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Abstract

Because the traditional number-right scoring method cannot solve problems such as
guessing and partial knowledge, searching for theoretically rigorous and more precisely
estimating methods in measuring examinees’ abilities are emergent. Latent trait theory
or item response theory developed in modern test theory is the one that we need.
This paper proposes a Rasch-type logistic model, partial credit model, to compensate
for the defect of the traditional scoring method. An easier procedure, PROX, is
used to illustrate how to assess item calibrations and person measures. Several
applications and potential weaknesses of the partial credit model are briefly discussed.
A future research is mentioned too.
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I. Introduction

With the increased use of computers in scoring students’ or examinees’ tests,
educators’ and psychologists’ interests have come to be focused on developing more
theoretically rigorous models and more precisely estimating methods in describing
the ability or aptitude measures and the characteristics of test items. The development
of item response theory (IRT) in the mental test literature reflects this trend and
this importance (Hambleton & Cook, 1977; Hambleton, Swaminathan, Cook, Eignor,
& Gifford, 1978; Hambleton & van der Linden, 1982; Traub & Lam, 1985).

Typically, the traditional number-right scoring method is used to estimate
examinees’ abilities or aptitudes. The sum of the correct responses on a given test
is representative of an examinee’s ability or aptitude. In fact, this method scores
the multiple-choice tests with unit weights given to correct response choices (e.g.,
score as one) and with constant weights assigned to incorrect response choices (e.g.,
score as zero). This scoring mothod, however, cannot give a satisfactory estimate
of an examinee’s ability measures. On the contrary, it has at least two drawbacks
in describing an examinee’s ability measures: (a) It does not avoid the ‘‘guessing’’
problem which usually occurs in the lower ability examinees or in the extremely
difficult items; (b) It cannot tell apart the examinees who really do not know the
answers and are guessing wrong, from the examinees who know partially about the
answers and are guessing wrong too. The latter question is usually termed the “‘partial
knowledge’ problem (Coombs, Milholland, & Womer, 1956; Dressel & Schmid,
1953; Lyerly, 1951). Partial knowledge, although not presenting full information about
an examinee’s complete ability, represents the partial result of instruction and learning.
Its presence requires a more precisely estimating method to be used. Consequently,
several alternative scoring methods have been proposed to compensate for the drawback
of this scoring method.

The common use of remedies for the former drawback in the number-right
scoring method is the formula score (Coombs et al., 1956; Glass & Wiley, 1964,
Lord, 1963, 1964, 1975) or the correction for gueséing (Cureton, 1966; Davis, 1959,
1967, Diamond & Evans, 1973; Jackson, 1955; Little, 1962; Lyerly, 1951; Sax &
Collet, 1968; Stanley & Wang, 1968, Wang & Stanley, 1970). The correction for
guessing uses the following formula:

W

S$=R - ——o 1.
1 (1.1.1)

where S is an examinee’s corrected score for guessing,
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R is the number of items answered right,
W is the number of items answered wrong,
K is the number of choices for each item.

This equation is based on an assumption that all wrong answers are guessed wrong
and that all correct answers are obtained either by *‘full’’ knowledge or by *‘lucky”’
guessing The presence of omitted responses and partial knowledge is not taken into
account. Obviously, this equation cannot give us any information about examinees’
ability measures which are intermediate in scoring correct and scoring wrong items.
Thus, this problem invites alternatives to the number-right scoring method.

Some alternatives to the number-right scoring method are the use of differential
weighting schemes (Davis & Fifer, 1959; Hambleton, Roberts, & Traub, 1970;
Hendrickson, 1971; Patnaik & Traub, 1973; Reilly & Jackson, 1973; Sabers & White,
1969), and confidence testing (de Finetti, 1965; Hambleton et al., 1970; Rippey,
1968; Shuford, Albert, & Massengill, 1966) for assessing examiness’ partial knowledge
(Coombs et al., 1956; de Finetti, 1965; Hambleton et al., 1970). The differential
weighting schemes (or, alternatively, called option or choice weight scoring) refer
to procedures whereby different weights are assigned to all the options or choices
of an item. That is, the weights assigned to any one item need not be similar to
those assigned to another item. Obviously, nondiscriminating options or choices may
be given zero weights and a completely nondiscriminating item would be excluded
from the test. The confidence testing requires an examinee to indicate his/her
confidence in the correctness of each response choice, instead of simply selecting
one response. It also uses the specialized scoring procedures and discourages guessing.
The findings of these alternatives are usually interpreted in terms of test validity
and reliability. However, they do not provide a convincing statement about examinees’
partial knowledge by using the classical terminology (e.g., reliability, validity, item
difficulty, and item discrimination ect.). Besides, they provide ability estimates neither
with known statistical properties nor with standard errors of estimate associated with
the estimated ability. This problem, as well as the preceding problem, invokes the
consideration of using theorectically rigorous scoring models which are shown in
modern test theory.

The above description about the assessment of partial knowledge belongs to the
area of the classical test theory. Since it does not provide a satisfactory result, it
is necessary to find other methods. Latent trait theory (LTT) or item response theory
(IRT) developed in modern test theory is the one that we need (Allen & Yen, 1979;
Baker, 1985; Crocker & Algina, 1986; Hambleton, 1983; Hambleton & Swaminathan,
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1985; Hulin, Drasgow, & Parsons, 1983; Linn, 1989; Lord, 1980).

Thereafter, several authors (Bock, 1972; Huynh & Casteel, 1987; Jacobs &
Vandeventer, 1970; Levine & Drasgow, 1983; Thissen, 1976) considered the use
of information in wrong responses to improve the accuracy of ability estimation.
Birnbaum’s (1968) dichotomous model, providing estimates of ability based on right-
wrong scoring of the test items, is a special case of Bock’s (1972) general multiple
category model that utilizes information in the pattern of wrong responses, as well
as correct responses, in estimating ability. Such a model using categories or steps
to build the latent trait models can be applied and extended to other ordered response
cases, by assigning to each step or category a different weight or parameter, in order
to assess the examinees’ partial knowledge. Samejima’s (1969) graded scores model
initiated this kind of relevant research, which was followed by Samejima (1973a),
Andersen (1973b, 1973c), Andrich (1978b, 1978d, 1982), Miiller (1987), and
synthesized directly to Samejima (1969) and expanded directly to Andrich (1978b)
by a new term ‘‘partial credit model’’ (Masters, 1982; Wright & Masters, 1982).
The other models used for rating scale data and counted events are the constrained
versions of the partial credit model (Masters & Wright, 1984; Wright & Masters,
1982). The derivation of the partial credit model is described in detail in the next
section.

II. The Formulation of the Partial Credit Model

The Derivation of the Model

The use of ordered performance levels or ordered response steps to indicate
examinees’ ability measures is a creative device for assessing an examinee’s partial
knowledge. Th epartial credit model, which requires an examinee’s prior identification
of several ordered levels of performance on each item and thereby awards partial
credit for partial success on items, is a typical one of them. The primary goal for
partial credit scoring is the hope that it will lead to a more precise estimate of an
examinee’s ability than the simple pass/failure or correct/wrong scoring methods, when
the problem of partial knowledge is encountered (Masters, 1982; Wright & Masters,
1982).

A partial credit scoring example is shown in Figure 1.
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Mathematics Item :  71.5/0.3 — 16 = ?
Failed (No steps taken) ————-— 0
7.5/0.3 =25 ————————— 1
25 - 16 = 9 ————————— 2
NE] = 3 ————————- 3

Performance Levels

‘0 1 2 3
First step
75703 =7 0——1
25 — 16 = 9 1 Second step>2 o
\/—9' = 9 ) Third Step 3

(Sources : Masters, 1982, p.151 & p-155)

Figure 1. A three-step interpretation of a mathemtics item which using the partial credit scoring.

The numbers 0, 1, 2, and 3 are used to indicate only the ordering of the performance
levels, and not used as the traditional ‘‘category boundaries’’ as done in Thurstone’s
scale model (Edwards & Thurstone, 1952) or in graded response model (Samejima,
1969). From this example, we see that the number of steps into which an item is
divided and the relative difficulties of these steps are free to vary from item to item.
The performance of an examinee in one of the ordered k + 1 levels O, 1, 2, ..,
k on an item can be thought in terms of the last “‘step’ that the examinee has
completed or passed.

Recall that the well-known Rasch’s dichotomous model (Rasch, 1960/ 1980) is
expressed as

exp (8, — by)
¢nil = (2 1 . 1)
1 + exp (B, — by

where ¢, is person n’s probability of scoring 1 rather than O on item i, B, is the
ability of person n, and by is the difficulty of the one step in item i.
For the one-step (i.e., only two performance levels, 0 and 1) item 1, it is useful
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to introduce m,, as person n’s probability of scoring O rather than 1 on item i,
and my, as person n’s probability of scoring 1 rather than 0 on item i. Hence, this
additional notation is identical to (2.1.1) since Ty 1S simply the probability ¢, of
completing the first and only step in item i, and o = 1 — m,;,. However, this
notation will be convenient when we discuss more than two ordered performance
levels (i.e., items with more than one step). So, (2.1.1) can be rewritten as

ni — Bn - bi
buit = Toi =_ ) 2.1.2)
Tnio + air 1 + exp B8, — by
which means that ¢, is person n’s probability of scoring 1 rather than 0 on item
i. Of course, when only two performance levels are possible, m, o + 7, = 1 and
it = it

Next, we consider a two-step item i with performance levels 0, 1, and 2. The
probability of completing the first step in item i is identical to (2.1.2). However,
from now on, m, + m;; < 1 and by still governs the probability of completing
the first step to score 1 rather than 0. The second step from level 1 to level 2
can be taken only if the first step from level O to level 1 has been completed. A
parallel expression for the probability of completing (or passing) this second step
in item i is

ni Bn - bi
Poz = Tni2 = 2) 2.1.3)
Thi1 + T 1 + exp (B, — by)

where ¢, is the probability of person n scoring 2 rather than 1 on item i, B, is
the same person ability, and b,, is the difficulty of the second step on item i which
governs the probability of completing the step from level 1 to level 2. The difficulty
of this second step, by, governs how likely it is that a person who has already
reached level 1 will complete the second step to level 2. Another way of saying this
is that a person will make a 2 rather than a 1 on item i

Finally, the expression for the probability of completing the kth step in item i is

T nik exp B, — by)

Dnik = = k=12, .., m
Toik-1 T Wik I + exp (B, — by)
2.1.49)

where ¢, is the probability of person n scoring k rather than k — 1 on item i, B,
is the same person ability, and b, is the difficulty of the kth step on item i which
govern the probability of completing the step from level k — 1 to level k.
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We can draw a trace line for every step probability, ¢pi. k=12, .. m,
against its corresponding ability parameter expressed in the unit of logits, i.e.,
logit = B, — b;. Such a trace line is called operarting curve (Wright & Masters,
1982, p.42). The operating curves are very similar to item characteristic curves (ICCs).
They are simple logistic ogives of the same slope which differ only in their location
on the ability continuum. Hence, it is not necessary to draw the operating curves
according to their step orders. Since the relative difficulties of these steps may vary
from item to item, the positions of the curves fully depend on the step-difficulty
orders, not the step-number orders. An example of the operating curves for Figure
1 is shown below.

1.0 —
5. —
g 0.5 :
& _
0
I
logits

Figure 2. Item operating curves for a three-step item i.

From (2.1.4) and with the requirement that person n must complete one of the

1

m, + 1 possible scores on item i (i.e., T mu = 1), a general expression for the
k=0

probability of person n scoring X on item i is

X
€xp Z (Bn - bl.l)
j=

‘1 x =0,1, ..., m 2.1.5)
exp T (B, — by
j=0

Thix —

]

k=0

where x is the count of the successfully completed item steps, b = 0 and
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X

0 0
¥ (B, —by =0,sothatexp £ (B, — by) = 1. The numeratorexp T (B8, — by)
j=0 j=0 j=0
contains only the difficulties of these x completed steps, b;, by, ..., b,,. The

denominator is the sum of all m; + 1 possible numerators. Such an equation,
(2.1.5), is called the partial credit model (PCM) (Masters, 1982; Wright & Masters,
1982).

The partial credit model asserts that the probability of person n scoring x on
the m;-step item i is a function of the person’s ability B, on the test and the
difficulties of the m ““steps’’ in item i. In like manner, we can also draw a trace
line for every score probability, m,, x = 0, 1, ..., m;, against its corresponding
ability parameter expressed in the unit of logits, i.e., logit = 8, — b;. Such a trace
line is called category probability curve (Wright & Masters, 1982, p.44), item-option
characteristic curve (Hambleton & Cook, 1977, p.80), or category characteristic
response curve (CCC) (Jansen & Roskam, 1986, p.76). Therein, the item parameter,
by, is located exactly at the intersection of two category probability curves, g,
and m, for level k — 1 and level k, k =1, 2, ..., m. Due to the varied step
difficulties, the location of such an intersection is not necessary to be ordered according
to sequential steps in the drawn figure. An example of category probability curves
for Figure 1 is shown in Figure 3.

1.0 —
\ 7"n.'3/

0.8 — Tnio
iy
= 0.6 —
=
[}
S 0.4 —
0.2 —
0

Bn logits

Figure 3. Category probability curves for a three-step item i.
The Estimation of the Model Parameters
Members of the family of the Rasch model share two properties : Parameter
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separability and specific objectivity (Fischer, 1973; Rasch, 1960, 1977; Whitely &
Dawis, 1974; Wright, 1977). Andersen (1973¢c) showed that there exist sufficient
statistics for the person and item parameters in the Rasch model. This means that
the measures of person ability in the model can be conditioned out of the estimation
equations for the items, i.e., the sample-free item calibration, and the item difficulty
estimates in the model also can be conditioned out of the estimation equations for
the sample, i.e., the item-free measures of ability (Jansen, & Roskam, 1986). In other
words, ‘‘the possibility of separating two sets of parameters must be a fundamental
property of a very important class of models’’, which makes *‘specifically objective’”
comparisions of persons and items possible (Rasch, 1977, p.66).

Thus, under the partial credit model, the conditional procedure for estimating
the model parameters can be shown to be as follows (Douglas, 1978; Masters, 1982,
pp-159-161).

The probability of a person n making any particular response vector (X,) on
an L-item test is

xni
€Xp E (Bn - bl.l)
P{Xni|3n;bij}=TLT[ =

m; k ]
z exp r (Bn - blj)
j=0

k=0

L Xy
exp X L (B, — by
— i=0 j=0 (2.2.6)
¥,
X
[ €xp jEO B, — by 1.

1 k=0

B

=

where ¥, =

Il

If the “‘score’’ r, of person n on an L-item test is defined as Lthe: count of the
total number of item steps completed by person n, i.e., Tn = r X, then the
i=0
probability of person n scoring the score 1 is

r L X

L expX X (B, — by
X i=0 j=0
P r l Bn;bij j o=
¥,
exp (1B, I Lo X
L L 2.2.7)
¥, (Xy) i=1 j=0
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T

where E) denotes the sum over all those response vectors which produce the score
Xy
r.
The conditional probability of the response vector (x,), given the score 1, is
obtained by dividing (2.2.6) by (2.2.7)
P { Xni l Bn; bij }
P{r] B, by |

P { xy | I; By by J =

L xni
exp (rB) exp (=X X b,

i=1 j=0

)

o=

>

r L
exp (rB,) ¥ exp (L by)
X, i=1 j=0
L xni
exp (_E 2 bl.l)
i=1 j=0

= (2.2.8)
0 by)

>

M

X exp (—
X i=1

-
Il

Obviously, by conditioning on the person’s score r, the person parameter is
eliminated from this conditional probability expression. This means that if a person
makes a score r on an L-item test, under the partial credit model, the way in which
this score is made is not governed by the person’s ability, but depends only on
the relative difficulities of the steps in the L items. In other words, a person’s score
vector (x,) contains no more information about the person’s ability 8, than we
already have in the person’s test score r,, which is thus a sufficient statistic for 8,.

Then, the conditional probability of an entire matrix of response (X), given
the vector of person test scores (r,), is

L X,
N SXp (—_)_:l = by)
P{X | 158s5b; | = nl— — ] (2.2.9)
Y exp (—X b;)
(Xm) i=1 j=0

The fact that the person parameter does not appear in (2.2.9) means that the step
difficulties can be estimated independently of the abilities of the persons in the
calibrating sample.

In like manner, a conditional probability expression containing only the person
parameter can be obtained. The probability of observing a particular N-person vector
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of responses (x,) to an item i is

xni

r — b
exp L (B, = by

N

11| [ m; k

L exp X (B, — by
j=0

k=0

P { Xy | Ba; by |

2

N Xoi

N
[ exp (HEI XiiBn )] [ exp ("nz Eo by |

=1 j=

¥;
(2.2.10)

4

m; k
where ¥, = o [ L exp X (8, — by |
n=1 k=0 =0

If the “‘score’’ S;, of a particular N-person vector of responses is defined as
the count of th?q total number of persons who have completed the mith step on item

i, i.e., §; = L x,, then the probability of observing some particular vector of
n=1

item counts, 8 = (S;;, Sp, ..., Siw), for item i is

S N N X
[xz exp ( 2—1 XqiBy) ] [exp (—}:_:l 'Z—:o by]
P‘%S|Bn;bij}= . —
¥;
(2.2.11)
s
where L denotes the sum over all those response vectors which produce the item
X

count vector S.
Then, the conditional probability of the response vector (x,), given the vector
S, can be obtained by dividing (2.2.10) by (2.2.11)

P{ Xni | Bas bij }

P x; | S;B;b; | =
P{S | B; by }

N
exp (X Xpby)
n=1

S N
z €xp ( )> xniBn)
X n=1
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Also obviously, by conditioning on the observed vector of item counts S, the
item parameter has been eliminated entirely. This means that under the partial credit
model, all the information available in a data matrix about the difficulties of the
item steps is contained in a simple count of the number of persons who completed
each step in an item. In other words, no further information about the step difficulties
can be obtained by keeping track of any other aspect of the performance of individuals,
and so, the item counts (S;) contain all the information available in the data matrix
about the step difficulties (by).

So, the conditional probability of an entire matrix of responses (X), given the
vector of item counts (S;,), is

N
exp (L xuB,)
n=1}

L
P{X | SmiBuby | =n [— ] (2.2.13)

i=1 im

N
Loexp (X xB,)
X, n=1

The implication of (2.2.13) is that the person measures can be estimated independently
of the particular of the items used.

From (2.2.8) and (2.2.12), the separability of the parameters in partial credit
model results in sufficient statistics for person ability and step difficulty. For a person’s
ability the sufficient statistic is the count of the total number of steps the person
completes, i.e., r,, and for an item’s step difficulties the sufficient statistics are
counts of the number of persons completing each step, i.e., S;,. The separability
of the model parameters permits person abilities to be eliminated from the estimation
equations for the items entirely, thereby making possible sample-free estimates of
item difficulty.

There is another approach to estimate the model parameters of the partial credit
model. This approach is based on Wright & Panchapakesan’s (1969) unconditional
maximum likelihood estimation for Rasch’s dichotomous model. This procedure is
simply a method of the evaluation of the maximum likelihood function with the partial
credit model =, integrating across all person n and item i, that is,

z

L
A= TT T nix

(2.2.14)
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Taking logarithms,

A = log A
N L N L X, N L m; k
=X L x8 — X £ X b;— L L [logXZ exp £ ®, — byl
n=1 i=1 n=1 i=1 j=1 n=1 i=l k=0 j=0

(2.2.15)

xni
in which which £ b; = E b; because by is assumed to be zero.
j=0

Then, as specified above, define the person n’s ‘‘score’’ on the L-item test as

-

a count of the total number of completed item steps, i.e. r, E Xy. And define

the number of persons completing step j on 1tem i as §;, so the sum across all N
N

persons can be rewritten as T E b; = E S;b;. This means that summing the
n=1 j=0 =

difficulties of the completed steps across each row and then summing over the persons
gives the same result as counting the number of persons completing each step and
weighting the step difficulties by these counts to form the sum S;b; + Spbp +

+ S;.bin. With these simplifications the log likelihood function, (2.2.15),
becomes

m;

L
—El log [ Z: €Xp E (B ij)]
(2.2.16)

For simplification, the latter part of (2.2.16) is taking the first derivatives with
respect to B, and b; as

m;j k m; k
Jd1 Y exp X — b Yk x -
og [Zew E (= b)) keI @by
- m; k
9B, exp T (B, — by
k=0 j=0
= EI k‘]rnik El kﬂ'mk

and
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m; k m; k
dlog [T exp £ (B, — by] ~Zexp £ (8, — by
k=0 h=0 _ k=j h=0
abJ m; k
i v — h
E, oxp = (B, — by
= - X T nik
k=i

where the difficulty b; of step j appears only in those terms for which k = j so
m, m, m,

that the derivative of £ by with respect to by truncates the summation £ to X .
k=0 k=0 k=j

Then, taking the first derivatives of (2.2.16) with respect to 8, and b; and
setting those equations to be zero, (2.2.16) becomes

dA

L m

=1 — X I kmy n=1, N 2.2.17
and

|‘ni

E k"rnik (2.2.18)
k=

where B, is the maximum likelihood estimate for the person ability parameter, 8,,
which is the number of steps person n is expected to complete in item i.. When summed

over items this becomes the number of steps person n is expected to complete on the
L-item test (i.e., the expected value of r,).

oA Nom .
==-S§; + L & my i=1, L; j=1, m (2.2.19)
abij n=1 k=j
and
- N om
bij = Sl_] = 21- kE Tnik (2220)
n=1 k=j

where Bij is the maximum likelihood estimate for the item difficulty parameter, b;.

mi

Meanwhile, the kE T is the probability of person n completing at least j steps in
=)

item i. When summed over the N persons, this becomes the number of persons

expected to complete at least j steps in item i (i.e., the expected value of Sj).
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The second derivatives of (2.2.16) with respect to 8, and b; are as follows.

s FIE K % k)2

a2 i [E Kmi = (E km?) (2.2.21)
i Nooom m;
ab? ELE M = (Ema)’] (2.2.22)

ij

(2.2.21) and (2.2.22) can be solved by the Newton-Raphson iterative procedure. The
person and item parameters are estimated by

AUL st t i1 K= n=1, N (2.2.23)
61‘1 6“ L m m.
- L [Z KP — (I kP')]
i=1 k=1 k=1
N m;
-8 + T kP . .
At = — i=1 K=1 i=1, L; j=1, m; (2.2.29)
1 1) N m; m;
- L [ZP - (ZP)Y]
n=1 k=j k=j

where 8. is the estimate of B, after t iterations, a‘i,- is the estimate of by after t
iterations, and P' is the estimated probability of person n responding in step k to
item 1 after t iterations.

For convenience and avoiding the indeterminancy in the scale origin, the mean
step difficulty d.. is set equal to zero. And the asymptotic estimates of the standard
errors are calculated from the last iteration by

L m; m,

SE ,) = [ I (I KP - (T KPY) 1" (2.2.25)
N m; m,

SE (&) = [ L (ZP - (EP)? 1 (2.2.26)
n= =j =j

Although the unconditional maximum likelihood (UML) procedure is said to
be superior to the conditional maximum likelihood (CML) (Wright & Panchapakesan,
1969), the UML has been proven to be inconsistent (Andersen, 1973b, 1973c) and
the slight bias can be corrected by multiplying the term (L — 1)/L, where L is
the number of items. Thereafter, the simulation research of Wright & Douglas (1977a,
1977b) have corroborated the ‘‘correctness’” of the correction term. Gustafsson (1980b)
also had shown that the factor (I. — 1)/L seemed to work satisfactorily for other
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numbers of items as well. Unfortunately, this problem is not so easy. Van den
Wollenberg, Wierda, & Jansen (1988) and Jansen, van den Wollenberg, & Wierda
(1988) replicate the ‘‘bias correction procedure’” by a simulation study and find that
this bias cannot be removed by the correction factor (L — 1)/L. The bias is dependent
not only on the number of items, but also on the distribution of the item parameters,
which makes correcting for bias practically impossible. But in the intial studies with
data simulated to fit the partial credit model, it is suggested that this same correction
may be appropriate for removing bias in item step estimates when m; > 1
(Masters, 1982).

The Parameter Fit Statistics

When data fit the partial credit model, the fit index statistic of item i is calculated
from

173

t =&~ -1 @lg) + g/3 (2.3.27)
where
N
L ( xs — Ep?
Vi = _n=l S (2.3.28)
X W,
n=1

is distributed as a mean square with expected value one and expected variance

N
L (Cni - Wzni)
n=1

q’ = 2.3.29)
N
(X Wy)?
n=1
and
E, = kP (2.3.30)
k=0
Wni = kZ—:O (k - Eni)ZPnik (2331)
Cni = EO (k - Eni)4Pnik (2332)
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which are the estimates of the expected value, the expected variance, and the expected
kurtosis, respectively, of each examinee’s score on item i. And, P, is the estimated
probability of person n scoring k on item i.

The t; has a mean near zero and a standard deviation near one. The larger the
absolute value of t;, the more serious the misfit of item i in a test. Thus, t, is used
as an index of item parameter fit.

In like manner, the person parameter fit can be calculated from

th= Vo = 1) 3/g) + (u/3) 2.3.33)
where
L
Z (xni Eni)2
v, = 2! . (2.3.34)
)> Wni

is the weighted mean square with expected value one and variance

L
. E Cu — wzni)
q = _i= (2.3.35)

L

(X Wp?
i=1

and the expected mean mean, variance, and kurtosis, respectively, are

Ei = T KPy (2.3.36)
k=0

“,m' = El (k - Eni)ZP“ik (2337)
k=0

Ci = E‘ (k — Ep)*Puy (2.3.38)
k=0

in which P, is the estimated probability of examinee n scoring k on item i.

The t, has an expectation near zero and variance near one when the model
holds. The larger the absolute value of t,, the more serious the misfit of the
estimate of person n’s ability in a sample group. Thus t, is also used as an index
of person parameter fit.

The only difference between t; and t, is that squared residuals, i.e., (x,; —
E,)?, are summed over persons for item i and summed over items for person n.
Item fit statistics play an important role in the construction and calibration of an
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instrument. Person fit statistics are useful for assessing the validity of measures made
with instruments which have already been established (Wright & Masters, 1982).

III. An Empirical Example

To show how the person and item parameters are calculated, a pseudo data
matrix is simulated for 40 persons’ responses on 10 items which are scored on the
three-step fromat like Figure 1.! Although the data matrix can be constructed by
the CREDIT computer program (Wright, Masters, & Ludlow, 1982), the easier PROX
procedure (Wright & Stone, 1979) is used in this example.

The PROX procedure assumes that person and item parameters are more or
less normally distributed. Its advantages are that it can be done by a hand calculator
and that it satisfies most of the principles underlying Rasch calibration and
measurement. All that PROX needs for person- and item-parameter estimation are
the person scores and item scores from Table 1. The calibrations for the 10 items
are shown in Table 2. And the measures for the 40 persons are shown in Table
3. Because the calculations of the mean square v;, error term q;, and fit statistic
t, for item parameters, and v,, q,, and t, for person parameters by a hand calculator
are very tedious, time-consuming, and easily susceptible to rounding error, they are
not shown in Table 2 and Table 3. If one can access the CREDIT program, one
can calculate the fit statistics for item and person parameters and decide which
parameters lack fit. Since the visual checking of the estimated parameters does not
show large differences, the fit statistics may not indicate those that lack fit. For a
detailed discussion of the calculations by the PROX procedure, it is suggested that
the reader refers to Wright & Masters (1982, Ch. 4).

IV. Comments on the Partial Credit Model

The partial credit model is formulated as an alternative to Andrich’s Rating
Scale Model (Andrich, 1978a, 1978b, 1978c, 1978d, 1979) for situations in which
ordered response choices are free to vary in number and difficulty from item to item.
The primary goal of the partial credit model is to more precisely estimate an
examinee’s ability by assessing his/her partial knowledge on the wrong-responses
pattern in a given test. Thus, the application of the partial credit model is restricted
to tests or questionnaires that are constructed with an ordered response format. Two
examples — one for building a ‘‘fear-of-crime’’ variable, the other for assessing the
performance of pre-kindergarten children using the partial credit model — are shown
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Table 1. A raw data matrix scored on the three-step format.

Item | 1 2 3 4 5 6 7 8 9 10 Step
Person Person freq.
Number Step | 0123012301230123012301230123012301230123 | Scroe 0123
1 1100111111101100110011001111110011001111 17 0613
2 1111111111001110100011001110100011001111 16 2323
3 1110100011001000100011001110111111111000 12 4222
4 1110110011101000100011001110111111001000 12 3331
5 1100110011111000100010001110111111001100 12 3412
6 1111111111111000100011111111111110001111 21 3007
7 1111111111101000100011111110111111111111 22 2026
8 1100110011111100110011001100111010001100 12 1711
9 1100111011111111100011101100111011101100 17 1342
10 1110111110001110110011111110100011101100 16 2242
11 11111110110011111000110011001110110601000 14 2422
12 1111110011111100100010001000110010001100 10 4402
13 1111110011001100110011001000111111111000 14 2503
14 1111111111001100110011001111100011001100 15 1603
15 1100110011101000100011001100100011001111 10 3511
16 1110111011111111111011101000111010001100 17 2152
17 1110100010001100111011111100111010001111 14 3232
18 1100110011111111100010001100111011101111 17 2323
19 1111111111111111110011001110111011101110 22 0244
20 1110100011001111110011001100111011101111 16 1432
21 1111110011001100110011101111111011111100 18 0523
22 1100100011111111111011101100111011001100 16 1432
23 1110100011101000110011101000111010001110 11 4150
24 1000110010001000111011001110111011111111 14 3232
25 1100110011001100110011001110110011111100 13 0811
26 1110111111001111111011001111111011111111 23 0235
27 1000111011001111100011101100111111001111 16 2332
28 1111111111001100110011001110100011001100 14 1612
29 1111111011111110110011111110110010001111 20 1234
30 1100110011001100110011001110110010001100 10 1810
31 1111111111101000100010001000100011001111 12 5113
32 1000110011001100100011001100100011111111 11 3502
33 1110111010001110111111001110100011001100 14 2341
34 1100111010001100110011001000110011001100 9 2710
35 1111110010001000100010001111111010001110 11 5122
36 1111100011001100111011111100100011101111 17 2323
37 1111110011101111110011001100111011001100 12 0622
38 1110111011101100110011001110111011101100 14 1450
39 1110110011001100110011001110111011101000 13 1540
40 1100100011001000110011001110111011111100 12 2521
Item Score 78 61 62 53 33 53 62 63 55 68
Step 3 7 6 11 15 5 6 9 10 5
Freq. 11 15 16 15 18 23 12 6 14 17

WN -0

11 8 8 4 6 6 16 18 7 3
15 10 10 10 1 6 6 7 9 15
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Table 3. The PROX measures for 40 persons

m=3, L=10, N=40

Counted Test Final
Person Person Score Counted Logit Initial Spread Ability  Ability
Score Count Logit Logit Squared Measure Expansion Estimate Error

r N, Y, NY, NY?2 5°=Y, X 5,=X56° SE(§)
23 1 1.19 119 1.4 1.19 1.27 1.51 .55
22 2 1.01 2.02 2.04 1.01 1.27 1.28 .52
21 1 .85 .85 72 .85 1.27 1.08 .51
20 1 69 .69 48 .69 1.27 .88 .49
19 .55 .55 1.27 70 .48
18 1 41 41 .17 41 1.27 52 .47
17 5 27 135 .36 27 1.27 34 47
16 5 13 .65 .08 13 1.27 17 46
15 1 .00 .00 .00 .00 1.27 00 .46
14 7 -13 =91 12 —-.13 1.27 -.17 .46
13 2 —-27 —.54 15 -.27 1.27 -34 47
12 7 -—.41 -287 118 — .41 1.27 -52 .47
11 3 —-.55 —1.65 91 —-.55 1.27 -70 .48
10 3 —.69 —-207 143 —.69 1.27 -8 .49
9 1 -8 —.85 72 —-.85 1.27 -1.08 .51

Sum = —-1.7 9.78

Mean = —.043 Variance = .25

= r/mL

P,
Y, = log [Pr/(l - Pr)] = lOg [I'/(M - r)]

M-1

Y. = ENY/N Y2 = (Y.): = .002
6!’0 = YI’
M-I M-1
_ 2 2 2
v - PN YT B NS T NYE 998 40 (00

N -1 N -1 40 - 1

X = [ 1 + U/2.89 ]1/2= [ 1 + (1.55)/2.89 ]1/2
1 — UV/8.35 1 — (1.55)(.25)/8.35

= 1.27

* U values are shown in Table 2.

SEG,) = X [I/mLP, (1 — P)]"? = X [M/r(M—1)]

172
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in Masters (1982), Masters & Wright (1982), and Wright & Masters (1982). Other
examples for banking test items which use the partial credit scoring method to equate
the test forms with ordered response choices are illustrated in Masters (1984) and
Masters & Evans (1986). Besides, Smith (1987) shows that the results of assessing
partial knowledge in vocabulary support O’Connor’s theory of vocabulary acquisition.
Dodd & Koch (1987) indicate that the usefulness of item and test information in
the partial credit model is not restricted to item or test selection, but is also useful
in actual construction of test items.

From such examples, we can induce three important features of the partial credit
model as described below (Masters, 1982, p-172).

First, the category probability curve for every performance level is fixed by
the difficulties of the item’s subtasks, and so it can vary from item to item. Checking
on the scoring strategies, every item’s pattern can be easily understood.

Second, when a test item is constructed with more than two performance levels,
a latent ability variable can be best understood in terms of the concept of “‘steps’’
between adjacent performance levels. Such a concept provides an opportunity to
identify ill-constructed item steps which could be revised to make the item more
informative.

Third, it allows the possibility of detecting an item’s misfit to a particular step
in that item. Such a detection can distinguish inappropriate item from inappropriate
respondent groups.

Although there is no evidence showing weaknesses in using the partial credit
model, there are some papers indicating that the Rasch model is not overall superior
to other models. For example, Divgi (1986) strongly objects to several properties
of the Rasch model, criticizes its inappropriateness under several conditions, and
concludes that the Rasch model is not suitable for multiple-choice items.

In a comparision of model fits, Albanese & Forsyth (1984) show that the Rasch
model fails to fit more items than does the two-parameter logistic model. Hambleton
& Traub (1973) found that the two-parameter model predicted score distributions
better than the Rasch model did. Goldman & Raju (1986), Waller (1981), and Yen
(1981) reported that the two-parameter model fitted attitude surveys better than the
Rasch model. Future applications may come to favor the use of the two-parameter
model. Andersen (1973a) also found that the Rasch model did not fit the verbal part
of SAT, and attributed the lack of fit to unequal item discriminations.

Since the partial credit model as currently formulated is based on the Rasch
model, does it suffer from such weaknesses as criticized above? The answer to this
question is still unknown to us. The present author tries to generalize the one-parameter
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partial credit model to a two-parameter partial credit model in his recent
proposal (Yu, 1991). Perhaps, taking a ‘‘step discrimination’’ parameter into
consideration in the partial credit model will improve the model fit and make it
suitable for multiple-choice items. It may be useful in mastery testing to
discriminate between mastery and nonmastery groups. So far, these kinds of research
are under way. We hope the day of broad uses of the partial credit model in a
variety of fields to assess and improve measurement problems more precisely will
come SOon.

V. Summary and Conclusion

The traditional number-right scoring method cannot provide a satisfactory
estimate of an examiness’s ability measures, because it cannot handle problems such
as guessing and partial knowledge. Several remedies have been proposed to compensate
for the defect of the traditional scoring method. Unfortunately, however, these remedial
approaches cannot consistently and convincingly improve the estimates of examinees’
ability measures. Thus, the pursuit of a theoretically rigorous and more precisely
estimating method is necessary. Masters’ partial credit model is apparently the one
that we need.

The partial credit model was invented by Geoff N. Masters to score examinees’
partial knowledge. His model uses the Rasch-type logistic latent trait model to score
the ordered response items. It assumes that responses to the adjacent item steps can
reflect examinees’ different knowledge levels, and awards partial credits for examinees’
partial knowledge on an item. Hence, it can improve the precision of estimation of
examinees’ ability measures.

An easier procedure is illustrated to show how to calibrate step difficulties and to
measure person abilities. For a large sample and a longish test, it is suggested that
the computer program CREDIT be used. Several applications in practical measurement
problems are reported. The strengths-of the partial credit model are also summarized.
The weaknesses of the Rasch model are indicated and the possible direction of future
research is briefly discussed too.
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