
CAC and Packet Scheduling Using Token Bucket
for IEEE 802.16 Networks

Tzu-Chieh Tsai
Computer Science Department, National Chengchi University, Taipei, Taiwan, ROC

ttsai@cs.nccu.edu.tw

Chi-Hong Jiang and Chuang-Yin Wang
Computer Science Department, National Chengchi University, Taipei, Taiwan, ROC

{g9203, g9322}@cs.nccu.edu.tw

Abstract— The IEEE 802.16 standard was designed for
Wireless Metropolitan Area Network (WMAN). The
coverage of this new technology is expanded up to 50 km.
IEEE 802.16 also has inherent QoS mechanism while the
transmission rate can be up to 70Mbps. However, the main
part of 802.16 – packet scheduling, was not defined and left
as an open issue. In this paper, we present an uplink packet
scheduling with call admission control (CAC) mechanism
that is token bucket based. Also, a mathematical model of
characterizing traffic flows is proposed. Simulations are
carried out to validate our CAC algorithms and models.
These results show that the delay requirements of rtPS flows
are promised and the delay and loss can be predicted
p r e c i s e l y b y u s i n g o u r m a t h e m a t i c a l m o d e l s .

Index Terms—IEEE 802.16, WiMAX, Token Bucket,
Markov chain.

I. INTRODUCTION

Token bucket is a mechanism for controlling network
traffic rate that injected to network. It works well for the
“bursty” traffic. Two parameters are necessary in the
token bucket mechanism: bucket size B and token rate r.
Fig. 1 shows how it works. Each token represents a unit
of bytes or a packet data unit. A packet is not allowed to
be transmitted until it possesses a token. Therefore, over a
period of time t, the maximum data volume to be sent
will be

 . btr +*

We adopt the token bucket mechanism to schedule the
packets in 802.16 network environments.

802.16 is a new standard that aims at WMAN. The
members of IEEE 802.16 had finished the original 802.16
standard in 2001[1], and 802.16a, 802.16c in 2002, 2003,
respectively. In 2004, a new IEEE 802.16[2] standard
known as 802.16 REVd was published, which is a
revision of original 802.16, 802.16a, and 802.16c. In the
original IEEE 802.16, transmission is restricted to Line-
Of-Sight (LOS) but in the following standards, such as
802.16a and 802.16c, it can be Non-Line-Of-Sight
(NLOS)[3]. The bit rate of 802.16 is 32-134 Mbps at

28MHz
is typica

The M
Carrier S
(CSMA/
802.16 u
Division
Unlike 8
QoS sup
accordin
different

802.1
Howeve
detail a
defines
The othe

The r
Section
standard
Our call
models
Section
estimatio
Section

In 80
Station
Station (
802.16:
Polling
(nrtPS),

30 JOURNAL OF COMMUNICATIONS, VOL. 1, NO. 2, MAY 2006

© 2006 ACADEMY PUBLISHER
bucket size b

output

token rate r

packet queue

Figure 1. Token bucket mechanism.
channelization. The transmission range of 802.16
lly 4-6 miles.
AC part of 802.16 standard is not running under
ense Multiple Access with Collision Avoidance

CA) that was adopted by 802.11 standard.
ses Time Division Duplex (TDD) or Frequency
 Duplex (FDD) to access the medium resource.
02.11, the first 802.16 standard has it inherent
port, it divides all traffic flows into four classes
g to their application type and each class has
 priority.
6 uses packet scheduling to achieve QoS support.
r, there is no clear definition or implementation
bout the algorithm. The 802.16 standard only
the QoS parameters and some simple principles.
r parts are open issues left to vendors.

emainder of this paper is organized as follows. In
II, we make a description about the IEEE 802.16
 in detail. Section III includes some related work.
 admission control and uplink packet scheduling
are proposed and explained in Section IV and
V. In Section VI, we present the token rate
n model. Simulation results are shown in

VII. We conclude this paper in Section VIII.

II. IEEE 802.16

2.16, the client-side node is called Subscriber
(SS), and the server-side node is called Base
BS). And, there are four QoS classes defined in
Unsolicited Grant Service (UGS), real-time
Service (rtPS), non-real-time Polling Service
and Best Effort (BE). Table 1 shows these four

QoS classes, where the upper class has higher priority
than the lower ones. UGS packets are sent at a regular
rate without the grant of each packet, so its delay
requirement can be easily met. The nrtPS and BE traffic
are non-real-time traffics, neither of them has delay
requirements. Only rtPS flows, which is polled by BS in
each frame, has the delay requirement.

Traffic flows in 802.16 are treated as connections. A
traffic flow must establish connection with its BS before
transmitting. The operation process of 802.16 is shown in
Fig. 2[4][5]. The blocks drawn with dotted line in Fig. 2
are the parts undefined in 802.16. The traffic policing
model can be simply achieved by applying token bucket
mechanism[4].

The 802.16 standard divides transmission time into
super frames and each super frame is divided into a
downlink sub-frame and an uplink sub-frame. Downlink
means the direction of transmission is from BS to SS, and
the uplink means the direction is reversed. The downlink
scheduling is considered simple because there is only one
sender, BS. Hence we focus on the uplink scheduling.

After a BS accepts a new connection, BS will poll this
new connection and give the SS the opportunities of
sending its BW requests. This connection should send its
bandwidth request (BW request) to the BS and wait for
receiving BW grants (i.e. time slots for transmitting data)
from BS. In this paper, we use the architecture in [4]: a
connection sends its queue length as a BW request. The
grants are the result of the uplink packet scheduling at BS
and will be included in uplink MAP (UL-MAP) field in
the downlink sub-frame. The 802.16 frame structure is
depicted in Fig. 3.

The BW request contention period is designed for the
lower priority classes, such as nrtPS and BE. The period
lets these classes content for the opportunities of sending
BW requests when system is too busy to poll all flows.

TABLE I.
802.16 QOS CLASSE

Class Name Traffic Type

UGS Real-time CBR

rtPS Real-time VBR

nrtPS Non-real-time traffic

Best Effort Non-real-time traffic

III. RELATED WORK

Kitt
uplink
overall
The U
has the
be serv
UGS c
applied
rtPS c
schedu
service
nrtPS
(ratio b
and to
bandw
Arriva
paper.
packet
has hig

Seve
schedu
Chi C
schedu
Their s
second
bounds
pattern
derivat
(MBTS
approp
and ac

Moh
hybrid
priority
in upli
size o
accord

Cha
consid
Katzir
the ban
synchr
propos
schedu

Som
token b
and Ts
approa
In [10

JOURNAL OF COMMUNICATIONS, VOL. 1, NO. 2, MAY 2006 31

© 2006 ACADEMY PUBLISHER
Super
frame

Super
frame

Super
frame

˙˙˙

Downlink
sub-frame

Uplink
sub-frame

DL-
MAP

UL-
MAP

Data
BW request
Contention

SS 1
data

SS 2
data ˙˙˙

SS n
data

Figure 3. 802.16 frame structure.
i Wongthavarawat, and Aura Ganz [4] proposed an
packet scheduling mechanism with CAC. The

 bandwidth is allocated according to strict priority.
GS class has the highest priority, and the BE class
 lowest priority. The class of higher priority will
ed earlier than the lower one. The scheduling of
lass is defined by the 802.16 standard. They
 earliest deadline first (EDF) service discipline to
lass. Packets with earliest deadline will be
led first. They applied weight fair queue (WFQ)
 discipline to this service flow. They schedule
packets based on the weight of the connection
etween the connection’s nrtPS average data rate
tal nrtPS average data rates). The remaining
idth is equally allocated to each BE connection.
l-service curve mechanism was adopted in this
 They make use of it to predict the deadline of rtPS
s. They also proposed a CAC model. This paper is
h contribution and serves as our primary reference.
ral researches have proposed similar packet
ling methods. Xiaojun Xiao, Winston K.G. Seah,
hung Ko, and Yong Huat Chew [6] proposes a
ling with hybrid and hierarchical architecture.
olution designed a primary scheduler in BS and a
ary scheduler in SS. The authors analyze the
 of token rate and bucket size of a given traffic
. They presented some algorithms that are
ions of measurement-based traffic specification
). Our method is different from theirs. We find

riate token rate by analyzing Markov Chain state
cording to delay requirements of connections.
ammed Hawa, and David W. Petr [7] proposes a

 mechanism of weighted fair queue (WFQ) and
 queue. Allocating the BW-request contention size

nk sub-frame is also discussed in this paper. The
f BW-request contention period was determined
ing to the amount of transmitting data.
nnel condition and some other factors were
ered in [8]. In this paper, Reuven Cohen and Liran
proposed a policy-based scheduling to maximize
dwidth utilization. According to different load of

onous, channel condition, and tolerated jitter, they
ed some different scenarios. Each scenario has its
ler tasks.
e research about characterizing a traffic flow by
ucket had been done such as [9]. Puqi Perry Tang

ung-Yuan Charles Tai use the measurement-based
ches to find appropriate token rate and bucket size.
], Tarkan Taralp, Michael Devetsikiotis, and
SS BS

Traffic flows

Traffic Policing

Packet Queues

Schedulor

Call
Admission

Control

Uplink
Scheduling

Create
Connection

Accept

BW-Request

Grant BW

Send Data

Figure 2 802.16 operation process.
S

Application

Voice over IP

Real-time Video

FTP

HTTP

t t+f t+2f t+3f t+4f t+5f t+6f t+7f t+8f

bi

=3fdi =3fdi

r fi r fi r fi r fir fir fi

Figure 4. A transmission of an rtPS connection that lasts for 6
frames.

t t+f t+2f t+3f t+4f t+5f t+6f t+7f t+8f

b /2i

=3d /fi

r fi r fi r fi r fir fir fi

b /2i

=3d /fi

Figure 5. Sharing bi packets in two frames.

Ioannis Lambadaris analyzed traffic flows with different
types of arrival and infinite queue

IV. CALL ADMISSION CONTROL

Our CAC is based on the estimation of bandwidth
usage of each traffic class, while the delay requirement of
rtPS flows shall be met.

A. Naïve Estimation of Bandwidth
Assume that each connection is controlled by two

token bucket parameters: token rate ri (bps) and bucket
size bi (bits). And let f be the frame length, n be the
session length of this connection. According to token
bucket mechanism, the maximum data of this rtPS
connection will be:

 . (1) ii bfnr +**

The bandwidth used at any frame can be estimated by
dividing n*f in (1) as:

fn

br i
i *
+ . (2)

Using (2) as a metric of CAC, bandwidth will be
enough for a connection at all time. However, for rtPS
flows, delay requirement is not considered here.
Therefore, a new parameter di as delay requirement of an
rtPS flow is required. Using ri, bi and di, we shall develop
a better estimation of bandwidth for a rtPS connection.

B. An Example
If an rtPS connection has a session from time t to t+6f,

(which means n=6), the maximum size should be sent
during each frame is shown in Fig. 4. The gray blocks
represent the maximum size to be sent during that frame.
And let delay requirement of this connection di=3*f.

Therefore, data arrived during frame [t, t+f] must be
sent out during frame [t+2f, t+3f] at latest. We know that
during a frame f, this connection will send data of rif+bi
bits at most. If data generating rate is bigger than ri, bi is
consuming. In the extreme case this connection may run
out of bi at a certain frame. Assume that bi is totally
consumed during frame [t+2f, t+3f], as Fig. 4, this
situation makes the maximum size should be sent out
during frame[t+4f, t+5f] to be rif+bi bits. In Fig. 4, the bi
comes from the frame [t+2f, t+3f]. So only the frame
[t+3f, t+4f] can share the bi bits of the frame [t+4f, t+5f].
Fig. 5 shows the result.

Hence, we estimate the data volume to be transmitted
within a time frame as:

2

* i
i

bfr + .

Therefore, the bandwidth used within a time frame can
be estimated as:

f

br i
i *2
+ .

C. Our Bandwidth Estimation
Let n and f still be the session duration and frame

length respectively. When a traffic flow wants to
establish a connection with BS, it sends parameters ri,
and bi to the BS and waits for the responses from BS. An
extra parameter, delay requirement di, will be sent by
rtPS flows.

In order to meet delay requirement of rtPS packets,
packets generated at time t must start to send after mi-1
frames after t, where

 ⎥
⎦

⎥
⎢
⎣

⎢
=

f
dm i

i .

If data rate is bigger than token rate, tokens in token
bucket will be consumed. These bi bits can be shared by
mi-1 frames before deadline.

Therefore, our estimation of the data volume in a time
frame is:

1−

+
i

i
i m

dfr .

And, the bandwidth of the flow is estimated as:

fm

dr
i

i
i *)1(−
+ . (3)

D. Call Admission Control
Let NrtPS be the number of rtPS connections, Bdemand be

the bandwidth required by all rtPS connections, we can
know that Bdemand can be calculated as:

 ∑ −
+=

rtPSN

i i

i
idemand fm

drB)
*)1(

(. (4)

32 JOURNAL OF COMMUNICATIONS, VOL. 1, NO. 2, MAY 2006

© 2006 ACADEMY PUBLISHER

In order to avoid starvation of some traffic classes, we
set a threshold of bandwidth used for each class. They are:
TUGS, TrtPS, TnrtPS and TBE, TUGS+TrtPS+TnrtPS+TBE≦Buplink,
where Buplink is the total bandwidth of uplink. When the
bandwidth occupied by a class is over its threshold, this
class will have lower priority to the bandwidth resource.

The principle of our CAC algorithm is: First, system
calculates the current available bandwidth. Second, for
new incoming flows, system estimates the bandwidth it
will take and the system will decide to grant this new
flow or not. For rtPS flow, (3) is used to estimate its
bandwidth; for the other three flows, ri , the token rate,
will be used to estimate bandwidth. Our CAC algorithm
is as follows:

Step 1. Calculate the remaining uplink bandwidth

Bremain: Bremain=Buplink-BUGS-BrtPS-BnrtPS-BBE .
Step 2. Compare Bremain to the bandwidth requirement

of the new connection. If there is enough capacity, the
system accepts the incoming flow. If not, go to Step 3.

Step 3. Check if the lower-class flows has taken more
bandwidth than its threshold (TrtPS, TnrtPS ,or TBE). If not,
go to Step 4. If there is, the system will allocate the less
time slots for these lower-class flows, then go to step 2.

Step 4. Check if higher-class flows has has taken more
bandwidth than its threshold (TrtPS, TnrtPS ,or TBE). If not,
go to Step 5. If there is, the system will choose some
higher-class flows to degrade their ri. That is, “stealing”
bandwidth from the upper-class flows.

Step 5. The system denies the incoming flow.

Stealing bandwidth from upper class may be an issue.

Stealing bandwidth from BE and nrtPS flows is relatively
simple. We can easily decrease the bandwidth used by
them because of they are not real-time flows. To steal
bandwidth from the other two real-time classes, we will
choose some connections of these two classes and
degrade their ri, e.g. make ri to be c․ri, where 0＜c＜1.

V. UPLINK PACKET SCHEDULING

In our uplink packet scheduling algorithm, We adopt
Earliest Deadline First (EDF) mechanism proposed in [4].
There is a database that records the number of packets
that need to be sent during each frame of every rtPS
connection. Our uplink packet scheduling algorithm is
described below.

Step 1. Apply the arrival-service curve and database
mentioned in section III and [4] to the arriving packets
during last frame of each rtPS connection. Calculate the
deadlines of these packets by applying (3) and record
them in the database.

Step 2. Grant all the UGS connections.
Step 3. Grant all the rtPS connections according to the

rtPS database. Due to possible degradation of ri, we
should restrict the maximum grant size of a connection to
(4).

Step 4. Assume that the total bandwidth requirements
of nrtPS connections and BE connections are RnrtPS and
RBE. We allocate Min(RnrtPS, TnrtPS) bandwidth to nrtPS

connections first. Then allocate Min(RBE, TBE) bandwidth
to BE flows. The TnrtPS and TBE are threshold parameters
mentioned in the last section.

Step 5. If there is remaining bandwidth, we check if
RnrtPS＞TnrtPS. If it is, nrtPS connections shall be granted
with Min(remaining bandwidth, RnrtPS-TnrtPS) bandwidth.
Also, If there is remainder bandwidth, we look if RBE＞

TBE. If it is, we grant Min(remainder bandwidth, RBE-BBE)
to BE flows.

Step 6. If there is remaining bandwidth and there are
some non-real-time connections that need BW-request
contention opportunities, we allocate the remainder
bandwidth to nrtPS and BE connections in order for BW-
request contention periods.

VI. TOKEN RATE ESTIMATION MODEL

We have presented our CAC and uplink packet
scheduling model in previous sections. Each connection
in our scenario is controlled by token rate ri and bucket
size, bi. The CAC and uplink packet scheduling are also
based on the token bucket mechanism. However, not
every traffic flow has a token rate parameter and bucket
size parameter originally. In this section, we proposed a
mathematical model to estimate the appropriate token rate
of a traffic flow based on the queuing delay and loss rate
requirements. We assume that the arrival of the traffic
flow is Poisson. The cases of infinite queue and finite
queue are analyzed. Both cases are single server and
single queue ,because each traffic flow has its individual
token rate and bucket size.

First, we show how to calculate the queuing delay
when the queue size is infinite, when the token rate and
bucket size are given. Second, we show how to calculate
the queuing delay and loss rate when the queue size is
finite, given the token rate and bucket size. At last, we
show a simple search algorithm for finding the adaptive
token rate of a traffic flow, given the queuing delay
requirement, and the loss rate requirement.

A. Infinite Queue
Assume that there is a traffic flow with Poisson arrival,

where λi is the mean arrival rate. ri and bi represents the
token rate and bucket size of this traffic flow.

Markov Chain is adopted to analyze the problem. We
use discrete time Markov Chain. Each Markov Chain
state is defined as State(t, p) where t represents the
number of tokens stocked in the bucket and p represents
the number of packets that stay in the queue. The time
interval between two Markov Chain states is 1/ ri, that is,
the time of generating a token. Hence we can find the
probability P of n packets that arrive during the time
interval 1/ri is:

!

)(
n
enP

n αα −⋅
= , where

i

i

r
λα = .

Because the time interval of our Markov Chain model
is 1/ ri, there is at least one token generated when packets
arrival. We take the State(bi, 0) as the beginning state of
our Markov Chain. The transitions of State(bi, 0) are

JOURNAL OF COMMUNICATIONS, VOL. 1, NO. 2, MAY 2006 33

© 2006 ACADEMY PUBLISHER

shown in Fig. 6. The transitions of other states are all the
similar. They are shown in Fig. 7. We take State(t, 0) as
an example, which is a brief view of general case.

Assume state(t, p) is denoted by π(bi-t+p) and let

 . ∑
∞

=

=
2

)(
i

iPM

We can list balance equations as follows.

)1()0()0(ππ ⋅=⋅ PM . (5)

And for n≧1, we have:

()

∑
−

=

⋅++−+⋅

=+⋅
1

0
)0()1()1()(

)0()(
n

k
PnknPk

MPn

ππ

π
 . (6)

Assume the Z-transform of Poisson and [π(0), π(1),
π(2)…] is Gp(z) and Gπ(z). Then apply Z-transform to (6)
and simplify it. And then using (5), we can get

)(

)1()0()0()(
zGz
zPzG

P−
−⋅⋅

=
π

π . (7)

And, we know:

 . (8) 1)(lim
1

=
→

zG
z π

Use (7) and (8), we find that:

 α
λπ −⋅

−
=

er
r

i

ii)0(, where
i

i

r
λα = . (9)

To find [π(0), π(1), π(2)…], we should make use of (5)
to find π(1) first. After we know π(0) and π(1), we can
utilize (6), π(0) and π(1) to find π(2). Continue this
process we can find any π(n). The average queuing delay
davg can be expressed as

M/D/1/

avg

dbucket) in the token no P(see
0bucket) in the token P(seed

⋅
+⋅= . (10)

where dM/D/1 is the mean delay of a M/D/1 queue and

its value[8] is

)(2

2

iii

ii

rr
r

λ
λ
−
− , given ri＞λi. (11)

And,

 . (12)
∑
=

=
1-b

0k

i

(k)-1

bucket) in the token no P(see

π

Substitute dM/D/1 and P(see no token in the bucket) in
(10) for (11) and (12) we can calculate the average delay
of this flow if we give the parameters ri and bi

B. Finite Queue
Now we consider the case of finite queue with queue

size q. This traffic flow has an extra parameter lq, which
means its loss rate requirement. We still use Markov
Chain to solve this case, but the number of states become
limited, e.g. [π(0), π(1), …, π(bi+q-1)]. The transitions of
states are the same as previous case except the last one.
The transitions of the last state, State(0, q-1), are shown
in Fig. 8

The balance equations are listed below.

 ())0()1()1()0(1)0(PPP ⋅=−−⋅ ππ . (13)

For bi+q-2≧n≧1,

()

()∑
−

=

⋅++−+⋅

=−⋅
1

0
)0()1()1()(

)1(1)(
n

k
PnknPk

Pn

ππ

π
 . (14)

There is no clear mathematic solution for the equations
above found by us, so a recursion method was introduced.
We can find all π(n) very fast by means of computer. The
average queuing delay can be expressed as

i

qb

k kbMaxj
i

avg

r

NqbkjMinjPk

d

i

i

∑ ∑
−+

=

∞

+−=
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−+⋅

=

1

0)0,1(
),()()(π

 (15)

t-1,0 t,0 t+1,0
P(0)

P(2) P(2)

P(0)

˙˙˙

P(3)

P(4)

P(5)

˙

˙

˙

t-2,0

P(2)

P(0)

t+2,0
P(0)

P(2)

P(3)

P(4)

P(5)

˙˙˙

˙

˙

˙

P(1)P(1) P(1) P(1) P(1)

b ,0i

P(0)+P(1)

b -1,0i b -2,0i

P(0)

P(2) P(2)

P(0)

P(3)

P(4)

P(5)

˙

˙

˙

˙˙˙

P(1) P(1)

,where N=0.5 if j=0; N=0, otherwise. The average loss
rate can be expressed as

ii

qb

k kqbj
i

avg

r

qbkjjPk

l

i

i

/

)()()(
1

0 1

λ

π∑ ∑
−+

=

∞

+−+=
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−+⋅

=

 .(16)
Figure 6. The transitions of State(bi, 0).

After we solve [π(0), π(1), …, π(bi+q-1)], we can
estimate the average queuing delay and average loss rate
by equations above. Given a reasonable bi to the traffic
flow, we can use a simple search algorithm to find
appropriate ri according to its dq and lq. We can put this

Figure 7. The transitions of other Markov Chain states.

34 JOURNAL OF COMMUNICATIONS, VOL. 1, NO. 2, MAY 2006

© 2006 ACADEMY PUBLISHER

model in the SS. When a new traffic flow comes, SS can
use this model so as to find appropriate ri, then the BS
can schedule according this ri.

0

10

20

30

40

50

100 200 400 800 1600

number of rtPS calls

av
g
de
la
y
(m
s)

method 1

method 2

Figure 8. Avg. delay vs. number of rtPS calls.

C. A Simple Search Algorithm
Assume that a Poisson arrival traffic flow with three

parameters: mean arrival rate, λ i, queuing delay
requirement, dreq, and loss rate requirement, lreq. If we
give it a reasonable value of bucket size, bi, we can find
the appropriate token rate, ri, for it by applying a simple
search algorithm.

In the algorithm a factor a is can be assigned a value
between 0 and 1 by the network operator. The factor a
represents the degree of finding the appropriate token rate.
The small a makes better result than large one but longer
time for finding than larger a. In other words, the smaller
the a, the closer to optimal value of token rate can be
found. The algorithm works as follows:

Step 1. Set a reasonable initial value to ri. Check if the

dreq and lreq are satisfied by applying (15) and (16). If
satisfied, go to Step 2. Else go to Step 3.

Step 2. Set ri‧(1-a) to ri,new. Check if the dreq and lreq
are satisfied by applying (15) and (16). If satisfied, set
ri,new to ri and repeat this step. Else we take ri as the
answer.

Step 3. Set ri‧(1+a) to ri,new. Check if the dreq and lreq
are satisfied by applying (15) and (16). If not satisfied,
set ri,new to ri and repeat this step. Else we take ri as the
answer.

VII. SIMULATION RESULTS

We show the simulation results in this section. We
validate our CAC and uplink packet scheduling first.
Then the simulation results about our delay and loss rate
calculation model are shown. Finally we briefly describe
the multiplexing of two Poisson traffic flows.

0

5

10

15

20

100 200 400 800 1600

number of rtPS calls

av
g
th
ro
ug
hp
ut
 (
10
6
bp
s)

UGS

rtPS

nrtPS

BE

Figure 9. Avg. throughput of each class in method 1.

A. CAC and Uplink Packet Scheduling
Two methods of CAC and uplink packet scheduling

are compared here. Method 2 was proposed in [4] and
method 1 was proposed by us.

0

5

10

15

20

25

30

100 200 400 800 1600

number of rtPS calls

av
g
th
ro
ug
hp
ut
 (
10
6
bp
s)

UGS

rtPS

nrtPS

BE

Figure 10. Avg. throughput of each class in method 2.

The parameters of four classes are listed in Table II.
The begin time of each flow is Poisson distribution. All
flows send data during each frame in full speed. Frame
duration f is 1ms and simulation time is 150ms. The
capacity of uplink is 37.5 Mbps. The queue size is infinite.
The size of BW-request is 48 bits. rtPS connections send
BW-requests on a per-frame basis. There are 100 flows of

UGS, nrtPS, and BE. Each connection has random
beginning time and does not terminate. For the purpose of
making the effect of CAC and uplink packet scheduling
obvious, all connections send data in full speed.

From Fig. 8 we can find that the average delay of rtPS
used by our method is almost constant no matter how
many rtPS calls exist. Fig. 9 and Fig. 10 show that the
average throughput of each class by applying method 1
and method 2. From Figure 9, we can find that the
average throughput of UGS connections is almost zero.
That is starvation of UGS connections by applying
method 2. However, there is no starvation when applying
our method. Although we set a threshold parameter for
each class, but the UGS did not reach its threshold when
the numbers of rtPS connections are 200, 400, 800, and
1600. The reason is that too many rtPS connections
occupy the bandwidth first. In Fig. 11, our method
performs better in call acceptance ratio. Our method can
receive more rtPS calls and guarantee their delay
requirements.

TABLE II.
SIMULATION PARAMETERS

 ri (kbps) bi (bits) dreq(ms) Packet
Size(bits)

UGS 192 64 - 64

rtPS 640 15k 20 256

nrtPS 2000 15k - 256

Best
Effort 512 8k - 128

JOURNAL OF COMMUNICATIONS, VOL. 1, NO. 2, MAY 2006 35

© 2006 ACADEMY PUBLISHER

0

50

100

150

200

250

64
10
24

64
30
72

65
00
00

67
00
00

69
00
00

token rate (bps)

av
g
qu
eu
in
g
de
la
y
(m
s)

Simulation

Math

Figure 12. Avg. queuing delay vs token rate.

0

5

10

15

20

10
0
20
0
40
0
80
0
16
00

number of rtPS calls

ac
ce
pt
an
ce
 r
at
io
 o
f
rt
P
S
 c
al
ls

(%
) method 1

method 2

Figure 11. Acceptance ratio of rtPS call vs number of rtPS calls.

B. Delay and Loss Estimation

0

5

10

15

20

25

30

20
00
00

30
00
00

40
00
00

50
00
00

60
00
00

70
00
00

token rate (bps)

av
g
de
la
y
(m
s)

Simulation

Math

Figure 13. Avg. delay vs token rate.

Assume a traffic flow with Poisson arrival and its
simulation parameters are listed in Table III.The
simulation time is (ms. Fig. 12
shows that the average queuing delay obtained by
simulation and our calculation model given different
token rates. We can see that the results of simulation and
our calculation model are very close. This means our
model is precise.

) 71 10rate arrivalmean ×−

Then we show the result of finite queue case. The
parameters of the simulation are all the same as infinite
queue case except an extra parameter, queue size. The
queue size is 5120 bits. Fig. 13 shows the average delay
obtained by simulation and our calculation model given
different token rates. Figure 14 shows the average loss
rate obtained by simulation and our calculation model
given different token rates. From them we can find both
queuing delay and loss rate are very close between the
simulation and our calculation model. The error
percentage of queuing delay is 5.1% at most. This proves
that our models are correct and precise.

C.Multiplexing
Assume there are n Poisson rtPS connections [c1, c2, …,

cn] whose mean arrival rate are [λ1, λ2, …, λn]. If we
give these n connections the same bucket size b and they
have the same delay and loss requirements, which are d
and l, we can find the appropriate token rates [r1, r2, …, rn]
by applying the same simple search algorithm. Now we
assume there is a Poisson rtPS connection csum whose
mean arrival rate is λ1+λ2…+λn and has the same
delay and loss requirement as those of n connections.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

20
00
00

30
00
00

40
00
00

50
00
00

60
00
00

70
00
00

token rate (bps)

av
g
lo
ss
 r
at
e

Simulation

Math

Figure 14. Avg. loss rate vs token rate.

The Poisson connection has the property that the mean
arrival rate of combining two connections with mean
arrival rate λ1 andλ2 respectively is λ1+λ2. Hence we

can see csum as the aggregation of [c1, c2, …, cn]. If we
also give this connection bucket size b and apply the
simple search algorithm, we can find that the appropriate
token rate of this flow is r1+r2+…+rn.

The results shown above means: if there are n Poisson
rtPS connections whose delay and loss rate requirements
are all the same and we give a reasonable value of bucket
size, b, to them, the total token rate they need is the sum
of their individual token rate, but the total bucket size
they need is only b. Our bandwidth reservation for rtPS
connections heavily depends on their bucket size. For the
n traffic flows mentioned above,

1−
+⎟
⎠

⎞
⎜
⎝

⎛∑ m
bfr

n

i
i

 need to

be reserved for these n flows instead of ∑ ⎟
⎠
⎞

⎜
⎝
⎛

−
+

n

i
i m

bfr
1

,

where f
dm = .

Less bandwidth can be reserved through multiplexing

TABLE III.
SIMULATION PARAMETERS

Parameter Value

Mean Arrival Rate(kbps) 640

Bucket Size (bits) 5120

Packet Size (bits) 512

Queue Size (bits) 5120

36 JOURNAL OF COMMUNICATIONS, VOL. 1, NO. 2, MAY 2006

© 2006 ACADEMY PUBLISHER

when we make reservation for rtPS connections.

VIII. CONCLUSION

In this paper we proposed a QoS-supported uplink
packet scheduling and CAC mechanisms. Bandwidth
needed by real-time flows can be correctly reserved while
promising their delay requirements. We also proposed a
model to convert Poisson traffic flow into token bucket-
based connection. Multiplexing was also mentioned and
evaluated in this paper. In the future, how to integrate
CAC and uplink scheduling with token rate estimation
model may be another issue we will concern.

REFERENCES

[1] IEEE, “IEEE Standard for Local and metropolitan area
networks Part 16: Air Interface for Fixed Broadband
Wireless Access Systems”, IEEE standard, December
2001.

[2] IEEE, “IEEE Standard for Local and metropolitan area
networks Part 16: Air Interface for Fixed Broadband
Wireless Access Systems”, IEEE standard, October 2004

[3] Carl Eklund, Roger B. Marks, Kenneth L. Stanwood and
Stanley Wang, “IEEE standard 802.16: A technical
overview of the wirelessMAN air interface for broadband
wireless access”, IEEE Communications Magazine, vol. 40,
no. 6, June 2002, pp. 98 – 107

[4] Kitti Wongthavarawat, and Aura Ganz, “Packet scheduling
for QoS support in IEEE 802.16 broadband wireless
access systems”, International Journal of Communication
Systems, vol. 16, issue 1, February 2003, pp. 81-96.

[5] Dong-Hoon Cho, Jung-Hoon Song, Min-Su Kim, and Ki-
Jun Han, “Performance Analysis of the IEEE 802.16
Wireless Metropolitan Area Network”, IEEE Computer
Society, DFMA’05, February 2005, pp. 130-137.

[6] Xiaojun XIAO, Winston K.G. SEAH, Chi Chung KO, and
Yong Huat CHEW, “Upstream Resource Reservation and
Scheduling Strategies for Hybrid Fiber/Coaxial Networks”,
APCC/OECC'99, vol. 2, October 1999, pp. 1163-1169

[7] Mohammed Hawa, and David W. Petr, “Quality of Service
Scheduling in Cable and Broadband Wireless Access
Systems”, Quality of Service, 2002. Tenth IEEE
International Workshop, May 2002, pp. 247-255

[8] Reuven Cohen and Liran Katzir, “A generic quantitative
approach to the scheduling of synchronous packets in a
shared medium wireless access network”, IEEE
INFOCOM 2004 - The Conference on Computer
Communications, vol. 23, no. 1, March 2004, pp. 1674 –
1684

[9] Puqi Perry Tang and Tsung-Yuan Charles Tai, “Network
traffic characterization using token bucket model”, IEEE
INFOCOM 1999 - The Conference on Computer
Communications, no. 1, March 1999, pp. 51 – 62.

[10] Tarkan Taralp, Michael Devetsikiotis, and Ioannis
Lambadaris, “Traffic Characterization for QoS
Provisioning in High-Speed Networks”, IEEE Computer
Society, Thirty-First Annual Hawaii International
Conference on System Sciences-Volume 7, January 1998,
pp. 485.

[11] Kleinrock L., “Queueing Systems. Volume I: Theory”,
John Wiley, New York, 1975.

Tzu-Chieh Tsai was born in Tainan, Taiwan, R.O.C. He
received his BS and MS degrees both in Electrical Engineering
from National Taiwan University in 1988, and from University
of Southern California in 1991, respectively. After that, he
joined University of California, at Los Angeles in 1991. He got
a PhD degree in Computer Science at UCLA in 1996.

His major research area includes IEEE 802.16, WLAN &
QoS, mobile internet and QoS, pricing network, wireless sensor
networks, wireless mesh networks, etc. Currently, he is an
associate professor and chair in Computer Science Department
at National Cheng-Chi University, Taipei, Taiwan.

Chi-Hong Jiang was born in Taipei, Taiwan. He receives his
BS and MS degree in Computer Science Department at National
Cheng-Chi University, Taipei, Taiwan at the year of 2003 and
2005, respectively. His main research interest is 802.16 MAC
protocols and the integration of IEEE 802.16/802.11. He is now
an software engineer at the Syscom group in Taipei.

Chuang-Yin Wang was born in Taipei, Taiwan. He is now a
graduate student at Mobile Computing LAB1 in Computer
Science department of National Cheng-Chi University. He
receives BS degree in National Sun Yat-Sen University in the
year of 2003. During his study toward the field, he has well
developed the research interests upon 802.16 mesh networks.
And some other research interests include the Mobile Ad-hoc
networks, 802.16 MAC protocols.

JOURNAL OF COMMUNICATIONS, VOL. 1, NO. 2, MAY 2006 37

© 2006 ACADEMY PUBLISHER

	jcm01022229.pdf
	jcm01022229.pdf
	I. Introduction
	II. RELATED WORK
	III. The T-ANT Protocol
	A. The Clustering Algorithm
	B. The Variance Estimation Algorithm
	IV. Simulation Framework
	V. Results and Discussions
	VI. Conclusions
	Acknowledgment
	References

	jcm01023037.pdf
	Introduction
	IEEE 802.16
	Related Work
	Call Admission Control
	A. Naïve Estimation of Bandwidth
	B. An Example
	C. Our Bandwidth Estimation
	D. Call Admission Control
	Uplink Packet Scheduling
	Token Rate Estimation Model

	A. Infinite Queue
	B. Finite Queue
	C. A Simple Search Algorithm
	Simulation Results

	A. CAC and Uplink Packet Scheduling
	B. Delay and Loss Estimation
	C.Multiplexing
	Conclusion
	References

