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ABSTRACT

This article considers the economic statistical process control for two

dependent processes with a failure mechanism which obeys Weibull

shock model and has an increasing failure rate. We construct

individual economic statistical X control chart to monitor the quality

variable produced by the first process, and use the cause-selecting

control chart to monitor the specific quality produced by the second

process with minimal cost and required statistical properties. By

using the proposed control charts, we can effectively and economi-

cally distinguish which process is out of control. The renewal theorem

approach is extended to construct the cost model for our proposed

control charts, and optimization method is used to determine the

optimal design parameters of the proposed control charts. Finally,
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we give an example to show how to construct and apply the proposed

control charts. Sensitivity analysis that illustrates the effects of the

cost and process parameters on the optimal design parameters and

the minimal expected cost per unit time for the proposed control

charts is also presented.

Key Words: Processes; Weibull distribution; Control charts;

Renewal theorem.

1. INTRODUCTION

Control charts were first proposed by Shewhart (1931), and have
become important tools for statistical quality control. An appropriate
control chart indicates whether a production process is in the statistical
control state or not.

Using a control chart requires the determination of three design
parameters: the sample size n, the length of the sampling interval h,
and the control limit coefficient k. Duncan (1956) determines the optimal
design parameters of the X control charts from an economic viewpoint.
The cost function of the X chart is derived under the assumption that
there is only a single assignable cause and that the occurrence time of the
assignable cause has an exponential distribution. Following Duncan’s
approach, joint economic design of X and R charts has been proposed
by Jones and Case (1981), Rahim et al. (1988), Rahim (1989), Saniga
(1977,1989), Saniga and Montgomery (1981), and Yang (1993). Rahim et
al. (1988) discuss the use of joint economic Xand S2 control charts when
the process has only a single assignable cause. Collani and Sheil (1989)
propose the economic design of S control chart under the assumption
that the single assignable cause affects only the process variance.
Literature surveys of related work is presented in Gibra (1975), Ho and
Case (1994), Montgomery (1980), and Vance (1983).

The above economic control chart articles have the difficulty in
estimating the quality cost (see Elsayed and Chen (1994)). Taguchi
(1984) defines quality loss as ‘‘the loss to society caused by the product
after it is shipped out’’. Taguchi et al. (1989) indicate that a quadratic
approximation function sufficiently represents economic losses due to the
deviation of the quality characteristic from its target. Kacker (1986)
indicates that the concept of quadratic loss emphasizes the importance
of continuously reducing performance variation. Different quality
evaluation systems using the loss function are presented by Chen and
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Kapur (1989). Taguchi (1984) and Taguchi et al. (1989) provide an
economic design to determine the diagnosis interval and control limits
for an on-line production process applying the loss function approach.
The loss function as a rational approach for minimizing process variation
has been widely accepted. Koo and Lin (1992) modify Duncan’s cost
model using Taguchi’s loss function. Elsayed and Chen (1994) present
an economic design of X control chart including Taguchi’s quality loss
function under the assumptions of a single assignable cause and
continuous process operation.

Woodall (1986, 1987) comments that in many economic designs of
control charts the probability of Type I error is much higher than that in
a statistical design, and that this will result in more false alarms than
expected. A higher Type I error probability can also cause process over-
adjustment, which leads to an increase in the variance of the distribution
of the interested quality characteristic. Saniga (1989) presents a method
to improve economic control charts by bounding Type I and Type II
error probabilities and the average time to signal (ATS) an expected
shift and are, therefore, in accordance with industry’s demand for low
process variability and long-term quality. The design maintains a very
small probability of a false alarm and a possibly incorrect adjustment. He
calls the design the economic statistical design. Yang (1998) presents the
economic statistical design of S control charts including Taguchi loss
function.

The above articles assume that the occurrence time of assignable
cause is described by exponential distribution having constant hazard
rates and used constant sampling interval. However, this assumption is
not always appropriate for some processes which deteriorate with time.
Hu (1984) presents an economic design of X chart under Weibull shock
model assuming a constant sampling interval. Banerjee and Rahim (1988)
modify Hu’s approach, and propose a cost model in which the length of
the sampling interval varies with time. They indicate that the model
under nonuniform sampling scheme provides a lower cost than that of
Hu’s model.

The above articles assume that there is only a single process. Today,
many products are produced in several dependent processes.
Consequently, it is not appropriate to monitor these processes by utilizing
a control chart for each individual process. Zhang (1984) proposes the
simple cause-selecting control chart to control the last step of the two
dependent processes. Wade and Woodall (1993) review the basic princi-
ples of the cause-selecting chart for the case of two dependent processes
and modify Zhang’s approach. They give an example to illustrate the use
of the individual X chart and the simple cause-selecting chart. It is shown
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that their approach is better than that of Zhang for the dependent
processes control. They also examine the difference between the simple
cause-selecting chart and the multivariate T2 control chart. Yang (1997)
proposes the economic design of an individual X control chart and a
simple cause-selecting control chart under the assumption that there is
only a single assignable cause and that the occurrence time of the
assignable cause follows an exponential distribution. However, the
economic process control for the two dependent processes under
Weibull shock model has not been addressed. In this article, we include
asymmetric quadratic loss function in the economic model of the two
dependent processes to avoid the difficulty of estimating cost parameters,
and assume that the occurrence time of a single assignable cause follows a
Weibull shock model. In Sec. 2, we describe the process model and the
assumptions. In Sec. 3, we derive the cost model by extending the renewal
theorem approach. In Sec. 4, we give a numerical example and sensitivity
analysis to show the construction and application of the proposed control
charts. Finally, we provide conclusions.

2. PROCESS DESCRIPTION

In this article, we assume that the process consists of two dependent
steps, and that only a single assignable cause may occur in any one of the
processes. The production process model is described under the following
assumptions.

2.1. Assumptions and Notation

(1) The production process consists of two dependent steps. The
first step is called the previous process and the second step is
called the current process. The previous process and the current
process are dependent. Therefore, the quality variable X
produced by the previous process will affect the quality variable
Y produced by the current process.

(2) There is a single assignable cause, say AC, which may occur in
one of the two processes. Once it occurs in one of the processes,
it is investigated and removed from the process. We let the
probability that the assignable cause occurs in the previous
process be q, and the probability that the assignable
cause occurs in the current process be 1� q, where 0� q<1
(see Fig. 1).
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(3) The time before the assignable cause (TAC) occurs in any one
of the two processes follows a Weibull distribution, whose
probability density function given by

f ðtÞ ¼ ��tð��1Þ expf��t�g, t > 0, � � 1, � > 0 ð1Þ

(4) The assignable cause affects only the mean of the distribution of
X or Y, and their process variance is unchanged.

(5) The process with two steps is monitored by drawing a random
sample (X, Y ) with size one from the current process at times h1,
(h1þ h2), (h1þ h2þ h3), . . . and so on, and the points are plotted
on the proposed control charts, where h1 is the first sampling
time from the start of the process, and

hi ¼ i1=� � ði � 1Þ1=�
� �

h1, i ¼ 2, 3, . . . ð2Þ

(see Banerjee and Rahim (1988))
(6) Production ceases during the search for the assignable cause and

the adjustment of the process.
(7) We assume that the process is composed of independent and

identically distributed cycles (Fig. 2) (Duncan, 1956).
A cycle is composed of in-control time, out-of-control time
and search and adjustment time until the next starting cycle
(Fig. 3).

The notation used is described as follows.

Figure 1. Two processes.

Figure 2. The processes denoted by cycles.
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(1) Process Parameters

�10¼Magnitude of shifts in the mean of quality variable X
following the AC and while the previous process is not in control.

�2
y xj ¼Variance of Y given X.

�01¼Magnitude of shifts in the mean of quality variable Y given
quality variable X following the AC and while the current process
is not in control.

X00i¼Observation of the quality variable X when the previous
process is in control, where i¼ 1, 2, . . . .

X10i¼Observation of the quality variable X when the AC occurs in
the previous process, where i¼ 1, 2, . . . .

X01i¼Observation of the quality variable X when the AC occurs in
the current process, where i¼ 1, 2, . . . .

Y00i¼Observation of the quality variable Y when the previous
process is in control, where i¼ 1, 2, . . . .

Y10i¼Observation of the quality variable Y when the AC occurs in
the previous process, where i¼ 1, 2, . . . .

Y01i¼Observation of the quality variable Y when the AC occurs in
the current process, where i¼ 1, 2, . . . .

Ta¼Target value for quality variable Y.
M¼The quantity of output per unit production time.

(2) Time Parameters

Wj¼The time until we take the jth sample, W0¼ 0, Wj ¼
Pj

i¼1 hi,
i¼ 1,2,3, . . . .

E(T )¼The expected cycle length.

Figure 3. A complete cycle.
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E(Tj)¼The expected residual length in the cycle beyond time Wj

given that the process is in control at time Wj, j¼ 1, 2, . . . .
Tf¼The expected search time when there is at least one false alarm.
Tsr¼The expected time to search for the reason for the AC and to

adjust the process to eliminate it.
�j¼The expected time of occurrence of the AC, given that it occurred

between time Wj�1 and Wj, that is,

�j ¼ EðTAC �Wj�1jWj�1 < TAC < WjÞ ð3Þ

(3) Cost Parameters

E(C )¼The expected cycle cost.
E(Cj)¼The expected residual cost in the cycle beyond time Wj given

that the process is in control at time Wj, j¼ 1, 2, . . . .
b¼The sample cost.
D0¼The expected loss per unit product while the process is in

control.
D1¼The expected loss per unit product following the AC and while

the previous process is not in control.
D2¼The expected loss per unit product following the AC and while

the current process is not in control.
Cf¼The expected search cost per false alarm.
Csr¼The expected cost to search for the reason for the AC and to

adjust the process to eliminate it.
Aj¼The coefficient of loss function, where j¼ 0 when quality vari-

able Y is smaller than target Ta, and j¼ 1 when Y is larger than
target.

(4) Probability

Pj¼The probability that the AC occurs between time Wj�1 and Wj,
given that the process is still in control before time Wj�1, that is,

Pj ¼ PðTAC < WjjTAC > Wj�1Þ ¼ 1� expð��h�1Þ, j ¼ 1, 2, . . . ,

ð4Þ

where TAC is time of AC occurrence.
P¼Pj, since Pj is independent of time Wj.
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2.2. The Possible Distribution of X and Y

When random samples of size one are taken from the current process
at sampling timesWj ( j¼ 1, 2, . . .), we get pairs of observations ðXmni,YmniÞ

(m, n¼ 1 or 0, but cannot be all 1 at the same time, i is the number of
sample). Themodel relating the two variables can takemany forms. One of
the most useful models is the simple linear regression model. We let

E½YmnijXmni� ¼ a0 þ a1Xmni, ð5Þ

where a0 and a1 are constants.
However, the model does not need to be linear for constructing the

simple cause-selecting chart. The simple cause-selecting technique can
also be applied to a nonlinear model. The possible distributions of
Xmni,YmnijXmni and Ymni for the in-control or out-of-control processes
are illustrated as follows (see Table 1).

2.3. The Individual X Control Chart and

Cause-Selecting Control Chart

The individual X chart is constructed to monitor the process state of
the quality variable X, and the cause-selecting control chart is con-
structed to monitor the specific quality in the current process by adjusting
the effect of X on Y. Since the in-control distribution of X00i �

Nð�00x, �
2
xÞ, the individual X chart has upper control limit

ðUCLÞ ¼ ð�00x þ k1�xÞ, central line (CL)¼�00x, and lower control limit
ðLCLÞ ¼ ð�00x � k1�xÞ. Since the quality variable Y is dependent on the
quality variable X, the specific quality of the current process can be
specified by adjusting the effect of X on Y; that is the specific quality is
presented by the cause-selecting value, Zmni ¼ ððYmni XmniÞ � �mniÞ

�� =ð�y xj Þ,
m, n ¼ 0, or 1. Based on the in-control distribution of Z00i, the cause-
selecting chart can be constructed. Since the in-control distribution of the
cause-selecting random variable is Zmni � Nð0, 1Þ, the cause-selecting
control chart has UCL¼ k2, CL¼ 0, and LCL¼�k2.

Once the optimal design parameters (h1, k1, and k2) of the individual
X chart and the cause-selecting chart are determined, the proposed
control charts can be effectively used to monitor the two processes with
minimal cost. After each sampling, we chart the value of X on the
individual X chart and plot the value of Z on the cause-selecting chart.
When the value of X falls outside the control limits of the individual X
chart, it indicates that the AC has occurred in the previous process.
When the value of Z falls outside the control limits of the cause-selecting
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chart, it indicates that the AC has occurred in the current process. The
process engineer should initiate the action to search and adjust the AC.
The process would back to in-control state after it is adjusted.

2.4. Type I and Type II Error Probabilities

In this section, we define type I and type II error probabilities for the
two proposed control charts. Define:

�: The probability that there is at least one false alarm indicated by the
two control charts, given the previous and current processes are all in control,

� ¼ �1 þ �2 � �1�2, ð6Þ

where �1 is the probability that the individual X chart gives a false alarm,
given the previous process is in control,

�1 ¼ PðX00i > �00x þ k1�xÞ þ PðX00i < �00x � k1�xÞ

¼ 2ð1��ðk1ÞÞ, ð7Þ

where �ð�Þ denotes the cumulative distribution function of the
standardized normal distribution.

�2 is the probability that the simple cause-selecting chart gives a false
alarm given the current process is in control,

�2 ¼ PððY00ijX00iÞ > �00i þ k2�y xj Þ þ PððY00ijX00iÞ < �00i � k2�yjxÞ

¼ 2ð1��ðk2ÞÞ, ð8Þ

�10: The probability that there are no alarms indicated by the two
charts, given that the AC occurs in the previous process, that is

�10 ¼ ð1� �2Þ�1, ð9Þ

where �1 is the probability that the individual X chart does not indicate a
true alarm, given the previous process is out of control,

�1 ¼ Pð�00x � k1�x < X10i < �00x þ k1�xÞ

¼ �ð��10 þ k1Þ ��ð��10 � k1Þ,
ð10Þ

�01: The probability that there are no alarms indicated by the two
charts, given that AC occurs in the current process, that is

�01 ¼ ð1� �1Þ�2, ð11Þ

where �2 is the probability that the cause-selecting chart does not indicate
a true alarm, given that the previous process is in control but the current
process is out of control, that is

�2 ¼ Pð�k2 < Z01i < k2Þ ¼ �ðk2 � �01Þ ��ð�k2 � �01Þ: ð12Þ
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2.5. The Asymmetric Loss Function

We consider the asymmetric loss function Lð�Þ based on the dis-
tribution of quality variable Y (see Fig. 4 and Eq. (13)).

LðYmniÞ ¼

A1 Ymni � EðY00iÞ½ �
2, where Ymni � Ta

A0 Ymni � EðY00iÞ½ �
2, where Ymni < Ta,

m ¼ 0, 1; n ¼ 0, 1; i ¼ 1, 2, . . .

8<
: ð13Þ

The expected loss per unit product when the process is in control or
out of control is illustrated below.

(1) The process is in control:

D0 ¼ EðLðY00iÞÞ ¼ EðAjðY00i � EðY00iÞÞ
2
Þ

¼ PðY00i < TaÞ

Z T

�1

A0ð y00i � TaÞ2f ð y00iÞ dy00i

þ PðY00i > TaÞ

Z 1

T

A1ð y00i � TaÞ2f ð y00iÞ dy00i

¼
A0 þ A1

2

� �
�2
y , ð14Þ

where f ð�Þ is probability density function.
(2) The AC occurs in the previous process:

D1 ¼ EðLðY10iÞÞ ¼ EðAjðY10i � EðY00iÞÞ
2
Þ

¼ PðY10i < TaÞ

Z T

�1

A0ð y10i � TaÞ2f ð y10iÞ dy10i

þ PðY10i > TaÞ

Z 1

T

A1ð y10i � TaÞ2f ð y10iÞ d10i

¼ A0�
�a1�10�x

�y

� �
þ A1 1��

�a1�10�x
�y

� �� �� 	

� �2
y þ ða1�10�xÞ

2
� �

ð15Þ

Figure 4. The asymmetric loss function.
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(3) The AC occurs in the current process:

D2 ¼ EðLðY01iÞÞ ¼ EðAjðY01i � EðY00iÞÞ
2
Þ

¼ PðY01i < TaÞ

Z T

�1

A0ð y01i � TaÞ2f ð y01iÞ dy01i

þ PðY01i > TaÞ

Z 1

T

A1ð y01i � TaÞ2f ð y01iÞ d01i

¼ A0�
��01�y xj

�y

� �
þ A1 1��

��01�y xj

�y

� �� �� 	

� �2
y þ ð�01�y xj Þ

2
� �

ð16Þ

3. THE COST MODEL

In this section, we extend the renewal theorem approach (Banerjee
and Rahim, 1987) to obtain the cost model, which is the ratio of the
expected cycle cost and the expected cycle length for the proposed
individual X chart and cause-selecting chart. The design parameters of
the proposed control charts can then be obtained by minimizing the cost
model.

3.1. Expected Cycle Length

To extend the renewal theorem approach to derive the expected
cycle length and the expected cycle cost, we study the possible states
at the end of the first sampling and inspection time. Depending on the
state of the system, we can compute the expected residual cycle length
(the expected length in the cycle beyond the first sampling and inspection
time) and the expected residual cycle cost (the expected cost in the cycle
beyond the first sampling and inspection time) for each state. These
values together with the associated probabilities lead us to formulate
the renewal equation. The possible states are defined as follows (see
Table 2).

State 1. The production is in control, and there is no false alarms
indicated by the two charts.

State 2. The production is in control, but there is at least one false alarm
indicated by the two charts.
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State 3. The AC occurs in the previous process, but there are no alarms
indicated by the two charts.

State 4. The AC occurs in the previous process, and there is at least one
alarm indicated by the two charts.

State 5. The AC occurs in the current process, but there are no alarms
indicated by the two charts.

State 6. The AC occurs in the current process, and there is at least one
alarm indicated by the two charts.

Table 3 displays the expected residual cycle length (Ri) and the
associated probability (Pri) of being in each respective state at the end
of the first sampling and inspection time (W1), i¼ 1,2, . . . ,6. Hence, the
renewal equation is

EðTÞ ¼ h1 þ Pr1EðT1Þ þ Pr2½Tf þ EðT1Þ� þ
X6
i¼3

PriRi

¼ h1 þ �Tf ð1� PÞ þ TsrPþ qP
X1
i¼1

hiþ1�
i
10

 !

þ ð1� qÞP
X1
i¼1

hiþ1�
i
01

 !
þ ð1� PÞEðT1Þ ð17Þ

Table 4 displays the expected residual cycle length and the associated
probability of being in each respective state at the end of the sampling
and inspection time Wj, j¼ 1, 2, . . . .

Table 2. Definition of the six states.

State

Previous process

in control

Current process

in control

At least one

alarm for the

two charts

1 Yes Yes No

2 Yes Yes Yes

3 Yes No No

4 Yes No Yes

5 No Yes No

6 No Yes Yes
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Hence,

EðTj�1Þ ¼ hj þ Pr1EðTjÞ þ Pr2½Tf þ EðTjÞ� þ
X6
i¼3

PriRi

¼ hj þ �Tf ð1� PÞ þ Tsr Pþ qP
X1
i¼1

hiþj�
i
10

 !

þ ð1� qÞP
X1
i¼1

hiþj�
i
01

 !
þ ð1� PÞEðTjÞ, j ¼ 2, 3, . . . : ð18Þ

Weprovide a set of recursive systems forE(T ),E(T1),E(T2), . . . , and so on.
The system can be solved to obtain an expression for E(T ). Consequently,

EðTÞ ¼ h1
X1
i¼1

i1=� � ði� 1Þ1=�
� �

ð1� PÞi�1
þ �Tf

ð1� PÞ

p
þ Tsr

þ qPh1
X1
j¼1

ð1� PÞ j�1
X1
i¼1

ðiþ jÞ1=� � ðiþ j � 1Þ1=�
� �

�i
10

( )

þ ð1� qÞPh1
X1
j¼1

ð1� PÞ j�1
X1
i¼1

ðiþ jÞ1=� � ðiþ j � 1Þ1=�
� �

�i
01

( )

ð19Þ

Table 3. Probability and expected residual cycle length for each state at timeW1.

State Probability Expected residual cycle length

1 Pr1¼ (1�P) (1��) R1¼E(T1)

2 Pr2¼ (1�P)� R2¼TfþE(T1)

3 Pr3¼ q P�10 R3 ¼ ð1� �10Þ
P1

i¼1 ðwiþ1 � h1Þ�
i�1
10 þ Tsr

4 Pr4¼ q P(1��10) R4¼Tsr

5 Pr5¼ (1�q) P�01 R5 ¼ ð1� �01Þ
P1

i¼1 ðwiþ1 � h1Þ�
i�1
01 þ Tsr

6 Pr6¼ (1�q) P(1��01) R6¼Tsr

Table 4. Probability and expected residual cycle length for each state at time Wj.

State Probability Expected residual cycle length

1 Pr1¼ (1�P) (1� �) R1¼E(Tj)

2 Pr2¼ (1�P)� R2¼TfþE(Tj)

3 Pr3¼ q P�10 R3 ¼ ð1� �10Þ
P1

i¼1 ðwiþj � wjÞ�
i�1
10 þ Tsr

4 Pr4¼ q P(1� �10) R4¼Tsr

5 Pr5¼ (1� q) P�01 R5 ¼ ð1� �01Þ
P1

i¼1 ðwiþj � wjÞ�
i�1
01 þ Tsr

6 Pr6¼ (1� q) P(1��01) R6¼Tsr
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(see Appendix 1).
There are three infinite series

X1
i¼1

i1=� � ði � 1Þ1=�
� �

ð1� PÞi�1,

X1
j¼1

ð1� PÞ j�1
X1
i¼1

ði þ jÞ1=� � ði þ j � 1Þ1=�
� �

�i
10

( )
, and

X1
j¼1

ð1� PÞ j�1
X1
i¼1

ði þ jÞ1=� � ði þ j � 1Þ1=�
� �

�i
01

( )

in Eq. (19), for which we can calculate approximate values. Using the
infinite series,

X1
j¼1

ð1� PÞ j�1
X1
i¼1

½ði þ jÞ1=� � ði þ j � 1Þ1=���i
10

( )
,

to illustrate, we describe the procedure in Appendix 2. The approximate
values of other infinite series can be obtained using a similar approach.

3.2. The Expected Cycle Cost

The approach of deriving the expected cycle cost is similar to that of
the expected cycle length. We present the possible states of the system, the
sum ( R

0

i) of the costs occurred in the first sampling and inspection time
interval and the expected residual costs at time W1 as shown in Table 5.
Hence, the renewal equation for E(C) is

EðCÞ ¼ Pr1½ðbþD0Mh1Þ þ EðC1Þ�

þ Pr2½ðbþD0Mh1Þ þ Cf þ EðC1Þ� þ
X6
i¼3

PriR
0

i

¼ bþ ðh1 � �1ÞPM½qD1 þ ð1� qÞD2�

þ CsrPþ
bPq�10

1� �10

þ
bPð1� qÞ�01

1� �01

þD1MqP
X1
i¼1

hiþ1�
i
10þD2Mð1� qÞP

X1
i¼1

hiþ1�
i
01

þD0Mh1ð1� PÞ þD0MP�1

þ ð1� PÞ�Cf þ ð1� PÞEðC1Þ ð20Þ
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Proceeding in a similar fashion, we see that for j¼ 2, 3, . . . (see Table 6),

EðCj�1Þ ¼ Pr1½ðbþD0MhjÞ þ EðCjÞ�

þ Pr2½ðbþD0MhjÞ þ Cf þ EðCjÞ� þ
X6
i¼3

PriR
0

i

¼ bþ ðhj � �jÞPM½qD1 þ ð1� qÞD2� þ CsrPþ
bPq�10

1� �10

þ
bPð1� qÞ�01

1� �01

þD1MqP
X1
i¼1

hiþj�
i
10þD2Mð1� qÞ

� P
X1
i¼1

hiþj�
i
01 þD0Mhjð1� PÞ

þD0MP�j þ ð1� PÞ�Cf

þ ð1� PÞEðCjÞ, j ¼ 2, 3, . . . ð21Þ

We provide a set of recursive systems in the form of E(C), E(C1),
E(C2), . . . , and so on. The system can then be solved to obtain an
expression for E(C). Consequently,

EðCÞ ¼
b

p
þ ½qD1 þ ð1� qÞD2�MP

X1
i¼1

fh1½i
1=�

� ði � 1Þ� � �ig

� ð1� PÞi�1
þ Csr þ

bq�10

1� �10

þ
bð1� qÞ�01

1� �01

þD1MqP
X1
j¼1

ð1� PÞ j�1
X1
i¼1

hiþj�
i
10

" #

þD2Mð1� qÞP
X1
j¼1

ð1� PÞ j�1
X1
i¼1

hiþj�
i
01

" #

þD0M
X1
i¼1

hið1� PÞi

þD0MP
X1
i¼1

�ið1� PÞi�1
þ�Cf

ð1� PÞ

P
ð22Þ

(see Appendix 3).
In the expression of EðCÞ, there are four infinite series. We can obtain

the approximate values of these infinite series by using an algorithm
similar to the one described in Appendix 2.
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3.3. Determination of the Optimal Design Parameters

for the Individual X Control Chart and the

Cause-Selecting Control Chart

The approximate expected cost per unit time in the long run can be
expressed as the ratio of the expected cycle cost and the expected cycle
length (see Ross, 1993). The expected cost per unit time is a function of
the design parameters h1, k1, and k2. The optimal design parameters can
be determined by minimizing the objective function. That is

the objective function ¼
EðCÞ

EðTÞ
¼

right side of Eq: ð22Þ

right side of Eq: ð19Þ
ð23Þ

The proposed control charts have statistical properties as described
in Saniga (1989). We constrain � and � by their upper bounds �U , �10U

and �01U , respectively. The upper bounds of h1, k1, and k2 are h1U k1U ,
and k2U , respectively. Hence the optimization model is expressed as
follows (Eq. (24)).

Minimize the objective function ¼
EðCÞ

EðTÞ

Subject to 0 < h1 � h1U , 0 < k1 � k1U , 0 < k2 � k2U ,

0 < � � �U , 0 < �10 � �10U , 0 < �01 � �01U : ð24Þ

4. NUMERICAL EXAMPLE AND

SENSITIVITY ANALYSIS

In this section, we give an example to illustrate how the proposed
method is used to solve a real process control problem. Furthermore, we
perform sensitivity analysis on the scale parameter � and the shape
parameter � of the Weibull distribution, and the cost parameters to
study the effects of cost and process parameters on the optimal design
and the minimal cost.

4.1. Numerical Example

Assume that a cotton yarn factory produces cotton yarn in two
dependent processes. The skein strength of the cotton yarn is denoted
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by the quality variable Y, which is produced in the current process. Yarn
strength is the most important single index of spinning quality. Good
yarn strength not only increases the range of usefulness of a given cotton
but it indicates good spinning and weaving performance. The fiber length
of the cotton yarn is denoted by the quality variable X, which is produced
in the previous process. The skein strength can be obtained from
knowledge of fiber length, so their relationship can be found by analysis
history data. When the process is in control, the average skein strength
given fiber length is expressed as model E½Y00ijX00i� ¼ 11þ 1:1X00i. The
distributions of X00i, Y00ijX00i, and Y00i are illustrated as follows, when
the previous and current processes are all in control.

X00i � Nð77:05; 52Þ ð25Þ

Y00ijX00i � Nð11þ 1:1X00i, 8:35
2
Þ ð26Þ

Y00i � Nð95:755, 102Þ ð27Þ

In the production process, a machine could be out-of-control in
either the previous process or the current process. Since the machines
do tend to deteriorate with time. It is of prime concern in process control
to be able to distinguish in which one of the processes the out-of-control
situation occurs. An out-of-control situation occurring in the previous
process would cause only the mean of the X distribution to change.
Because X influences Y, the mean of Y would then be changed. An
out-of-control situation in the current process would cause only the
mean of the Y distribution to change.

The individual X chart and cause-selecting chart are constructed to
monitor the process effectively. To determine the optimal design
parameters of the individual X chart and cause-selecting chart, the
process and cost parameters are estimated as follows.

� ¼ 0:002, � ¼ 3, q ¼ 0:5, �10 ¼ 3, �01 ¼ 3, b ¼ $20,

Cf ¼ $250, Csr ¼ $1000, A0 ¼ 1, A1 ¼ 1:2, M ¼ 40 unit,

Tf ¼ 0:1 h, Tsr ¼ 0:4 h:

The optimal design parameters are determined by using a Fortran
program with upper bounds �U ¼ 0:1, �10U ¼ 0:3, and �01U ¼ 0:3. Hence
ðh1, k1, k2Þ ¼ ð2:92, 2:06, 1:86Þ, � ¼ 0:1, 1� �10 ¼ 0:837, 1� �01 ¼ 0:878,
and the expected cost per unit time is $2730.88. Consequently, the
individual X chart has UCL¼ (77.05þ 10.6)¼ 87.65, CL¼ 77.05, and
LCL¼ (77.05�10.6)¼ 66.45; the cause-selecting chart has UCL¼ 1.86,
CL¼ 0, and LCL¼�1.86.
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To monitor the process states, a sample ðXmni,YmniÞwith size one is
taken and inspected 2.92 h after the process starts. If the plotted statistic
Xmni > 87:65 or Xmni < 66:45, then we conclude that the previous process
is out of control and AC needs to be adjusted. If the plotted statistic
Zmni > 1:86 or Zmni < �1:86, then we conclude that the current process is
out of control and AC needs to be adjusted. If the plotted statistics
66:45 < Xmni < 87:65, and/or �1:86 < Zmni < 1:86, it indicates that the
previous process is in control and/or the current process is in control and
no action is taken; then the process continues and the second sample will
be taken after 0.76 h, and so on. The joint power of the two proposed
control charts is 0.837 when the previous process is out of control; and
the joint power of the two proposed control charts is 0.878 when the
current process is out of control.

4.2. Sensitivity Analysis

The effect of � and � on the optimal design parameters is shown in
Appendix 4, where the process and cost parameters are estimated as:

q ¼ 0:5, �10 ¼ 3, �01 ¼ 3, b ¼ $20, Tf ¼ 0:1 h,

Tsr ¼ 0:4 h, Cf ¼ $250, Csr ¼ $1000, A0 ¼ 1,

A1 ¼ 1:2, M ¼ 40 unit, �U ¼ 0:1, �10U ¼ 0:3, �01U ¼ 0:3:

The numerical results of the sensitivity analysis provide some useful
managerial insights that are valid at least over the range of the values of
the parameters.

From Appendix 4, h1, k1, and k2 decrease, but E(C )/E(T ) increases
when � or � increases. The hazard function of the Weibull distribution is
hðtÞ ¼ ��t��1: As � or � increase, h(t) (the hazard rate) increases, leading
to decreases in h1(i.e., more frequent sampling), decreases in k1 and k2
(i.e., earlier detection of the out-of-control states), and increases in
E(C )/E(T ) (increased cost).

Next, we fix the two parameters �¼ 0.002, �¼ 3, and change the
cost parameters (Appendix 5) one at a time to observe the effect of
each cost parameter on the optimal design parameters.

The results of the sensitivity analysis are also summarized in Table 7
in the following manner: the parameter that is varied is always increasing;
the resulting change in the parameter of interest is denoted as " (for an
increase), # (for a decrease), or — (for no significant change).
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The results of this study lead to some intuitive implications. For
example, in Table 7, we see that

1. As Tf (the expected search time when there is at least one false
alarm) increases, the expected cost per unit time decreases; the
detection ability in this case requires a decrease in h1 (more
frequent sampling);

2. As b (the cost per unit sampled) increases, the expected cost per
unit time increases; therefore, minimizing the cost requires
increased h1 (less frequent sampling);

3. As Cf (the expected search time when there is at least one true
alarm) increases, the expected cost per unit time increases;
therefore minimizing the cost requires increased k1 and k2
(larger control limit coefficient);

4. As M (the quantity of output per unit production time) increases
the expected cost per unit time increases; therefore, minimizing
the cost requires increased h1 (less frequent sampling);

5. As �10 (the shift parameter of the process mean for process
variable X ) increases, the expected cost per unit time increases;
therefore, minimizing the cost requires increased h1 (less frequent
sampling), leading to increases in K1 but decreases in k2;

6. As �01 (the shift parameter of the process mean for process
variable Z) increases, the expected cost per unit time increases;
therefore, minimizing the cost requires increased h1 (less frequent
sampling), leading to decreases in k1 but increases in k2.

Table 7. Changes of the design parameters when each of the

cost parameters increases.

Cost parameter " h1 k1 k2 E(C )/E(T )

Tf " # — — #

Tsr " — — — #

b " " — — "

Cf " — " " "

Csr " — — — "

A0 " " — — "

A1 " # — — "

�10 " — " # "

�01 " # # " "

M " # — — "#
a

aRepresents increase first and then decrease.
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5. CONCLUSIONS

In this study, we propose an approach for the design of the individual
X control chart and the cause-selecting control chart having economic
and statistical properties for a process with two steps in which the failure
mechanism obeys a Weibull shock model. The approximate value for
the expected cost per unit time involving some complicated infinite
series was obtained using Fortran and IMSL subroutines. By using
the proposed charts, we can effectively distinguish whether the previous
process or/and the current process is/are in control or not. The
asymmetric quadratic loss function is considered in the cost model,
it overcomes the difficulty in cost estimation. An example was given to
illustrate the application of the proposed individual X control chart and
the cause-selecting control chart. The effects of the cost and process
parameters on the optimal design parameters and minimum cost were
investigated. The results show that � and � have significant effects on h1
and EðCÞ=EðTÞ. This approach can easily be extended to derive the cost
model for two dependent process steps with multiple Weibull shock
models.

APPENDICES

Appendix 1: Derivation of E(T )

By Eqs. (17) and (18),

EðTÞ ¼ h1 þ �Tf ð1� PÞ þ TsrPþ qP
X1
i¼1

hiþ1�
i
10

 !

þ ð1� qÞP
X1
i¼1

hiþ1�
i
01

 !
þ ð1� PÞEðT1Þ

and

EðTj�1Þ ¼ hj þ �Tf ð1� PÞ þ TsrPþ qP
X1
i¼1

hiþj�
i
10

 !

þ ð1� qÞP
X1
i¼1

hiþj�
i
01

 !
þ ð1� PÞEðTjÞ, j ¼ 2, 3, . . . :
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By solving the recursive system, we may obtain the expected cycle
length, that is

EðTÞ ¼ h1 þ ð1� PÞh2 þ ð1� PÞ2h3 þ � � � � � �

þ �Tf ð1� PÞ þ �Tf ð1� PÞ2 þ �Tf ð1� PÞ3 þ � � � � � �

þ TsrPþ TsrPð1� PÞ þ TsrPð1� PÞ2 þ � � � � � �

þ qP
X1
i¼1

hiþ1�
i
10

 !
þ qPð1� PÞ

X1
i¼1

hiþ2�
i
10

 !

þ qPð1� PÞ2
X1
i¼1

hiþ3�
i
10

 !
þ � � � � � �

þ ð1� qÞP
X1
i¼1

hiþ1�
i
01

 !
þ ð1� qÞPð1� PÞ

X1
i¼1

hiþ2�
i
01

 !

þ ð1� qÞPð1� PÞ2
X1
i¼1

hiþ3�
i
01

 !
þ � � � � � �

¼
X1
i¼1

hið1� PÞi�1
þ �Tf

X1
i¼1

ð1� pÞi þ TsrP
X1
i¼1

ð1� PÞi�1

þ qP
X1
j¼1

ð1� PÞ j�1
X1
i¼1

hiþj�
i
10

" #

þ ð1� qÞP
X1
j¼1

ð1� PÞ j�1
X1
i¼1

hiþj�
i
01

" #

By Eq. (2),

EðTÞ ¼ h1
X1
i¼1

i1=� � ði� 1Þ1=�
� �

ð1�PÞi�1
þ �Tf

ð1�PÞ

p
þTsr

þ qPh1
X1
j¼1

ð1�PÞ j�1
X1
i¼1

ðiþ jÞ1=� � ðiþ j� 1Þ1=�
� �

�i
10

( )

þ ð1� qÞPh1
X1
j¼1

ð1�PÞ j�1
X1
i¼1

ðiþ jÞ1=� � ðiþ j� 1Þ1=�
� �

�i
01

( )
:

Appendix 2: The Procedure to Obtain Approximated Value

Step 1. Use initial values P, �, and �10. Set the value of tolerance
TOL¼ 10�5 and the sum of the infinite series is SUM.
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Step 2. Set j¼ 1, SUM1¼ 0, SUM2¼ 0.

Step 3. Set i¼ 1, SUM ¼ ð1� PÞ�1
ði þ jÞ1=� � ði þ j � 1Þ1=�
� �

�i
10:

Step 4. Set i¼ iþ 1, SUM ¼ SUMþ ð1� PÞ�1
ði þ jÞ1=��
�

ði þ j � 1Þ1=���i
10:

Step 5. If jSUM � SUM1j < TOL, then go to Step 6; otherwise, set
SUM1¼ SUM and go to Step 4.

Step 6. If jSUM� SUM2j < TOL, then print out SUM and stop
calculating. Otherwise, set SUM2¼ SUM, j¼ jþ 1, and go to Step 3.

Appendix 3: Derivation of E(C )

By Eqs. (20) and (21),

EðCÞ ¼ bþ ðh1 � �1ÞPM qD1 þ ð1� qÞD2½ �

þ CsrPþ
bPq�10

1� �10

þ
bPð1� qÞ�01

1� �01

þD1MqP
X1
i¼1

hiþ1�
i
10þD2Mð1� qÞ

� P
X1
i¼1

hiþ1�
i
01 þD0Mh1ð1� PÞ

þD0MP�1 þ ð1� PÞ�Cf þ ð1� PÞEðC1Þ,

and

EðCj�1Þ ¼ bþ ðhj � �jÞPM½qD1 þ ð1� qÞD2�

þ CsrPþ
bPq�10

1� �10

þ
bPð1� qÞ�01

1� �01

þD1MqP
X1
i¼1

hiþj�
i
10þD2Mð1� qÞ

� P
X1
i¼1

hiþj�
i
01 þD0Mhjð1� PÞ

þD0MP�j þ ð1� PÞ�Cf þ ð1� PÞEðCjÞ, j ¼ 2, 3, . . . :
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By solving the recursive system, we may obtain the expected cycle cost,
that is

EðCÞ ¼ bþ bð1� PÞ þ bð1� PÞ2 þ � � � � � �

þ qD1 þ ð1� qÞD2½ �MPðh1 � �1Þ

þ qD1 þ ð1� qÞD2½ �MPð1� PÞðh2 � �2Þ

þ qD1 þ ð1� qÞD2½ �MPð1� PÞ2ðh3 � �3Þ þ � � � � � �

þ Csr þ
bq�10

1� �10

þ
bð1� qÞ�01

1� �01

� �
P

þ Csr þ
bq�10

1� �10

þ
bð1� qÞ�01

1� �01

� �
Pð1� PÞ

þ Csr þ
bq�10

1� �10

þ
bð1� qÞ�01

1� �01

� �
Pð1� PÞ2 þ � � � � � �

þD1MqP
X1
i¼1

hiþ1�
i
10 þD1MqPð1� PÞ

�
X1
i¼1

hiþ2�
i
10 þD1MqPð1� PÞ2

X1
i¼1

hiþ3�
i
10 þ � � � � � �

þD2Mð1� qÞP
X1
i¼1

hiþ1�
i
01 þD2Mð1� qÞPð1� PÞ

�
X1
i¼1

hiþ2�
i
10 þD2Mð1� qÞPð1� PÞ2

X1
i¼1

hiþ3�
i
10 þ � � � � � �

þD0Mh1ð1� PÞ þD0Mh2ð1� PÞ2 þD0Mh3ð1� PÞ3 þ � � � � � �

þD0MP�1 þD0MPð1� PÞ�2 þD0MPð1� PÞ2�3 þ � � � � � �

þ �Cf ð1� PÞ þ �Cf ð1� PÞ2 þ �Cf ð1� PÞ3 þ � � � � � �

¼ b
X1
i¼1

ð1� PÞi�1
þ qD1 þ ð1� qÞD2½ �MP

X1
i¼1

ð1� PÞi�1
ðhi � �iÞ

þ Csr þ
bq�10

1� �10

þ
bð1� qÞ�01

1� �01

� �
P
X1
i¼1

ð1� PÞi�1

þD1MqP
X1
j¼1

ð1� PÞ j�1
X1
i¼1

hiþj�
i
10

" #
þD2Mð1� qÞP

�
X1
j¼1

ð1� PÞ j�1
X1
i¼1

hiþj�
i
01

" #
þD0M

X1
i¼1

hið1� PÞi

þD0MP
X1
i¼1

ð1� PÞi�1�i þ �Cf

X1
i¼1

ð1� PÞi
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By Eq. (2),

EðCÞ ¼
b

p
þ qD1 þ ð1� qÞD2½ �MP

X1
i¼1

h1 i1=� � ði� 1Þ1=�
� �

� �i

 �

� ð1�PÞi�1
þCsr þ

bq�10

1� �10

þ
bð1� qÞ�01

1� �01

þD1MqPh1
X1
j¼1

ð1�PÞ j�1
X1
i¼1

ðiþ jÞ1=� � ðiþ j � 1Þ1=�
� �

�i
10

" #

þD2Mð1� qÞPh1

"X1
j¼1

ð1� PÞ j�1

�
X1
i¼1

ðiþ jÞ1=� � ðiþ j � 1Þ1=�
� �

�i
01

#

þD0Mh1
X1
i¼1

i1=� � ði� 1Þ1=�
� �

ð1� PÞi

þD0MP
X1
i¼1

�ið1� PÞi�1
þ�Cf

ð1� PÞ

P

Appendix 4. The Optimal Design Parameters and Minimal Cost

The effects of various � and � on the optimal design parameters and minimal cost.

� � h1 k1 k2 E(C )/E(T ) � 1��10 1��01

0.00002 2 8.00 2.49 2.49 839.76 0.026 0.700 0.700

0.0002 2 8.00 2.49 2.49 992.29 0.026 0.700 0.700

0.002 2 4.44 2.49 2.33 2008.80 0.032 0.700 0.751

0.00002 3 8.00 2.49 2.49 983.32 0.026 0.700 0.700

0.0002 3 5.15 2.49 2.49 1630.61 0.026 0.700 0.700

0.002 3 2.92 2.06 1.86 2730.88 0.100 0.837 0.878

0.00002 4 5.80 2.49 2.49 1434.87 0.026 0.700 0.700

0.0002 4 3.65 2.49 2.46 2163.57 0.026 0.700 0.708

0.002 4 2.31 2.05 1.86 3186.89 0.100 0.839 0.877
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Appendix 5. Cost Parameters and Optimal Design Parameters

The effect of the cost parameters on the optimal design.

Tf � � h1 k1 k2 EC/ET � 1� �10 1� �01

0.1 0.002 3 2.922 2.063 1.857 2730.88 0.100 0.163 0.122

0.12 0.002 3 2.906 2.062 1.857 2717.18 0.100 0.163 0.122

0.15 0.002 3 2.88 2.060 1.858 2696.45 0.100 0.163 0.122

Tsr

0.4 0.002 3 2.922 2.063 1.857 2730.88 0.100 0.163 0.122

1.0 0.002 3 2.924 2.060 1.859 2536.32 0.100 0.163 0.122

b

20 0.002 3 2.922 2.063 1.857 2730.88 0.100 0.163 0.122

30 0.002 3 2.950 2.051 1.865 2756.99 0.100 0.161 0.123

100 0.002 3 3.114 2.013 1.892 2923.17 0.100 0.152 0.128

Cf

250 0.002 3 2.922 2.063 1.857 2730.88 0.100 0.163 0.122

500 0.002 3 2.943 2.487 2.487 2755.60 0.026 0.3 0.3

1000 0.002 3 2.978 2.487 2.487 2786.35 0.026 0.3 0.3

Csr

500 0.002 3 2.923 2.062 1.857 2666.95 0.100 0.163 0.122

1000 0.002 3 2.922 2.063 1.857 2730.88 0.100 0.163 0.122

2000 0.002 3 2.921 2.064 1.856 2858.73 0.100 0.164 0.122

A0

1 0.002 3 2.922 2.063 1.857 2730.88 0.100 0.163 0.122

1.2 0.002 3 2.965 2.065 1.855 2903.35 0.100 0.164 0.121

1.5 0.002 3 3.025 2.069 1.853 3159.13 0.100 0.165 0.121

A1

1.2 0.002 3 2.922 2.063 1.857 2730.88 0.100 0.163 0.122

1.8 0.002 3 2.789 2.066 1.855 3530.83 0.100 0.164 0.121

2 0.002 3 2.759 2.067 1.854 3794.21 0.100 0.164 0.121

�10
2.5 0.002 3 2.961 1.967 1.931 2694.96 0.100 0.281 0.136

3.0 0.002 3 2.922 2.063 1.857 2730.88 0.100 0.163 0.122

4.0 0.002 3 2.831 2.379 1.727 2817.43 0.100 0.048 0.100

�01
2.5 0.002 3 3.061 2.206 1.783 2606.88 0.100 0.198 0.230

3.0 0.002 3 2.922 2.063 1.857 2730.88 0.100 0.163 0.122

4.0 0.002 3 2.664 1.801 2.163 2990.98 0.100 0.110 0.031

M

20 0.002 3 2.998 2.487 2.487 1468.64 0.026 0.300 0.300

40 0.002 3 2.922 2.063 1.857 2730.88 0.100 0.163 0.122

60 0.002 3 2.876 2.070 1.852 3973.34 0.100 0.156 0.121
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