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Abstract

Several randomized path planners have been proposed during the last few years. Their at-

tractiveness stems from their applicability to virtually any type of robots, and their empirically

observed success. In this paper we attempt to present a unifying view of these planners and to

theoretically explain their success. First, we introduce a general planning scheme that consists

of randomly sampling the robot’s configuration space. We then describe two previously developed

planners as instances of planners based on this scheme, but applying very different sampling

strategies. These planners are probabilistically complete: if a path exists, they will find one with

high probability, if we let them run long enough. Next, for one of the planners, we analyze the

relation between the probability of failure and the running time. Under assumptions character-

izing the “goodness” of the robot’s free space, we show that the running time only grows as the

absolute value of the logarithm of the probability of failure that we are willing to tolerate. We

also show that it increases at a reasonable rate as the space goodness degrades. In the last section

we suggest directions for future research.

1 Introduction

Robot path planning has been proven a hard problem [40]. There is strong evidence that its solution
requires exponential time in the number of dimensions of the configuration space, i.e., the number
of degrees of freedom (dofs) of the robot. This result is remarkably stable: it still holds for rather
specific robots, e.g., planar linkages consisting of links serially connected by revolute joints [17] and
sets of rectangles executing axis-parallel translations in a rectangular workspace [13, 14]. Though
general and complete algorithms have been proposed [6, 42], their high complexity precludes any
useful application. This negative result has led some researchers to seek heuristic algorithms.
While several such planners solve difficult problems, they also often fail or take prohibitive time on
seemingly simpler ones. The fact that their behavior is not well characterized is a major drawback:
they cannot be used as blackboxes in larger robot control systems.
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The number of dofs beyond which existing complete algorithms become practically useless is low,
somewhere between 3 and 5. This means that they cannot be used to compute paths for rigid objects
translating and rotating in three dimensions, nor for six-dof manipulator arms, two important cases
in practice. On the other hand, robot applications tend to involve more degrees of freedom than
ever before. For example, an increasing number of manufacturing workcells use several cooperating
robots to augment throughput and flexibility. Cells with more than twenty dofs are no longer
exceptions. As costs and time for designing and deploying them become more critical, path planners
integrated with CAD systems will be in higher demand to facilitate robot programming. Eventually,
planners will run online to allow for non-deterministic sequences of goals and events [31]. Robots
in domains other than manufacturing (e.g., medical surgery, space exploration) will also require
efficient and reliable path planners. Some non-robotics domains raise a similar need as well. In
computer graphics, animation of synthetic actors to produce digital movies or video games requires
dealing with several dozen dofs. Here, motion planning may drastically reduce the work of human
animators who currently input large numbers of key frames. In molecular biology, motion planning
can help compute plausible docking motions of molecules modeled as spatial linkages with many
dofs.

Collision-free path planning, which assumes perfect knowledge of the world and stationary obstacles,
is only the most basic motion planning problem in robotics. Clearly, we would ultimately like
robot planners to also deal with issues such as uncertainties, moving obstacles, movable objects,
and dynamic constraints [29, 30]. But every extension of the basic problem adds in computational
complexity. For instance, allowing moving obstacles makes the problem exponential in the number
of moving obstacles [6, 41]; uncertainties in control and sensing make the problem exponential in
the complexity of the robot environment [6]. Before we can effectively investigate such extensions
in large configuration spaces, it seems that we must better understand how to practically solve
basic path planning.

Path-planning applications are so diverse that it is infeasible to design a tailor-made algorithm
for every possible robot.1 Instead, we need general path planning algorithms not bound to the
specifics of any particular robot. We believe that between the two extreme types of planners
suggested above – complete and heuristic – there is place for practically efficient general planners
achieving a weaker form of completeness. In other words, we may perhaps trade a limited amount of
completeness against a major gain in computing efficiency. Full completeness requires the planner
to always answer a path-planning query correctly, in asymptotically bounded time. A weaker, but
still interesting form of completeness is the following: if a solution path exists, the planner will
find one in bounded time, with high probability. We call it probabilistic completeness. This weaker
completeness becomes particularly interesting if we can show that the planner’s running time grows
slowly with the inverse of the failure probability that we are willing to tolerate.

With this philosophy in mind, we have designed new path planners and experimented with them
in large configuration spaces. One of them, described in [3, 4, 29], is a potential-field-based planner
that escapes local minima by performing random walks; in the following, we will refer to it as the
potential-field planner. Another planner, presented in [18, 20, 21, 24], precomputes a “roadmap”
(network) of simple paths connecting randomly selected configurations and tries to construct a
path between any two input configurations by connecting them to this roadmap; we will refer

1In any case, very few tailor-made planners have been successfully designed for specific robots with more than
four dofs.
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to this planner as the roadmap planner. Both these planners have been successfully applied to
complex problems. For example, in [26], the potential-field planner was used to automatically
synthesize a video clip with graphically simulated human and robot characters entailing a 78-
dimension configuration space. Both the potential-field and the roadmap planners have been used
to check that parts can be removed from an aircraft engine for inspection and maintenance [8];
here, paths are generated in configuration spaces having only six dimensions, but the parts have
particularly complex geometry.

These two planners achieve probabilistic completeness. For the potential-field planner, this property
remains qualitative: if there exists a path, the probability that the planner finds one tends toward
one as the running time increases; but the convergence speed is unknown. But, for the roadmap
planner, we have proven stronger results that relate the probability that it finds a path, when one
exists, to its running time [18, 19, 22, 23]. In turn, these theoretical results suggest improvements
of the planner.

Other work investigating similar or related randomized planning approaches include [1, 5, 15, 16,
35, 36]. Formal attempts to predict the behavior of specific random planners are proposed in very
few papers [9, 28].

This paper proposes a consistent framework to describe and study the randomized planners cited
above, with the goal to eventually build more powerful planners. In the planners cited above, the
robot’s free space is not explicitly represented, but randomly sampled. We believe that this is
the central concept underlying their success. In Section 2 we capture this concept into a general
computational scheme for path planning in large configuration spaces.2 In Section 3 we make our
discussion more precise by presenting our potential-field and roadmap planners as two instances of
planners using this scheme, but applying two different sampling strategies. In Section 4 we give
two formal analyses of the probabilistic completeness of variants of the roadmap planner. These
analyses provide a theoretical explanation for the empirically observed success of the roadmap
planner. They are the crux of this paper. Indeed, as it has become relatively easy to design
new randomized path planners that outperform previous ones on some well-selected problems, it
is increasingly important to formally explain their strengths and weaknesses. This paper does
not present experimental results obtained with our planners. Many such results were previously
reported in [3, 8, 18, 20, 21, 24, 26, 27] and in papers by other authors [7, 11, 47]. The reader is
referred to [34] for a textbook on randomized algorithms and sampling techniques.

2 General Scheme

We consider the problem of planning collision-free paths for an arbitrary n-degree-of-freedom
holonomic3 robot A. We let C denote the configuration space of A and Cfree stand for the open
subset of the collision-free configurations in C. We also refer to Cfree as the free space and to config-
urations in Cfree as free configurations. A planning problem is specified by two free configurations,
qinit and qgoal, called the initial and the goal configurations, respectively. Any path lying in Cfree

that joins these two configurations is a solution of this problem.

2This scheme can also be applied to configuration spaces having few dimensions; but it is less interesting in that
case, since complete algorithms are then available.

3Our presentation can be extended to nonholonomic robots. See [36, 43, 44].
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We assume for simplificity that C is the cube [0, 1]n, so that each configuration q is described by
an n-tuple (q1, . . . , qn). However, it is straightforward to extend our presentation to cases where C
is multiply connected, i.e., one or more dimensions can “wrap around”. The only requirement is
that C be measurable (in the Lebesgue sense), which is always achieved in practice.

Although there exist algorithms to construct an explicit representation of Cfree given the geometry
of A and the obstacles in semi-algebraic form, their time complexity makes them impractical for
any sufficiently large value of n. On the other hand, reasonably efficient algorithms are available
to compute the Euclidean distance between two objects in three-dimensional space (e.g., [10, 32,
37, 39, 45]). This leads us to assume that Cfree is implicitly given by a function, clearance:
C → R, that maps any configuration q to the distance (in the workspace) between the robot placed
according to q and the obstacles, or between two bodies of the robot, whichever is smaller. In the
case where the robot collides with an obstacle or with itself, clearance(q) returns 0 or a negative
number. Thus, whenever clearance(q) is positive, q belongs to Cfree. We refer to clearance(q)
as the clearance of q.

For any bounded robot A, there exists a positive constant ρ such that when A moves along a
straight path in C between any two configurations q = (q1, . . . , qn) and q′ = (q′1, . . . , q

′
n), no point

of A traces a curve segment longer than ρmaxi∈[1,n] |qi−q′i|. We assume here that ρ is given, though
for most usual robots its computation is straightforward and can be included in the planner. Rather
than using a single ρ, we may also partition C into several regions and have a distinct constant ρi

for each region. If the ρi’s differ by large amounts, this could substantially reduce the running time
of a planner based on the scheme presented below, but we will not go into such detail in this paper.

Definition 1 Let q = (q1, . . . , qn) and q′ = (q′1, . . . , q
′
n) be two free configurations whose respective

clearances are η and η′. They are said to be adjacent if ρmaxi∈[1,n] |qi − q′i| < max{η, η′}/2.

Clearly, if two configurations are adjacent the straight-line segment joining them lies entirely in
Cfree. In fact, the coefficient 1/2 appearing on the right-hand side of the above inequality is
intended to make sure that the robot cannot collide with itself, since two bodies might then move
simultaneously toward each other. This coefficient can be removed if self-collisions are known in
advance to be impossible. Note also that the map:

(q,q′) ∈ C2 7→ max
i∈[1,n]

|qi − q′i| ∈ R
+ ∪ {0}

is the L∞ distance in C. We could choose other distances in C to define adjacency. Of course, the
constant ρ depends on this choice.

Now we can state our general planning scheme as follows:

Pick configurations in C at random; retain those configurations which lie in Cfree (along
with qinit and qgoal) as the nodes of a graph G; and connect adjacent configurations by
links of G.

Return yes if qinit and qgoal belong to the same connected component of G.

Return no if no path has been found after having generated c configurations, where c
is an input parameter.

4



The answer yes is always correct, that is, whenever the planner returns yes, there actually exists a
collision-free path connecting qinit to qgoal; moreover such a path can easily be extracted from the
graph G. But the answer no is not necessarily correct. Indeed, after a finite amount of computation
(defined by the parameter c), the planner may still not have found a path between qinit and qgoal,
even if one exists.

The key component of this planning scheme is the sampling strategy applied to generate the nodes of
G. Different strategies are possible. For example, if multiple planning queries are to be made with
the same robot and obstacles (multi-query case), then it may be suitable to invest preprocessing
time to construct a network of configurations (which we call a roadmap). Processing each query
then only requires connecting the input initial and goal configurations to the roadmap. If the
queries are not known in advance, it seems reasonable to construct the roadmap by choosing
configurations uniformly at random from [0, 1]n since the resulting free configurations are then
uniformly distributed over Cfree. However, we will see in Section 3.2 that, while the roadmap is
being generated, it is possible to derive heuristic information from it and bias the selection of the
new configurations.

Instead, if a single or very few queries are to be made with the same robot and obstacles (single-

query case), the planner may be more successful by using a sampling strategy that picks new
configurations, first in neighborhoods of the initial and goal configurations and then, iteratively, in
neighborhoods of the newly generated configurations, until the two “sampling waves” meet. A sim-
ilar strategy could also be used in the multi-query case to connect the initial and goal configurations
to the roadmap.

Although the efficiency of any planner may be evaluated through experimentation, formal analysis
is desirable to compare planners and stress their strengths and weaknesses. Ideally a planner’s
outcome should be yes with the highest probability whenever a free path exists and this outcome
should be generated in minimal time. Hence, the analysis should relate the probability that the
planner produces an incorrect answer to its running time. Given a small positive number α (the
acceptable probability that the planner’s output is no while a free path exists), we would like to
bound the running time of the planner by a function of α. If this function grows slowly with 1/α,
then the planner is particularly interesting since we can get arbitrarily close to full completeness
at a reasonable cost.

Let us assume for simplificity that clearance takes constant time to evaluate. Then the planner’s
running time mainly depends on two numbers: the number of sample configurations and the number
of pairs of free configurations checked for adjacency. The number of sample configurations is at
most c. But only a fraction of them, f , are in Cfree, hence in the constructed graph G. In practice,
it is often the case that f � c. The planner should thus strive to get the greatest ratio f/c, but
the distribution of the generated free configurations is also crucial to eventually find a path. The
number of adjacency checks is at most proportional to f2; however, the planner may choose not to
test all pairs of free configurations for adjacency.4

It seems likely that no strong property can be proven for any given planner, if we do not make
some assumption about Cfree. Moreover, no single planner is likely to be the most efficient for
all possible problems. This suggests that planners should be analyzed under some well-specified

4Checking the sample configurations for adjacency is an instance of the orthogonal range-searching problem [2, 38].
Using the range-tree technique, the pairs of adjacent configurations can be computed in O(f logn−1 f) time, or slightly
faster. This is better than O(f2) when f is large enough.
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assumptions. In Section 4, we will study the work carried out by a two-phase planner under two
distinct assumptions. In one, the visibility volume assumption, Cfree is such that every free config-
uration “sees” a subset of Cfree whose volume is at least an ε fraction of the total volume of Cfree

(we then say that Cfree is ε-good). In the second assumption, the path clearance assumption, there
exists a collision-free path between qinit and qgoal that has some given clearance ξ. Assumptions
must be carefully crafted. Indeed, if these are too specific or unrealistic, the analysis will not yield
useful results; on the other hand, if they are too general, the results will be too weak.

3 Specific Planners

We now present two planners that make use of the above scheme with different sampling strategies.

3.1 Potential-Field Planner

This planner was originally described in [3, 4, 29], along with experimental results.5 Extensions
and additional experimental results were presented in [8, 11, 26, 27]. Here, we focus on its relation
to the general scheme presented above.

The planner is given a function U : Cfree → R
+ ∪ {0}, the potential field, with a single global

minimum (0) at the goal configuration.6 It then attempts to connect qinit to qgoal by alternating
down motions and escape motions. Each down motion “descends” along U until it reaches a local
minimum, while escape motions attempt to flee from local minima.

The following algorithm, in which h is an input parameter, constructs a down motion starting at
configuration qs:

Down-Motion(qs):

1. q ← qs.

2. While q is not labelled as a local minimum do:

(a) Pick at random up to h configurations adjacent to q, until one of them, q′, satisfies
U(q′) < U(q).

(b) If the previous step succeeded in generating q′, then reset q to q′; else label q as a local
minimum.

3. Return q.

At Step 2(a) let q = (q1, . . . , qn) and η = clearance(q). Configurations are picked at random
from the volume defined by Πi=1,...,n[qi − η/ρ, qi + η/ρ] ∩ [0, 1]n. According to Definition 1, all
configurations in this volume are adjacent to q. To guarantee that Step 2 does not loop for ever,
U must have no local minimum in the boundary of Cfree. This can easily be obtained by including
in the definition of U(q) a term proportional to 1/clearance(q).

5The planner is available by anonymous ftp from flamingo.stanford.edu:/pub/li/rpp3d.tar.gz.
6Techniques to automatically construct this function are proposed in [3, 29].
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The following algorithm constructs an escape motion starting at a local minimum ql:

Escape-Motion(ql):

1. Pick at random the length, `, of the motion.7

2. q ← ql; l← 0.

3. While l < ` do:

(a) Pick at random a free configuration q′ adjacent to q.

(b) l← l + maxi |qi − q′i|.

(c) q ← q′.

4. Return q.

The overall planning algorithm is the following:

Potential-Field-Planner(qinit,qgoal):

1. ql ← Down-Motion(qinit).

2. While ql 6= qgoal do:

(a) Do:

i. If the total number of configurations generated so far exceeds c then return no and
halt.

ii. qs ← Escape-Motion(ql);
iii. q′

l ← Down-Motion(qs);

until U(q′
l) < U(ql).

(b) ql ← q′
l.

3. Return yes.

The graph G constructed by the planner is a tree of paths rooted at qinit. Each configuration
q′ entered as a node of G has been picked so that it is adjacent to a configuration q already in
G (Steps 2(a) and 3(a) of Down-Motion and Escape-Motion, respectively). Moreover, q′ is only
linked to q in G. Hence, the planner does not test pairs of configurations for adjacency, avoiding
the cost of this test. During a down motion, the potential U introduces a bias in the choice
of the tree path that will be followed by the planner. Although the global geometry of Cfree is
unknown, U can be seen as a specialist that gives some heuristic indications about this geometry,
i.e.: which directions are promising and which aren’t. The techniques in [3, 29] compute U by
combining local-minima functions computed over the robot’s workspace. Although the resulting U

often prevents the planner from getting trapped into big obstacle cavities, it still has local minima

7In [3], we note that, on the average, a random walk of length ` ends
√

` away from its starting point. This leads
us to suggest choosing

√
` according to a truncated Laplace distribution with mean value equal to the “radius” of

the configuration space. Here, this radius is 1.
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and therefore is an imperfect characterization of the free space’s geometry. On the other hand,
computing local-minima-free potentials in large dimensional spaces is a difficult problem [25] that
is at least as hard as path planning itself.

Using well-known properties of random motions, the potential-field planner can be shown proba-
bilistically complete [3, 28]. Moreover, a calculation of the finite expected number of invocations of
Escape-Motion is given in [28]. The idea underlying this calculation is the following. The basins
of attraction of the local minima of U which have non-zero measure (the goal basin is assumed to
be one of them) form a partition of the free space. For any two such basins Bi and Bj, one can
define the finite transition probability pij that a random walk generated by Escape-Motion from
the minimum in Bi terminates into Bj . The expected number of invocations of Escape-Motion
before entering the goal basin is then expressed as a function of the pij’s. In theory, this result
gives some indication of the expected complexity of the potential-field planner. But, in practice,
the pij’s are unknown. In fact, a key issue in analyzing a planner based on random sampling is to
translate some geometric property of the free space into probabilistic terms.

The potential-field planner has successfully solved many difficult problems (e.g., see [3, 8, 11, 26]).
However, it is easy to create problems that it fails to solve in a reasonable amount of time, though
they admit rather obvious solutions. Not surprisingly, most failures are due to traps, which cause
some transition probabilities pij to be very small (in particular, the probabilities to enter the goal
basin from some other basins). A trap is a basin of attraction of a local minimum of U that is
almost completely surrounded by forbidden configurations (i.e., C\Cfree). Hence, a trap admits
only narrow exits and the potential function inside the trap guides the robot away from these exits.
If the robot’s path starts within a trap or is guided into one by U , each escape motion executed
then has a tiny probability of escaping the local minimum. One could imagine a variant of the
planner where the potential field is randomly guessed among a collection of several functions and
changed several times during planning, hoping that the various potentials would entail different
traps. We did some experiments with this idea, but we only got limited results.

3.2 Roadmap Planner

The problems encountered with the potential-field planner led us to develop another planner, the
roadmap planner8 described in [18, 20, 21, 24]. Several variants of this planner have been im-
plemented; we present one below. Unlike the potential-field planner, this new planner uses no
problem-specific heuristics.

The roadmap planner operates in two phases, preprocessing and query processing: The preprocess-
ing phase consists of constructing a network R of configurations, the roadmap. The configurations
in R are called milestones. They only form a subset of all the sample configurations generated
by the planner; hence, the roadmap is not exactly the graph G mentioned in the general scheme.
Every query specifies two configurations, qinit and qgoal, in Cfree. Processing the query consists
of connecting these configurations to two milestones and checking that these two milestones are in
the same connected component of R.

The planner uses a simple algorithm, Connect (also called the connector), to construct the links of R.
Given any two milestones, m1 and m2, the connector checks if the straight-line segment connecting

8The planner is available by anonymous ftp from flamingo.stanford.edu:/pub/kavraki/prm.tar.gz.
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them lies in Cfree. It does so by dichotomically breaking the segment into shorter segments and
checking the endpoints of each segment for adjacency. It stops breaking a segment whenever its
two endpoints are adjacent or one of them is not in free space. In the second case, Connect

halts, without generating a link between m1 and m2 in the roadmap. Instead, if the connector
eventually succeeds in partitioning the segment m1m2 into segments (possibly, of unequal lengths)
such that the endpoints of each segment are adjacent, it establishes a link between m1 and m2 in
the roadmap. The work done by the connector is part of the sampling work done by the roadmap
planner, but the sample configurations it generates are not permanently stored; they are not part
of the roadmap R. In other words, the planner does not attempt to find additional connections
among sample configurations generated between milestones. To keep our presentation simple, we
assume that Connect only tries straight paths, but it could try other canonical paths as well. We
say that a configuration sees another configuration if the straight-line segment joining them lies
entirely in Cfree.

In the following algorithm we could limit the total number of sample configurations to c, as in the
general scheme of Section 2. However, putting the limit on the number of generated milestones
instead is more convenient; it will also facilitate the analyses of Section 4. The preprocessing phase
constructs an initial roadmap containing r milestones (Steps 2 and 3 in the algorithm shown below).
Then it expands this initial roadmap into a final one containing s > r milestones. Both r and s
are input parameters. The first r milestones are chosen uniformly over Cfree. The remaining s− r
milestones are selected in small regions considered as “difficult” parts of Cfree. The preprocessing
algorithm is the following:

Preprocessing:

1. i← 0.

2. While i < r do:

(a) Pick a configuration q in C at random.

(b) If clearance(q) > 0 then

i. Store q as a milestone of the roadmap.
ii. i← i + 1.

3. For every pair of milestones m1 and m2 whose distance is less than d, do: Connect(m1,m2).

4. Invoke Resample to expand the roadmap by s− r milestones (see below).

The threshold d at Step 3 is an input parameter. It is used to limit the number of pairs of milestones
that are tested by Connect, since in most spaces two milestones that are far apart are unlikely to
see each other. Step 3 takes time at most quadratic in r, which is usually much smaller than the
total number of sample configurations generated by the roadmap planner.9

Resample selects milestones with probability inversely proportional to their degrees in the roadmap
(i.e., their number of connections to other milestones). Intuitively, a milestone with few or no
connections lies in a difficult region of the free space. For each milestone m that it selects, Resample
picks a number of new milestones at random in a neigborhood of m and invokes Connect to try to

9Footnote 4 applies here too.
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link each of these new milestones to other milestones. This expansion of the roadmap terminates
when the total number of milestones is s. Experiments have been done with and without the
roadmap expansion step (Step 4). Roadmaps containing the same total number of milestones
have been constructed both ways. The roadmaps generated using the expansion step have been
consistently better, i.e., subsequent queries were processed more quickly with less incorrect no

answers. Over a large range of problems, generating 2/3 of the milestones at Step 2 and 1/3 at
Step 4 gave good results.

After preprocessing, each query is handled as follows (g is an input parameter):

Query-Processing(qinit,qgoal):

1. For i = {init, goal} do:

(a) If there exists a milestone m that sees qi then mi ←m.

(b) Else

i. Repeat g times:

Pick a configuration q at random in the neighborhood of qi

until q sees both qi and a milestone m.
ii. If all g trials failed then return no and halt, else mi ←m.

2. If minit and mgoal are in the same component of the roadmap then return yes; else return
no.

4 Analysis

We now give formal analyses of two variants of the roadmap planner. We characterize the amount
of computation that the planner must do in order to give correct answers with high probability.

The intuitive reason for the experimental success of the above planners is that there usually exist
many collision-free paths joining two configurations. Hence, to bound the running time of the
roadmap planner, we assume that Cfree satisfies some geometric property capturing the above
intuition. We propose two such properties. Our thesis is that the success of any sampling strategy
will stem from a similar property.

In both analyses, we consider that the key number affecting the planner’s running time is the
number of milestones in the constructed roadmap. Since to generate a single milestone it might be
necessary to randomly pick several (possibly, many) configurations in C, we implicitly assume that
the volume of Cfree relative to the volume of C is not too small. If this assumption is not satisfied,
any variant of the roadmap algorithm presented in Section 3.2 will behave poorly. In this case, we
should probably make the additional assumption that a few free configurations are given (after all,
every query will give two such configurations); then, a possible sampling strategy could be to build
a roadmap by generating milestones in small regions centered at the given configurations, first, and
at the newly generated milestones, next.

Note that bounding the number of milestones is not sufficient to bound the running time of the
planner, because it does not account for the running time of Connect. If two milestones passed
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to Connect see each other, but the line segment connecting them is arbitrarily close to the free
space boundary, then the connector will have to break it into arbitrarily many small segments.
This problem could be eliminated by extending the general scheme of Section 2 with a primitive
computing the volume swept out by the robot when it moves between two configurations along a
straight path in configuration space.

Here, we only state the main results of our analyses. We give formal proofs of the three main
theorems (Theorems 1, 2, and 7) in the appendix. The proofs of two other theorems (Theorems 3
and 4) are straighforward and short; they appear in the text below. For the proofs of Theorems 5
and 6, we refer the reader to [22, 23]. Indeed, these proofs are longer and more technical, while the
theorems themselves are less important to a robotics audience. Finally, Theorem 8 is essentially a
refinement of Theorem 7. Its proof can be found in [18, 19].

In the rest of this section we denote the volume of a subset X of C by µ(X ).

4.1 Visibility Volume Assumption

4.1.1 Definition and algorithms

For any configuration q ∈ Cfree, let S(q) consist of all those configurations q′ ∈ Cfree that q sees.

Definition 2 Let ε be a positive real. A configuration q ∈ Cfree is ε-good if µ(S(q)) ≥ εµ(Cfree).
Furthermore, Cfree is ε-good if all the configurations it contains are ε-good.

The visibility volume assumption made here is that Cfree is ε-good, that is, each configuration in it
sees a significant portion of Cfree. The underlying intuition is that it is then relatively easy to pick
a set of milestones that, collectively, can see most of Cfree. But the assumption fails to prevent
Cfree from containing narrow passages through which it might be difficult to connect milestones.
For example, consider the case where C is two-dimensional and Cfree consists of two disks of equal
size that overlap by a very small amount. Then Cfree is ε-good for ε ≈ 0.5. But the probability
that any milestone in one disk sees a milestone in the other disk is very small. For this reason, we
use a variant of the roadmap algorithm that embeds a “complex planner”. We assume that this
complex planner is error-free in that it discovers a path between two given configurations whenever
one exists, and reports failure when there is none. But of necessity such a complete planner must
be expensive to run, and so we seek to use it sparingly. In particular, to keep query processing fast,
we restrict the use of the complex planner to the preprocessing stage.

The preprocessing algorithm is similar to the one given in Section 3.2. The main difference is that
Step 4 invokes Permeation, instead of Resample. Permeation uses the complex planner to improve
the roadmap connectivity; unlike Resample, it does not add new milestones to the roadmap. The
constructed roadmap contains s milestones; these are all generated at Step 2.

Preprocessing:

1. i← 0.

2. While i < s do:

(a) Pick a configuration q in C at random.
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(b) If clearance(q) > 0 then

i. Store q as a milestone of the roadmap.
ii. i← i + 1.

3. For every pair of milestones m1 and m2, do: Connect(m1,m2).

4. Pick one representative milestone from each component of the current roadmap. Let V be
the set of these representative milestones. Invoke Permeation(V ) to improve the connectivity
of the milestones (see below).

The result of this preprocessing is a roadmap such that any two nodes are in the same component
if and only if the corresponding milestones are in the same component of Cfree. Step 3 may
fail to find all possible links between the milestones due to the incompleteness of the connector.
Permeation invoked in Step 4 fixes this problem by using the complex planner to discover additional
connections between milestones. Note that Permeation is a last resort; hopefully, much if not all
of the connectivity information should have been discovered before this step.

It is worth noticing that the algorithms of the implemented planner presented in [18, 20, 21]
are similar to those described here, except that it uses the potential-field planner of Section 3.1
instead of the complex planner. The potential-field planner is not complete, but it is quite rare in
practice that two milestones in the same component of the free space can be connected neither by
invoking Connect at Step 3 of the proprocessing, nor by the potential-field planner. The planner
of [18, 20, 21] seems a good approximation of the algorithms given here, and the analysis proposed
below is relevant to this planner.

The query processing is handled by the following algorithm, which is similar to the query-processing
algorithm of Section 3.2:

Query-Processing(qinit,qgoal):

1. For i = {init, goal} do:

(a) If there exists a milestone m that sees qi then mi ←m.

(b) Else

i. Repeat g times:

Pick a configuration q at random in S(qi)

until q sees both qi and a milestone m.
ii. If all g trials failed then return failure and halt, else mi ←m.

2. If minit and mgoal are in the same component of the roadmap then return yes; else return
no.

Step 1(b)i differs slightly from the corresponding step in the query-processing algorithm of Sec-
tion 3.2. Since in general we do not know how to compute S(qi), picking configurations in this set
requires guessing configurations in configuration space and retaining only those that are seen by
qi. This means that each of the g iterations performed at Step 1(b)i may require several trials to
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obtain a configuration visible from qi. The analysis proposed below ignores these trials and focuses
only on the number g.

Another difference between the above algorithm and the one of Section 3.2 is that it returns failure

(instead of no) at Step 1(b)ii. Due to the use of the Permeation in the preprocessing, both the
answers yes and no are now always correct. With some probability though, the query-processing
algorithm may fail to give an answer.

4.1.2 Performance guarantees

Let us first present some performance guarantee for the preprocessing phase. Call a set of milestones
adequate if the volume of the subset of Cfree not visible from any of these milestones is at most
(ε/2)µ(Cfree). Intuitively, if we were to place a point source of light at each milestone, we would
like a fraction at least 1− ε/2 of Cfree to be illuminated.

Let C be a positive constant large enough that for any x ∈ (0, 1], (1−x)(C/x)(log 1/x+log 2/β) ≤ xβ/2.
Clearly, there exists such a constant.

Theorem 1 Let β ∈ (0, 1] be a positive real constant. If s ≥ (C/ε)(log 1/ε + log 2/β), then prepro-

cessing generates an adequate set of milestones with probability at least 1− β.

Note that as ε increases, the requirement for adequacy grows weaker, i.e., the portion of the free
space that has to be visible by at least one milestone gets smaller. Intuitively, this comes from the
fact that a greater ε will make it easier to connect query configurations to the roadmap. Naturally,
the number of milestones needed becomes smaller.

Theorem 1 only says that most of Cfree is likely to be visible from some milestone in the roadmap;
using this property alone, we can show that queries can be answered quickly. But the adequacy of
the milestones is not sufficient to imply that the roadmap is a good representation of the connectivity
of Cfree. The use of the complex planner in the permeation algorithm is inevitable to ensure a good
probability that the query processing outcomes yes or no.

Let us choose g = log(2/γ) at Step 2 of Query-Processing, where γ ∈ (0, 1] is the failure probability
we are willing to tolerate during a query. We can show the following performance guarantee for
the query processing phase:

Theorem 2 If the set of milestones chosen during preprocessing is adequate, then the probability

that the query-processing algorithm outputs failure is at most γ.

In fact, our analysis (in the Appendix, Section B) implies that the expected number of executions
of Step 1(b)i in the query-processing algorithm is at most 2.

Theorems 1 and 2 give performance guarantees for the preprocessing phase and the query-processing
phase, respectively. This is appropriate, since many queries will be made using the same roadmap.
However, we can easily blend the two theorems to bound the probability that the planner returns
failure for a single query by (1 − β)γ + β (this is obtained by bounding by one the probability
that the planner returns failure when the set of milestones is not adequate). Then, let α ∈ (0, 1]
be the probability of a failure outcome which we are willing to tolerate. Neither the number s of
milestones, nor the number g of trials at Step 2 of Query-Processing grow faster than log(1/α),
when α→ 0.
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4.1.3 Number of calls to complex planner

We now turn to the description of Permeation and its analysis. Our goal is to evaluate how many
times the complex planner must be invoked at Step 4 for the preprocessing algorithm.

Permeation must determine which milestones in V are reachable from each other, i.e., it must
partition V into subsets such that all milestones in the same subset belong to the same component
of Cfree and no two milestones in two different subsets are in the same component of Cfree. If p is
the size of V , it can do so with O(p2) invocations of the complex planner by trying it on every pair
of milestones in V , but we show below that far fewer invocations may suffice.

We work with the following abstract version of the permeation problem. The input is a graph N
with p vertices, consisting of k disjoint cliques. The goal is to determine this clique partition of N .
The graph is presented as an adjacency matrix and the cost of an algorithm is measured by the
number of entries it examines in the adjacency matrix of N . This is the edge probe model used in
the study of evasive graph properties [33]. The vertices of N correspond to the milestones in V , and
an edge is present between two vertices if the corresponding milestones lie in the same component
of Cfree. The milestones from any particular component of Cfree will form a clique in N , and there
are no edges between two distinct cliques. A probe into the adjacency matrix corresponds to an
invocation of the complex planner.

Let NC(p, k) denote the non-deterministic complexity of this problem. A non-deterministic algo-
rithm is only required to verify that some partition into k cliques is the right partition. It must
make at least one probe on each of the p vertices. It must also have verified that each pair of cliques
is in fact disconnected. Hence:

Theorem 3 For 1 ≤ k ≤ p, NC(p, k) = Θ(p + k2).

The non-deterministic complexity of the problem is clearly a lower bound on its deterministic and
even randomized complexity.

We now characterize the worst-case deterministic complexity of this problem, denoted T (p, k).
Consider the following deterministic algorithm: by probing all edge slots incident on an arbitrary
vertex x, determine the neighborhood of x, say Γ(x); let Cx = {x} ∪ Γ(x), and output Cx; then,
recur on the vertex-induced subgraph N [V \ Cx]. The number of levels in the recursion is k, since
one of the k cliques is removed from N prior to each recursive call. The number of probes made
in the process of determining each such clique is at most p. The total number of probes is O(pk).
The following permeation algorithm is an iterative version of the recursive algorithm (the nodes of
N are named 1, 2, . . . , p):

Deterministic-Permeation(V ):

1. Mark all vertices of N as being live.

2. Initialize x← 1.

3. While x ≤ p do:

(a) Γ(x)← ∅.

(b) For y = x + 1 to p do:
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i. If vertex y is marked live then probe the edge (x, y) in N .
ii. If edge (x, y) is probed and found present then mark y as dead and add y to Γ(x).

(c) Output {x} ∪ Γ(x) as being a clique.

(d) Mark x as being dead.

(e) Set x to the smallest numbered live vertex, or p + 1 if there are no live vertices left.

By the preceding discussion, we have:

Theorem 4 Deterministic-Permeation correctly solves the permeation problem using O(pk)
probes.

The following lower bound establishes that Deterministic-Permeation is optimal. The proof uses
a non-trivial adversary argument [23].

Theorem 5 For 1 ≤ k ≤ p, T (p, k) = Ω(pk).

We now give a randomized algorithm that beats the lower bound of Theorem 5 when
the sizes of the k cliques differ significantly, which is often the case in practice (when
k > 1). Randomized-Permeation labels the vertices in a random order and then invokes
Deterministic-Permeation.

Randomized-Permeation(V ):

1. Permute the vertices randomly. Rename the nodes by 1, . . . , n, in the order of the generated
list.

2. Invoke Deterministic-Permeation(V ).

Let w1 ≥ w2 ≥ · · · ≥ wk be the sizes of the cliques in an instance N arranged in a non-increasing
order, where p =

∑k
i=1 wi. Denote by Ci the ith largest clique in N . Define a function u() on an

ordered k-tuple of positive integers n1, n2, . . . , nk by u(n1, n2, . . . , nk) =
∑k

i=1 ini.

Theorem 6 Randomized-Permeation correctly determines the clique structure and incurs an ex-

pected cost that is at most

2u(w1, w2, . . . , wk)− p− k.

Furthermore, with high probability, the cost is at most

O(u(w1, w2, . . . , wk) log p).

Observe that the worst case is when all wi are equal to p/k, in which case the expected cost is
O(pk). On the other hand when there is one giant clique and k−1 cliques of size O(1) the expected
cost is Θ(p + k2), which is essentially the non-deterministic lower bound.
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4.2 Path Clearance Assumption

The visibility volume assumption does not prevent the existence of narrow passages in Cfree. To
remove the need for the “complex planner” and get closer to the roadmap planner of Section 3.2,
we now consider a seemingly stronger assumption: between the two configurations given by a
query, there exists a collision-free path τ that achieves some clearance ξ between the robot and the
obstacles. More formally, let us parametrize τ by the arc length ` from the initial configuration
and let L designate the path’s total length, i.e., τ : ` ∈ [0, L] → τ(`) ∈ Cfree. We define ξ(`) to be
the Euclidean distance between τ(`) and the free space boundary, and ξinf to be inf`∈[0,L] ξ(`).

We consider a variant of the roadmap planner in which the preprocessing algorithm consists of the
first three steps of the algorithm given in Section 4.1. Unlike the planner of Section 3.2, it does not
include the resampling step. The query-processing algorithm is also simpler than in Section 3.2, in
that it only checks that the initial and goal configurations see milestones in the roadmap. If any one
of these connections fails, the query-processing algorithm returns no. Hence, this query-processing
algorithm is deterministic.

Under the path clearance assumption, any no outcome is incorrect. Let α be the probability that
we are willing to tolerate for this event. The following two theorems relate the size of the roadmap
to this probability, as well as to the two parameters of the assumption, that is, the length L of the
hypothesized path and its clearance. They give a performance guarantee for the whole planner.

Theorem 7 Let α ∈ (0, 1] be a positive real constant. Let a be the constant 2−nµ(B1)/µ(Cfree)
where B1 denotes the unit ball in R

n. If s is chosen such that:

2L

ξinf
(1− aξn

inf )s ≤ α, (1)

then the planner outputs yes with probability at least 1− α.

Note that, for any given L and ξinf , the quantity on the left side of the above inequality tends
toward zero when s → ∞. It is even more important to remark that it depends exponentially on
s, so that the number of milestones s needed grows no faster than the logarithm of 1/α.

The following theorem is similar to the previous one, but makes use of the clearance distribution
ξ(`) rather than just its infimum:

Theorem 8 Let α ∈ (0, 1] be a positive real constant. Let a be the same constant as in Theorem 7.

If s is chosen such that:

6

∫ L

0

(1− (a/2n)ξn(`))s

ξ(`)
d` ≤ α, (2)

then the planner outputs yes with probability at least 1− α.

Using the inequality 1− x ≤ e−x, for x ≥ 0, we get the following easier-to-use relations:

• The bound of Theorem 7 becomes:

2L

ξinf
exp(−aξn

infs) ≤ α. (3)
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Figure 1: Illustrative example

• The bound of Theorem 8 becomes:

6

∫ L

0

exp(−a2−nξn(`)s)

ξ(`)
d` ≤ α. (4)

Relation 3 implies that the number of milestones that the planner must generate to output yes

with probability at least 1− α is polynomial in 1/ξinf and logarithmic in L.

Remark that ξ(`) ≥ (1/2ρ) clearance(τ(`)), where ρ is the constant introduced in Section 2.
Indeed, for any q ∈ Cfree, let qc be the configuration in the free space boundary that achieves
minimum distance with q and let ξ(q) be this distance. We have: ξ(q) ≥ maxi |qi − qc

i |. By the
definition of ρ, all configurations q′ such that maxi |qi − q′i| ≤ clearance(q)/2ρ are in the free
space. Hence, clearance(q)/2ρ < maxi |qi − qc

i | ≤ ξ(q). Therefore, the bounds given above
remain valid if we choose to define ξ(`) as (1/2ρ) clearance(τ(`)), rather than as the distance
between τ(`) and the free space boundary.

4.3 Example

Consider the two-dimensional problem (n = 2) shown in Figure 1. This problem is parametrized by
ω. The walls are obstacles, but have zero thickness; hence, µ(Cfree) = 1. We are interested in the
order of magnitude of s when ω is small. Let x � y mean that x/K ≤ y ≤ Kx for some constant
K > 0. In particular, we have L � 1 and ξinf � ω.

Estimate of s using Theorem 1: The space in Figure 1 is ε-good for ε = 2ω2 (clearly, because
of the “box” on the left). In order to bound the probability that the query-processing algorithm of
section 4.1 outputs failure, while a collision-free path exists (Theorem 2), the roadmap must be
adequate. According to Theorem 1, this is achieved with high probability if:

s �
1

ω2
log

1

ω
. (5)
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Estimate of s using Theorem 7: Using (3) we can derive the following order of magnitude for
s that will make the planning algorithm of Section 4.2 to return yes with high probability [19]:

s �
1

ω2
log

1

ω
. (6)

Estimate of s using Theorem 8: The bound given by (4) leads to choosing (see [19]):

s �
1

ω2
log log

1

ω
. (7)

Comparison: Note that to answer queries with high probability it is necessary and sufficient in
this example to pick a bounded number of milestones in the box, which happens with probability
� ω2. Hence, a tight estimate of s is

s �
1

ω2
.

The estimates (5), (6), and (7) can be seen as the unavoidable quantity 1/ω2 times some factor.
By exploiting the fact that ξ(`) is small only briefly, we get a smaller factor in (7) than in (6).

5 Discussion

Between complete planners, which take prohibitive time to run in large dimensional configuration
spaces, and ad hoc planners, which are too unreliable, there exist planners that are reasonably
efficient while achieving some form of completeness. In this paper we have discussed a class of such
planners. These are based on a general computational scheme presented in Section 2, which consists
of randomly sampling the free space and checking pairs of sample configurations for adjacency. By
choosing an appropriate sampling strategy, this scheme can be turned into a concrete planner that
achieves probabilistic completeness. In Section 3 we have presented two examples of probabilistically
complete planners: the potential-field and the roadmap planners. In Section 4 we have analyzed in
more detail the probabilistic completeness of variants of the roadmap planner, under two different
assumptions: the visibility volume assumption and the path clearance assumption. In each case,
we have established a relation between the probability that the planner finds a path, when one
exists, and its running time (measured in that case by the number of milestones in the roadmap).
Both analyses show that the number of milestones needed grows only as the absolute value of the
logarithm of the probability of an incorrect answer that we are willing tolerate. Moreover, this
number is polynomial in the inverse of the parameter used to measure the goodness of free space
(ε in the first analysis, ξinf in the second).

How realistic and useful are our assumptions? Clearly, in most cases, there is no pratical way to
verify that they are satisfied. Furthermore, it is easy to create spaces that are ε-good for very small
values of ε, as well as spaces that are not ε-good for any positive value of ε. For instance, this is
the case of the space comprised between two circles C1 and C2 tangent at some point P , with C2

contained in C1. On the other hand, in many applications, we are willing to discard collision-free
paths if their clearance is too small, due to uncertainties in robot control and sensing. In those
cases, a planner that would return a path with high probability, whenever there exists one that has
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Figure 2: Robot arm example

enough clearance, would be quite satisfactory.10 Remark also that, if there exists a collision-free
path with a clearance greater than some given ξinf , this path must lie in a subset of Cfree that is
at least ε-good for an ε that can be derived11 from ξinf . Hence, the assumption of ε-goodness is
realistic as well: for any given value of ε, our analysis characterizes the probability that the planner
finds a path in the subset of Cfree that is ε-good.

But we think that much more could be done. In particular, neither of the two analyses we have
given considers the resampling step (Step 4) in the preprocessing algorithm of Section 3.2. On
the other hand, our experiments have shown that adding this step yields a much better roadmap
planner. In relation to this observation, we have empirically tested the free space corresponding to
the setting of Figure 2 (a seven-revolute-dof planar arm among several barriers forming multiple
gates) for ε-goodness. To do so we have picked 9,000 milestones at random and we have computed
how many other milestones each milestone can see. The milestones with the “most” visibility could
only see about 0.06 (i.e., 6%) of the remaining milestones, suggesting that they are 0.06-good. As
many as 3.3% of the milestones could see no other milestones, and fully 22% could see 0.001 (i.e.,
0.1%) or less; in other words, only about 78% of the configuration space is 0.001-good or better.
On the other hand, the implemented planner, which includes the resampling step, handles queries
in this setting with quasi-perfect reliability, after having constructed a roadmap containing 5,000 to
10,000 milestones. Other experiments confirm that the use of Resampling improves the coverage
of the free space by the milestones.

To explain the role of Resampling we introduce a generalization of the notion of ε-goodness. We
say that a free configuration q is (ε, 1)-good if µ(S(q)) ≥ εµ(Cfree), corresponding to our original
definition of ε-goodness for a configuration. Next, we say a free configuration q is (ε, t)-good if
µ({q′ ∈ S(q) | q′ is (ε, t− 1)-good}) ≥ µ(S(q))/2. For t > 1, we say that Cfree is (ε, t)-good if
µ({q ∈ Cfree|q is (ε, 1)-good}) ≥ µ(Cfree)/2 and every free configuration is (ε, i)-good for i ≤ t.
If Cfree is (ε, t)-good for a small value of t, we can give a theoretical basis for the resampling
strategy. The main idea is that single links discovered by the connector in the algorithms are now
simulated using t-link paths found by resampling and connecting using the connector. This leads to

10Note that the roadmap planner may nevertheless return a path with a smaller clearance.
11However, the bound derived from ξinf may be much smaller than the actual ε. E.g., if the free space is a rectangle

having very small width ξ, then ξinf ≤ ξ, but ε = 1.
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a generalized definition of an adequate set of milestones, and eventually to a version of Theorem 2
in which the number of invocations of the connector is larger by a factor of 2t. See [23] for more
detail.

We believe that future research should develop and analyze new sampling strategies, as well as
combinations of strategies, under various assumptions. In particular, it would be of particular
interest to investigate strategies suitable for single-query planning problems. In this case, instead
of spreading milestones all over the free space, one could expand a “cloud” of sample configurations
from the initial configuration toward the goal, or in both directions concurrently. This could be
achieved by iteratively generating configurations in small neighborhoods of previously generated
configurations, while keeping only those configurations which are in the same free space component
as the initial configuration. This strategy could use a function similar to a potential field as a
probability distribution to randomly choose which configurations to expand from at every iteration.
In the multi-query case, it would also be useful to consider the case where all queries are made in
the same component of Cfree and the preprocessing is given one configuration in that component.
The case where the volume of the free space is very small relative to the total volume of the
configuration space should also be investigated. We envision that ultimately randomized planners
will automatically select and combine sampling strategies from a library of basic strategies to closely
match the characteristics of the input problems. This sort of combination has already given good
results in another area, graphic rendering [46].

We did not discuss distance calculation in this paper, but it is a key computation in the context of
our sampling scheme. Indeed, our planners spend most of their time evaluating clearance. So,
any improvement of the time efficiency of the algorithm implementing clearance would translate
into a planning improvement of the same order of magnitude. One could also try to match the
distance calculation algorithm and the sampling strategy, to get the best global result. For exam-
ple, a sampling strategy generating configurations in small neighborhoods of previously generated
configurations could be combined with an incremental distance calculation algorithm such as the
one proposed in [32]. Such an algorithm uses the nearest points computed at the previous configu-
ration to quickly find the nearest points at the new configuration. As another example, the distance
calculation algorithm proposed in [39] (and used in our planners) precomputes data structures to
later accelerate the processing of distance calculation queries. Each such data structure is a binary
tree of spheres approximating a single rigid body. Given two bodies, a simple traversal of their
respective trees allows us to quickly detect collision or identify the nearest points between the two
bodies. A perhaps more efficient solution would be to create a single data structure for all the rigid
bodies forming the robot and to efficiently update this data structure when configuration parame-
ters vary (as proposed in [12]). Then the sampling strategy should try to generate configurations
in a sequence that minimizes update costs.

The random sampling scheme for path planning proposed in this paper offers many opportunities
for further research. We are confident that it can ultimately produce very fast planners able to
correctly handle a wide range of problems with high probability.
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Appendix: Selected Proofs

A. Proof of Theorem 1

Let M denote the set of the s randomly chosen milestones. The volume H of configurations not
visible from any of these milestones is:

µ({q ∈ Cfree |q 6∈ ∪m∈MS(m)}).

Its expected value is:

E[H] =

∫

q∈Cfree

Pr[q 6∈ ∪m∈MS(m)]dq.

The ε-goodness of the free space entails that the probability that any given configuration is not
visible from any of the s milestones is at most (1− ε)s. Thus:

E[H] ≤ µ(Cfree)(1 − ε)s ≤ µ(Cfree)εβ/2. (8)
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Given a random variable X assuming only non-negative values, the Markov inequality [34]:

Pr[X ≥ x] ≤ E[X]/x

holds for all x ∈ R
+. Using this inequality and the relation (8), we get:

Pr[H ≥ (ε/2)µ(Cfree)] ≤ β.

Hence, with probability 1− β, H is at most (ε/2)µ(Cfree), in which case M is adequate.

B. Proof of Theorem 2

Assume an adequate set of milestones. For any q ∈ Cfree, the volume of the subset of S(q) visible
from some milestone is at least:

µ(S(q))− (ε/2)µ(Cfree) ≥ (ε/2)µ(Cfree).

Therefore, for either query configuration qi (i ∈ {init, goal}), the probability that a random con-
figuration chosen from S(qi) is not visible from any milestone is at most 1/2. The probability that
query-processing fails to connect qi to a milestone on log(2/γ) trials at Step 1(b)i is thus less
than γ/2. Since Step1(b)i is performed for both query configurations, the overall failure probability
is at most γ.

C. Proof of Theorem 7

We assume the existence of a path τ : ` ∈ [0, L] 7→ τ(`) ∈ Cfree connecting qinit to qgoal, where `
stands for the arc length from qinit. For simplicity, let ξ (instead of ξinf ) designate the infimum of
the Euclidean distance between τ(`) and the free space boundary, when ` spans the interval [0, 1].
Given any two configurations q = τ(`) and q′ = τ(`′) on τ , let l(q,q′) denote the path length
|`− `′|.

Let Br(x) designate the ball of radius r centered at x ∈ R
n. We pick k = d2L/ξe configurations on

τ , denoted by q0 = qinit,q1, . . . ,qk = qgoal, such that l(qi,qi+1) ≤ ξ/2, for all i ∈ [0, k − 1]. We
have that:

Bξ/2(qi+1) ⊂ Bξ(qi).

For any two points pi ∈ Bξ/2(qi) and pi+1 ∈ Bξ/2(qi+1), the straight-line segment connecting pi

and pi+1 lies entirely in Cfree; indeed, the above relation implies that pi+1 also lies in Bξ(qi). So,
a sufficient condition for the query-processing algorithm to find a path is that each ball Bξ/2(qi),
i = 1, . . . , k − 1 contains at least one milestone. The probability that a ball of radius r lying
entirely in the free space contains none of the s milestones is (1− µ(Br)/µ(Cfree))

s. In R
n we have

µ(Br) = rnµ(B1). Therefore, the probability that the planner does not find a path is at most:

(

d
2L

ξ
e − 1

)

(

1−
µ(Bξ/2)

µ(Cfree)

)s

,

which is itself no greater than:

2L

ξ

(

1− 2−n µ(B1)

µ(Cfree)
ξn

)s

.
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Hence, choosing s such that the above quantity is at most α ∈ (0, 1] guarantees that the planner
will find a path with probability at least 1− α.
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Figure Captions

Figure 1: Illustrative example

Figure 2: Robot arm example

26


