cost and an average solution
quality are obtained from results of 10 problems in the subset. For problems that
were not solved within 500 search states, a computational cost of 500 search states is
included in calculating the average computational cost, while not contributing to the
average solution quality.

Figure 20 shows the computational cost over a range of combinations of disparity
ratio and disparity composition ratio. Generally, computational cost increases with
increasing disparity composition ratio andyor decreasing disparity ratio. Anchor&
Ascend is especially efficient for problems with a disparity composition ratio of 0.2 (1
bottleneck resource out of 5 resources) and a disparity ratio of 2.0 and above, finding
a solution of high quality (see figures 22 and 23) within 1 second and mostly in 1 state.
The results on the computational cost also suggest that Anchor&Ascend is less appli-
cable to problems with a disparity composition ratio higher than 0.4. Figure 21 shows
the number of problems solved within 500 states in each subset. The number generally
decreases with an increase in the disparity composition ratio and a decrease in the
disparity ratio. The percentage of problems of disparity composition ratio (0.2 0.4 0.6
0.8) that were solved within 500 states are 97%, 66%, 34%, and 48%, respectively.

Table 13

Sequences of operations using bottleneck resources.

Disparity composition Sequences in
ratio each job

0.2 1   2   3   4   5
0.4 1   2   3   4   5
0.6 1   2   3   4   5
0.8 1   2   3   4   5

15)Operation with the earliest ready time is dispatched first.
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Figure 22 depicts the solution quality obtained by Anchor&Ascend compared to
that of FCFS. Most solutions obtained byAnchor&Ascend have an improvement of
40 to 70% over that of FCFS. Figure 23 depicts the solution quality obtained by
Anchor&Ascend compared to that of X-ATC. In most problems, Anchor&Ascend has
an improvement of 5 to 20% over X-ATC. In general, lower disparity composition

Figure 20. Computational cost in different disparity conditions.

Figure 21. Number of problems solved within 500 search states
in different disparity conditions.

Figure 22. Solution quality of Anchor&Ascend compared to FCFS
in different disparity conditions.
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seems to facilitate higher solution quality. However, no obvious relation between
solution quality and disparity ratio is observed. The solution quality of problems with
a disparity composition ratio of 0.6 and 0.8 has more variations and is less conclusive
since the number is obtained from an average of fewer solved problems (since more
problems need more than 500 search states to solve).

In general, our experiments show that Anchor&Ascend is most efficient in a high
disparity ratio and a low disparity composition ratio, in which solutions of very good
quality can be easily obtained with little computational cost. No obvious relation is
observed between the solution quality and the disparity ratio, although an increase in
the disparity composition ratio generally results in a decrease in solution quality. In
addition, the disparity composition ratio is more important than the disparity ratio in
the applicability of Anchor&Ascend. The experimental results seem to indicate a cut-
off value of 0.4 (≤ 0.4) as the disparity composition ratio in the applicability of
Anchor&Ascend.

9. Discussion

Our cooperative problem solving approach to both job shop scheduling satis-
faction and optimization problems revolves around disparity among subproblems and
the subsequent dominance effects on solution construction and global optimality. We
expected the approach to be most effective in problems that exhibit extreme disparity
among subproblems, e.g., low disparity composition ratio andyor high disparity ratio.
For a given problem under the condition of a low disparity composition ratio, there are
few agents with dominance effects on the solution construction. For a low disparity
composition ratio, the amount of interaction required to construct a feasible global
solution is much less extensive. This also implies that the disparity ratio (relative task
difficulty between agent categories) has only a secondary effect on problem solving
efficiency as compared to the disparity composition ratio.

In the CONA study, the set of job shop scheduling satisfaction problems has
an overall disparity ratio of 1.71, with a standard deviation of 0.01 and a disparity

Figure 23. Solution quality of Anchor&Ascend compared to X-ATC
in different disparity conditions.
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composition ratio of either 0.2 (one bottleneck) or 0.4 (two bottlenecks). In the
Anchor&Ascend study, the set of job shop scheduling optimization problems we used
to evaluate Anchor&Ascend in comparison with X-ATC and Focused Simulated
Annealing Search has a disparity ratio of 1.83 in the one-bottleneck problems and a
disparity ratio of 1.73 in the two-bottleneck problems. Both disparity ratios have a
standard deviation of 0.01. Our cooperative problem solving approach solved these
two benchmark sets with considerable efficiency in comparison with other techniques.
The applicability study (see figure 20) reveals that these two sets of problems are
approximately at the middle point in the range of computational cost of our approach
in one-bottleneck and two-bottleneck problems.

Overall, the applicability conditions results together with the performance evalu-
ation results confirm our intuitive analysis, e.g., the approach is most effective in
problems that exhibit extreme disparity among subproblems. However, the scope of
applicability of Anchor&Ascend exceeds our original expectation. We were surprised
that the approach is able to solve even partial sets of problems with a high disparity
composition ratio, e.g., 0.6 and 0.8, with moderate computational cost. In addition, the
disparity ratio can be as low as 1.25 (in the range of 1.25 to 5.0) for the approach to
work, which is not an ideal problem condition for an approach that is designed based
on disparity among subproblems. Overall, the experimental results attest to the
considerable advantage of exploiting disparity among subproblems in designing
coordination mechanisms for distributed job shop scheduling problems.

Some readers might wonder why different sets of problems and techniques are
used for satisfaction and optimization evaluations. This involves the fundamental
difference of the two types of problems. In a satisfaction problem, an assignment of
values to variables that satisfies all constraints is a solution. All solutions are of equal
quality. Typically, we need only one solution and any one will do, while in an optimi-
zation problem, solutions are measured by a set of given objectives. We are looking
for the best solution we can find. Therefore, techniques that are designed for solving
satisfaction problems are not readily applicable to optimization problems. Similarly, it
is not meaningful to evaluate an optimization technique on satisfaction problems. In
addition, we adopted problem sets that are publicly available as benchmarks for each
type of problems and that happened to be different. In a broader sense, solution quality
of satisfaction problems is implicitly embedded in (or controlled by) the specification
of problems (e.g., due date tightness). Therefore, techniques that solve more satis-
faction problems can be viewed as producing higher solution quality. As shown in the
experimental results (table 3), dispatch rules solved fewer problems than most of the
advanced AI techniques. For techniques that solve an equal number of problems, we
can only say they produce equally good solutions. It is not meaningful to impose some
scheduling measures to the solutions of satisfaction problems because they were not
considered during the problem solving process of the techniques.

An additional, perhaps even more interesting, finding in our experiments is
related to the bimodal characteristics of most NP-complete problems. Cheeseman [4]

J.S. Liu, K.P. Sycaray Agile manufacturing284



conducted a study on constraint satisfaction problems and showed that there is at least
an “order parameter” that separates problems into regions of solvability. It was
conjectured that constraint optimization problems might exhibit similar phase
transition. Essentially, the Anchor&Ascend approach iteratively attempts to solve a
series of constraint satisfaction problems until it succeeds. In our experimental results,
we noticed that problems tend to diverge into subsets that are either easy or hard to
solve. The tendency of divergence is more evident at a high disparity composition ratio
and at a low disparity ratio, where Anchor&Ascend is less effective. This observation
provides empirical evidence to the phase transition property of NP-complete optimi-
zation problems.

Our approach and the experimental results also enrich the practice of job shop
scheduling where consideration of shop conditions has been focused on the number of
bottlenecks, resource utilization rate, and job tardy factor. We provide two additional
measures of shop conditions that emphasize the relative loadings on shop resources.
Our experimental results show that these two parameters (disparity composition
ratio and disparity ratio) can allow us to identify shop conditions when CONA and
Anchor&Ascend are most likely to be applicable and effective. Furthermore, in many
real job shops where shop conditions can be adjusted ahead of time, our experimental
results could guide decisions on varying the mix of job batches or changing resource
loadings, such that a high quality solution can be found efficiently.

Finally, the effects of exploiting disparity among subproblems are two-sided. On
the one hand, the approach is substantially efficient in problems with extreme disparity.
On the other hand, the applicability is limited. For example, it might not be as efficient
in problems with no clear bottleneck resources, or in problems where more than two
resources are bottlenecks. The presence of clear bottlenecks seems to provide the
efficiency of our cooperative problem solving approach. We characterized disparity
conditions and experimentally identified the applicability scope of the approach.

10. Related work

Manufacturing environments have long been considered as requiring distributed
approaches due to their complexity and the inherent distribution of activities. There
have been quite a number of works in this area with different foci. We review some of
the better known examples of distributed production control systems.

Parunak [32] presented a contract net [7] approach to factory control. A prototype
system, YAMS, was developed to apportion tasks by the bidding and awarding
mechanism. YAMS models a factory as a hierarchy of work cells. Each work cell
corresponds to a node in a contract net and is a negotiating entity that can communicate
both vertically and laterally. The system deals with real-time task allocation and
control.

Smith and Hynynen [37] presented a system consisting of cooperative opportun-
istic schedulers that operate according to a hierarchical factory model and communi-
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cate via message passing. The approach to scheduling decentralization was based on
the multiple levels of description provided by a factory hierarchy. Three dimensions
are considered for scheduling distribution – portion of manufacturing process con-
sidered, level of precision of the maintained schedule, and time horizon. Vertical and
lateral communication between nodes are considered as constraint posting and status
updating. Overall, the work suggested a modeling framework for decentralized factory
scheduling.

Burke and Prosser [3] presented a distributed asynchronous scheduling system
(DAS) that has four components – (1) a structural representation of resources, opera-
tions, and plans, (2) an active representation of the schedule, (3) scheduling agents,
and (4) a mechanism for coordinating scheduling effort. A hierarchy of units in three
levels, corresponding to individual resources, groups of similar resources, and the
whole factory, is envisioned. Agents representing individual resources are responsible
for allocating start times to operations. The middle-level agents are responsible for
the delegation of work to and retraction of work from individual resources. The top-
level agent performs the release of work into the factory and conflict resolution by
inter-agent backtracking and constraint relaxation. Scheduling effort is coordinated
implicitly by prioritizing of messages among agents.

Hadavi et al. [13] presented the Requirement Driven Scheduling (ReDS) archi-
tecture that performs dynamic, real-time factory scheduling. The system consists
of four primary components – preprocessing, feasibility analysis (FA), detailed
scheduling (DS), and sequencing. The preprocessor determines the time boundary of a
new order given all the needed resources. A qualitative analysis is performed in the FA
to see if constraint relaxation, such as adding shifts, extending due dates, are needed
for the new order. With the input from FA, DS is responsible for generating a tentative
schedule in the granularity of a day. Sequencing of orders within a day is conducted by
dispatching. The system also includes a simulation module that allows “what-if” type
questioning and verification of the generated schedule, and a statistician module that
collects data for adjustment of the system and management decisions.

Sycara et al. [41] presented an approach to distributed job shop scheduling based
on a distributed constraint heuristic search. Jobs are partitioned and delegated to agents
in an ad hoc way. Each resource is monitored by some agent who is responsible for the
registering and granting of requests for resource reservation. Agents perform asyn-
chronous heuristic search on their subproblems based on a variable and value ordering
heuristic that relies on a probabilistic resource demand profile. A distributed asyn-
chronous back jumping algorithm was developed to extend the distributed search. A
communication protocol via message passing that coordinates agents’ problem solving
was also presented. Experiments were conducted to determine the feasibility of the
approach and to test the parameters that influence system performance.

To the best of our knowledge, our study represents one of the first attempts to
rigorously evaluate a cooperative problem solving approach based on comparison to
centralized approaches. We argue that such a comparison is inevitable in order to have
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a complete picture of the trade-offs between centralized and distributed approaches.
We show that our cooperative problem solving approach, applied to problems with
clear bottlenecks, produces equivalent or superior performance to competing central-
ized scheduling techniques and, therefore, provides technical support to the increasing
need of distributed production management.

11. Conclusion

We have presented a distributed, cooperative problem solving approach to job
shop scheduling problems. The approach involves lateral negotiation among agents
with different types of constraints. By exploiting the special problem structure that
involves disparity among agents, we designed coordination strategies based on anchor-
ing on the most constrained agent. We also developed a set of coordination information
and agents’ negotiation heuristics to facilitate the effective operations of the coopera-
tive problem solving process. The utility of the approach was verified by rigorous
experimental evaluation against competing scheduling techniques. Our experimental
results show that our approach outperforms or gives comparable performance with
other state-of-the-art scheduling techniques on a benchmark suite of problems. The
power of the approach results from our judicious multi-agent coordination scheme
that minimizes inter-agent communication by having agents communicate through
multiple, simple distributed memories, each of which is associated and shared by a
limited set of agents, and exploits problem characteristics (e.g., disparity among sub-
problems) that help focus coordination.

We believe that this study has at least three implications for the field of
computational models in management science. First, it represents one of the first
cooperative problem solving approaches to combinatorial group decision problems on
jointly governed decision variables with separate and different constraints. Since most
businesses employ some sort of functional division, such situations abound. For
example, in determining the specification of a new product, engineering people are
concerned with technical soundness, manufacturing people focus on its ease of fabrica-
tion, while marketing people care about the cost of the product and the speed of
delivery. Our study provides highly efficient conflict resolution between different
constraints in problems of combinatorial complexity.

The second implication comes from our agent communication scheme that
employs efficient, small and distributed shared memories, each of which is associated
with and shared by a limited number of agents. This allows effective communication
among many decentralized entities in tightly coupled problems without substantial
computational overhead or communication bottlenecks. We believe that this communi-
cation scheme can facilitate more efficiency in many distributed systems.

The third implication is related to the notion of exploiting special problem
structure. Recent research in distributed artificial intelligence has shown that there is
no general coordination approach that works well in all situations. To achieve the
operational goals of distributed cooperative problem solving, e.g., computational
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efficiency, solution quality, etc., appropriate coordination approaches must be designed
according to problem characteristics. We used problem structure as the basis of design-
ing agent coordination. Defining problem structure and identifying salient features on
which to base good coordination techniques is a non-trivial problem, especially for
highly nonlinear, combinatorial problems, such as job shop scheduling. We examined
one of the most recurrent structures involving disparity among subproblems. Our
experimental results show that the approach is very useful in constructing effective
coordination mechanisms for NP-hard problems.

We are currently investigating the power of the approach on problems with differ-
ent structure and across a variety of optimization objectives.
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