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ABSTRACT.tive 
lted 

A familiar problem is to test whether two samples have come from 
~xas, identical populations. A frequently considered alternative is that the populations 

differ only in dispersion. If the observations are univariate, several parametric 
: A or nonparametric tests have been proposed in the literature. However, the 

bivariate case 'Seems to have been studied far less fully. In this paper, the Ih.D. 
likelihood ratio test is derived and its distribution is studied if the underlying 
distribu tions are bivariate normal The asymptotic relative efficiencies of the 

~ds," nonparametric tests Rand R* suggested in Liu (1982) with respect to the 
parametric competitors are also investigated for bivariate normal and bivariate 

I'orld uniform distribu tions. 

tions, 1. Introduction 

Wiley Consider a bivariate two-sample problem: Suppose that (Xu, X2I ), ... , 

(X1m , X2m ) ann (Y 11, Y2d, ... , (Yin, Y 2n) are two independent bivariate 
Irther random samples from populations with continuous distribution functions Fx ,x

1 2 

(x I , x 2 ) and Gy ,y (y I, Y2) respectively such that 
I 2 

GY_p(YI, yz) =F~_~ (8 IYI, 8ZY2) for all (YI, Y2) 

and for some 8 1 >0,82 >0, 
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where {( = (Xl, X2 ), Y =(Y I, Y2 ) and.!' = (VI ,IJ2 ) is the common median. We 2. 
would like to detect differences in variability or dispersion for the two populations. 

Two nonparametric tests Rand R* are suggested in Liu (1982). 

If the common median l: = (VI' V2) is known, we define Rm,n to be the Mann­ for t 
Whitney (1947) test statistic for the two independent random samples 

is G, 
m n of id 

i.e., Rm,n = ~ ~ DiJ·, 
i= 1 j= 1 nativ 

where Dij =1 if Ui >Vj for all i =1, 2, ... ro, 
statis = 0 otherwise j =1,2, ... n, 

Ui = [(Xu-Vdl + (Xli -Vl)2] Jh for i = 1,2, ... , ro, and 

Vj =[(Ylj-vd2+(Y2j-V2)l]Jh forj=1,2, ... ,n. 

norm 
If the common median E = (v I, v2 ) is unknown, we define R;l; ,n to be the nonp 

Mann-Whitney test statistic for the two samples, 

* * U* d V* IN, V* * two iUIN, U2N, ... , mN an 2N,···, VnN 
b 

m n (P2 b 
i.e., R~ n = .~ ~ Dij, /.l=(., i= 1 j= 1 

paran 
where Dj1 = 1 if viN >VtN for all i = 1, 2, ... , ro, The 1 

=0 j =1, 2, ... , n, Han( 

111,112viN = [(Xli-MIN)2 + (X2i-M2N)2] Jh, 
distri 

VjN= [(Ylj-MIN)2 + (Y2j-M2N)2]0, 

N=m+n, and 

~N = (MIN, M2N)is the combined sample median. 

In this paper, we would like to seek appropriate par.ametric tests for bivariate 

normal and bivariate uniform distributions and investigate the asymptotic relative 

efficiencies (ARE) of the nonparametric tests Rand R* with respect to the 

parametric competitors. 
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2. The Test Statistic F~ n Under Normal Theory , 

In the univariate case, the general distribution model of the scale problem 
for two independent random samples 

is Gy _ J.J. (t) = Fx _ J.J. (9t) where J.J. is the common location. The null hypothesis 

of identical distribution then is H: 9 = 1 against either one- or two-sided alter­
natives. Under normal theory, the parametric test for the scale problem is the 

statistic Fm ,n 

m _ 
l; (Xi - X)2/(m - 1) 

= i= I 
n 
l; (Yj ~ y)2/(n - 1) 

j= I 

We are now interested in seeking an appropriate parametric test for a bivariate 

normal two-sample scale-model so that later we can compare the efficiency of the 
nonparametric tests with it. 

Let us consider the bivariate normal two-sample scale-model as follows: 

Suppose (Xll,X21),···, (XIm , X2m) and (Yll , Y2d,· .. ,(YIn, Y2n) are 
two independent random samples from N2 ((PI, J.J.2), (pa a PIa)) and N2 «J.J.I, J.J.2), 

( b b Pb2 b))" respectivelY,L where PI and P2 are the kno~n c3rrelation coefficients, 
P2 ~ 
~ = (J.J.l, J.J.2) and!? = ('111' '112) are unknown means, a and b are unknown scale 
parameters. Then n = [(a,b,J.J.l ,J.l2 ,'111,'112) I 0 < a,b < 00, _00 < J.lI ,J.l2,'111 ,'112 < 00]. 

The hypothesis H': a = b, ~ and !l unspecified, is to be tested against A': a =f= b, 

~ and!l unspecified. Then w = [(a,b,J.ll,J.l2,'111,'112)1 0 < a = b < 00, _00 <J.ll,/-l2, 

''It ,'112 < 00]. We are going to derive the likelihood ratio test and study its 
distribution. The likelihood functions are 
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The 

3 
If-

and L(w) 

then 

1 
.~ «xli-Pl)2 - 2Pl (xli-Pl)(x2i-P2) + (x2i- P2)2)
1=1 

exp { - -2-a [---------------­
(l-p/) 

If 
310gL(U) 
--­oa 

310gL(U) 
--:-:--- , 

3b 

310gL(U) 

OP l 
, 

310gL(U) 

OP2 
, 

310gL(U) 

<ml 
and 

ologL(U) 

317 2 
are equated to maxiJ 

Hence 
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1 
•..' .. exp(-m-n). 

(21rf1+n(anf1<bnf(1-P12f1/2(1-P2 2f/2 

alogL(w) o1OgL(w) alog(w ) alog(w ) alog(w)
If • • • • are equated to zero. 

aa aJ.Ll aJ.L2 in/1 in/2 

then il1W = Xl' il2w = X2• ~lW = Yl' ~2W = Y2 and 

m. -2 - - -2 
..E [(Xli-Xl) - 2Pl (Xli-Xl XX2i-X2) + (X2i-X2) ] 

~ 1 1=1 
a - {-------------------------- ,
W ~m~ 21 -PI ;j 

1, 
n -2 - - -2 ~ .~ [(Ylj-Yl ) -2plYlj-YI)(Y2j-Y2)+(Y2j-Y2)] 

+ J-l } . 1 
2

I-P2 q
n 
~ 

maximize L(w). The maximum ised to ri 
~ 1 il

L(w) = exp(-m-n) ,:,
(21rf1+n(aw)m+n(1-P12f1/2(1-P22f/2 

ij 
L(w) (anf1(i'nf 


Hence A=-~-=----
L(n) (awyn+n 
 ~ 

mm -2 - - -2 .~ 
"1,1.., ..E [(Xli-Xl) - 2P l (Xli-X1)(X2i-X2) + (X2i-X2) ] 

rl }{ 
2in(1-p/) 

= 
m - 2 - - -2 
..E «Xli-Xl) - 2PI (Xli-Xl )(X2i-X2) + (X2i-X2) ) 

1 1=1 
{,.,,--,--\ [ 2 

I-PI 
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m-l 
[( )F* ]m 

(m+n)m. n-l· m,n 
= -m---;I;--.----, where 

mmnn [( ) F +1] m+n 
n-l m,n 
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Thus, the 

the likelihl 

p. and 11 un 

In th 

e n = (0,( 

of freedom 

Lemma 2.] 

according 

the X2 dist 

Proof: See 

Lemma 2.2 

according 1 

N 
';1 c~{3 
Yi"'" Y 

Proof: See 

Theorem 2. 

n = (0,00), ' 

•(1) Fm,nil 

(2) E(F*m, 
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(F* m(m+n)m+n(m_l)m(n_l)n mn), 
= 

mnnn [(m-l)P* + (n-l)]m+nm,n 

Thus, the critical region A EO;; AO is equivalent to F~ n EO;; c I or F~ n ~ c2. Finally,, , 
the likelihood ratio test for testing H': a = b, 11 and 1'1 unspecified, against A': a =#= b, 

11 and 1'1 unspecified, can be based on F~ n' - ­- -	 , 
In this nonna1-theory model, we can show that for every 0 = (a/b)I/2 

n e n = (0,00), the distribution of F~,n/02 is F with 2(m-1) and 2(n-1) degrees 

of freedom. We fIrst need the following lemmas. I 

Lemma 2.1: If a p--dimensional random vector ~ = (Xl' ... , Xp) is distributed 

according to Np (Q, 1.;) (nonsingular), then ~ - l~' is distributed according to 

the X2 distribution with p degrees of freedom. 

Proof: See {Anderson (1958), p. 54} . 

Lemma 2.2: Suppose :>Sl' ... , ~N are independent, where ~a is distributed 

according to Np ~a' 1.;). Let C = (c0cf3) be an orthogonal matrix. Then Ya = 
N Nt1 ccx?--f3 is distributed according to Np (~a' 1.;), where Ea = ;'1 cOt(3~~ and 

l+n YI" .. , YN are independent. 

Proof: See {Anderson (1958), p. 52 }. 

Theorem 2.1: In the previous nonna1-theory model, for every 0 = (a/b)I/2 e 

n = (0,00), we obtain 

(1) 	 F~ n/02 has an F distribution with 2(m-l) and 2(n-1) degrees of freedom, 
'* _ (n-1) 2 

(2) E(Fm,n) - (n-2) 0 ,and 

(3) 	 Var(F* ) = (n-l)2(m+n-3) 04 . 

m,n (m-l )(n-2)2 (n-3) 

Proof: (1) Fix 0 =(a/b)112 en =(0,00). 
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=----------------------------------­

/[(I-P1 2)(m-l)J 

/[(I-P22)(n-l)J 

= (J 

/[a(I-P 12)2(m-l)] 

l[b(I-P22)2(n-l)J 

m _ -1 _, 
:E (?Si-~l:x (~c?9 /2(m-l) 

2 i=l -

n - 1 -
:E (Y--Y)l:y - (Yj-Y)'/2(n-l)
j=1 -J - _ -­

where ~i = (Xli,X2i), 

~ = (Xl ,X2), 

!j = (Ylj'Y 2j) , 

r = (~\'Y2)' 
b P2b 

~ = (P2b b)' 

m - 1 - 2
We may proceed to prove that i~l (&-~):E~ - C~i-~)' has a X distribution 

with 2(m-l) degrees of freedom. Since (Xu ,X2l ), ..• , (Xlm ,X2m ) is a random 

sample from a bivariate normal population with mean ~ = (PI ,1l2) and covari~n~ 

matrix :Ex =(a pa), there exists an m X m orthogonal matrix C =(ck1.) with the . _ pa a . 
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m 
last row (l/y'Iii, ... , Ifv'Iii). Let Zk =.1; ~i~i' Then. by Lemma 2.2, ~ is 

- 1=1 m ­
distributed according to Np (~k' 1;~), where ~k =i~1 ~ie, and ~1' .•. ,~ are 

independent. 

m m 
In particular ~m = 1; cmi~i = 1; (1/ v'ffi)~ = ...;mX.

i=1 i=1 - ­

m -1 

Consider 1; ~k1;x ~k' 


k=1 ­

m m -1 m ., 
= 1; (1; cki~i)1;x (1; Ck'~j) . 

k=1 i=l j=1 J 

m m m -1 , 
= 1; 1; (1; ckick' )~~x ~ 

i=1 j=1 k=1 J ­

m m 
= 1; 1; 6 .. X,~x -IX.', where 6 .. = 1, ifi=j

i=1 j=1 1J-1-_ -~ 1J 

and 6.. = 0 ifi±;1J ' '-J 

m -1' .Ii 
= 	,1; ~~x ~ 


1=1 ­

m _ -1 _, m -1' - -1-'Thus, i~1 (~-~)~~ (~i-~) = 1; X,~x ~ -m~x X
i=1 _1 _ - - _ ­

m -1' -1' 
k~1 ~k~x ~k - ~m~x ~m 

m.-l -1' 
= 1; ~k~X ~k' 

k=1 ­,istribution 

s a random 

covariance 

i) with the 
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m 
We note E(~) = .~ = ~ ckill constants:i=l ­

Sl-w and' 

of the sam 

Also let {r 

such that 

= 0, for k=Rn. 

By Lemma 2.1, mi 1Zk~ - 1 Zk' = 
k-l - x ­

with 2(m-l) degrees of freedom. 

with the t~ (Y.-X)l:x - 1 (~-X)' has a X2 distribution 
'-1 ~_'1 - - ­1- - n must be th 
Similarly, we can show that '~1 (Y,J._Y)~y-l

J- - ­, .- efficiency ( 
(¥j-I)' has a X2 distribution with 2(n-l) degrees of freedom. By the fact that 

(XU ,X21 ), ... , (X1m ,X2m ) and (Yu ,Y21)' •.. , (YIn'Y2n) are two independent 

m _ 1 - n - 1 ­
random samples, ;~l· (~-~)~x- QS.i-~)' and '~l (¥j-Y)l:y - (¥j-¥)' are 


~ ~ 

independent. Therefore, P~ nl82 has art P distribution with2(m-l) and 2(n-l) We ar, 

degrees of freedom. Theorem 3, 

i.e., (analo~
(2) and (3) are immediate consequences of (1) and the result in [Cramer (1946), 

p.242J ~ 1. dE(Tn), 

This completes the proof. 2. There e 

3. Evaluating the ARE(R,F*) for Bivariate Normal Pistributions 

/ The purpose of this section is to obtain the asymptotic relative efficiency of 

- the nonparametric test R (or R*) suggested in Liu (1982) with respect to the There ~ 

parametric test p* for the normal-theory model. d>O, v 
Let us first define the asymptotic relative efficiency of test T with respect, . 

. * ' 
to test T . 


Suppose we have two test statistics Tn and T~ for a hypothesis testina 


Droblem, H: 8 E W against A: 8 E Sl-w. Let [8 0 ,8 1 ,8 2 , ... ] be a sequence tit 
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constants such that 80 specifies a value in wand the remaining 81 ,8 2' . . . are in 

Sl-w and that lim 8n =80, Let {<l>n} and {<l>~} be two sequences of tests all 
n-+ oo 

of the same size ex, which are based on the test statistics Tn and T~, respectively. 

Also let {ni} and {n;} be two monotonic increasing sequences of positive integers 

such that 

. lim Pcp (8i) =,lim Pcp**(8i ), 

1-+ 00 ni 1-+ 00 ~ 


with the two limits existing n~ual to 0 or 1 (the limiting power of<l>nr at 8i 

must be the same as the limiting power of <l>~~ at 8i). Then the asymptotic relative 
1 

efficiency of test T with respect to test T* is defined to be 

n' 
ARE(T, T*) = .lim n~' if this limit exists. 


1 -+ 00 ~, 


We 	 are going to apply the following theorem in evaluating the ARE(R,F*). 

Theorem 3.1: If T and T* are two tests satisfying the four regular conditions, 

i.e., (analogous ones for T~) 

1. 	 dE(Tn)/d8 exists and is nonzero for 8 =80 , and is continuous at 80 , 

2. 	 There exists a positive constant c such that 

lim dE(Tn)/d8 18 = 80 
- c, 

. n-+ oo VnVar(TJI8.- 80 

3. 	 There exists a sequence of alternatives [8n ] such that for some constant 
d >0, we have 

d 
8n =80 +..;n 

- 123­ <1 
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lim IdE (Tn) I d8) 18 = 8n for the 
n-+- oo =1 

[dE(Tn) / d8] 18 = 80 
aItemati 

N01 
lim y'Var(Tn) 18 = 8~ conditio] 

n -+00 = 1 , 
y'Var(Tn) 18 - 80 

E r ['fn-E(Tn)] 1 8 =8n 
4. n ~00 P( .J Var(Tn) I 8- 8 n ~ z I 8 =8 n) =4>(z), where <Il(z) is the stan­

normal d. f., E~ 

then the ARE ofT with respect to T* is 

Proof: See {Fraser (1957), p, 273t. 
where S(u 

Suppose (Xu ,X21 ), . . . , (X1m ,X2m ) and (Y11 ,Y21)' ... , (YIn'Y 2n) are and the a 
two iIldependentrandom samples from bivariate normal populations withp.d.f.'s 

and Let Ul 

of Xl and: 

respectively, where p is the known common correlation coefficient, ~ = VLl,1'2) 

is the known (or unknown) common mean, a and b are unknown scale parameters. 

Set 8 = (alb)1/2. Thus, we have two test statistics Rm,n (or R~,n) and F:"n 
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•for the hypothesis testing problem H': () = I against either one- or two-sided 

alternatives. 

Now, it is easy to check that the tests F* and R satisfy the four regular 

conditions stated in Theorem 3.1, and for every () = (a/b)1/2 € n = (0.00), we have 

• _ (n-l) 2 • _ (n-I)2(m+n-3) 4 
E(Fm,n) 	- -- 8 , Var(Fmn) - 8 , 

(n-2) , (m-lXn-2)2(n-3) 
n-

E(Rm,n) = 	mN [.io [>"NS(u) + (1-~)S(8u)]dS(u)] -m(m+1)/ 2, 

Var(~	 n) = 2m2N(1->"N) { II S(8u} [1-S(8v)] dS(u)dS(v) 
, o<u<v<~ 

(I->"N) 
+ 	 II S(4)[1-S(v)} dS(Ou)dS(Ov)} , 

>"N o<u<v<" i q 
~.'where S(u) is the d.f. of U, and U = [(XI -P l )2 + (X2 - P2)2] 1/2, by Theorem 2.1 l~ 

re and the Chernoff-Savage theorem (see {Chernoff and Savage (1958) n. 
.'s 	 -,. 

In particular, 
;.

[dE~ n)/d8] 18=1, 	 1_ 
:::: [mn,ious(8u)s(u)du] 18=1' where s(u) is the p.d.f. ofU, 

= mn,iou[s(u)) 2du, and ~ 
[Var(~,n)] I 8=1 	 tJ 

~ .' 
== mn(m+n+1)/12. 

Let us derive the p.d. f. of U = [(Xl -PI )2 + (X2 -1l2 )2 ] 1/2 if the joint p. d. f. 

of Xl and X2 is 

1 [(xl-IllP - 2p(x l -IllXX 2-1l2) + (X2-1l2)2] 

f(xl'x 2) = -~r:--:;=~ exp [- ], 
21ray I_p2 2a(1-p2)

t) 
~ 

s. 
_oo<xl'x2 <oo 

n 
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If we set x I -Ill = ucos t and x2 -1l2 = usin t~ then the joint I\.rJ, f of U and 

Tis 

1 u2(I-psin 2t) OE;;;u<oo, 
g(u,t) = --__-exp [- ] , 

oE;;t < 2rr.2rr~ 2a(1-p2) 


Thus the p.d.f. ofU is 


1 2 u2(I-psin 2t)

s(u) = --a./---Jorr exp [- ] dt, 0 <; u < 00. 

2rr I_p2 2a(I_p2) 

Hence 

u2where we set r = 

r 
where we set q =­

a 
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,nd 1 f2fT (2fT rOO q(2- .
So'O-p') 0 10 loq oxp [_ pon 2, i --psin 2,,)

2(1-p2) ] dqdt2dt1 

4(1 2)2 
= r2fT.r2fT· -p dt dt 

Jo Jb 2 1 
8fT2(1_p2) (2-psin 2t1-psin 2t2)2 

_ (l_p2) r2fT r2fT 1 dt dt 
- . , 'Jo Jo 2 2 1 

2fT2 (2-psin 2t 1-psin 2t2) 

In order to simplify this integral, we need the following lemma .. 

Lemma 3.1: For a and b real, a> I b I , we have 

r2fT dO _ 2fTa 
Jo ­

(a+bsin 0)2 (a2_b2)3/2. 

Proof: Setting z =exp(i8), we see that dz == iexp(i8)d8 = izd8. 

u2 
2fT dO _ dz/iz 

Thus, 10 - Ie , ' 
(a+bsin oi [a+b(z-l/z) / (2i)} 2 

since sin 8 = [exp(i8)-exp(-i8)] / (2i) = (z-l/z) / (2i), and r 
:-

where C is the unit circle,a 

4i zdz
=-Ie-----­

b2 [z2+(2ai/b)z-l} 2 • 

z has poles of order 2 atThe function f(z) 
[z2+(2ai/b)z-1] 2 

(-a+J a2-b2 )i (-a-./ a2-b2 )i. . .. 
zl = b ' and z2 = b wIth zl bemg mSIde 

the unit circle and z2 outside. The residue of f(z) at zl (see {Silverman 

(1975), p. 254}) is 

< - 127-
", 

I; 

\ 


i 
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d2~1 2 •.. d·. z 
lim -,-- [(z-zl) f(z)] = lim - .. HZ,-Zt)2 . ]

Z~ Z1 dz2-1 Z~ Z dz '2 2 
1 (Z-Zl) (Z-Z2) 

- ­ ---=---..,..,-­

By the Residue Theorem (see {Silverman (1975), p. 253 } ) , 

zdz 
fcf(z)dz = fc-----­

[z2+(2ai/b)z-l] 2 

= 271'i·----­

=---­

dO 4i zdz 
Hence f~7I' = - fc-----­

(a+bsinO)2 b2 [z2+(2ai/b)z-l] 2 

=_._---­

=----­

This completes the proof. 
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Using L,emma 3.1, we ,obtain 

. , '. ., (l_p2) .. 2 2 . 1.r;u[s(u)] 2du = fo 1r fo1r. dt2dt1 

21r2 (2-psin 2t1-psin 2t2)2 


= (l_p2) 21r 21r(2-psin 2t1) 

2 fo dt . 
21r [(2-psin2t1 )2_p2]3/2 1 

Therefore, [dE(~,n) / dO] 10 = 1 

= mnf;u [s(u)] 2du 

_ (l_p2) 2 2'IT(2-psin 2t1)
- mn • 1. 'IT _____-=-__ 

2 c dt1 
2'IT [(2-psint)2 _p2] 3/2 

_ mn(1-p2) 2'IT (2-psin t) .,4i 
- fo dt. p"

'IT [(2-psin 2t )2_p2] 3/2 
~i'. ,J 

We now summarize the results in the following theorem. 

Theorem 3.2: Let (Xu ,X21 ), ... , (X1m ,X2m ) and (Yl1'Y21)' ... , (Y In'Y2n) 

i1be two independent random samples from bivariate normal populations with .·.~,j
p.d.f.'s 

'j
I 

1 {(x1-#-Ili-2p(x1-#-Il)(x2-#-I2)+(x2-#-I2)2] 
f(x 1,x2) =--~....",==exp {- } , 

2'ITa I_p2 2a(l_p2) 

- 00< xl' x2 <00, 

[(y1-#-11)2-2p(y1-#-Il)(Y2-#-I2)+(Y2-#-12)2] 
1 exp {_ } ,and g(yl,y2) = -2-'lT~-~1---p2 

2b(1-p2) 

-00<Yl'Y2<00, 
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respectively, where p is the known common correlation coefficient, ~ = (J.tl ,Ill) 
is the common mean (either known or unknown), a and b are unknown scale 

parameters. Set () = (a/b)1/2. For the hypothesis testing problem H': () = 1 

against either one- or two-sided alternatives, we have 

'" '" 3(I_p2)2 (2 psint)
ARE(R,F"') ;:; ARE(R ,F ) :: 2 [ i;7r·· . - dt] 2 . 

7r [(2-psin ti-p2] 3/2 

Particularly, if p = 0 then ARE(R,F*) = ARE(R *,F*) = 3/4. 

. '" 
Proof: Smce e(Fmn, ) 

and e(~ ) 
,n 

'"then ARE(R,F ) 

([dE(F~,n) I dO] 10;:; 1)2 
:: 

'"[Var(F m n)] I 0 =1, 

[2(n-l) / (n-2)] 2::------------------------­
(n-l)2(m+n-3) I [(m-l)(n-2)2(n-3)] 

4(m-l)(n-3) 
= 

m+n-3 

([dE(~,n) IdOl I, 0,,:, ,1)2 
= ------­

[Var(R)] I 8 = 1&'IIl,n 

mn(1-p2) 27r (2-psin t) 2 
[fo dt] 

7r [(2-psin t)2_p2] 3/2 
=----------------------------­

mn(m+n+l) /12 

e(~,n) 

lim 


m,n~oo '"e(Fm,n) 
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3(1_p2)2 211' (2-psin t) d ] 2 
= [J. t 

11'2 0 [(2-psiI! t)2 _p2] 3/2 

Applying the technique used in Liu (1981), we can prove that Rm n and R~ n , , 
have the same limiting distribution under both H' and A' if the underlying popula­

tions are bivariate normal. Hence the tests Rand R * have the same ARE with 

respect to the test F*, which concludes the proof . 

4. Evaluating the ARE(R,F**) for Bivariate Uniform Distributions 

We are now interested in evaluating the asymptotic relative efficiency of the 

nonparametric test R (or R *) with respect to an appropriate parametric test if the 

underlying populations have bivariate uniform distributions. 

First we note that if a random vector (Xl ,X2 ) is uniformly distributed over 

a disc with p. d. f. 

f(x l ,X2) = 1/(1I'c2), 0";; (xCJ.LI)2 + (x 2-J.L2)2 ..;; c2, 

then E(XI ) = IJ I , E(X2 ) = 1J2' Var(XI ) = Var(X2) = c2/4, p = 0, and the random 

variables Xl and X2 are dependent. 
Consider the bivariate uniform two-sample scale-model as follows: 

Suppose (Xu , X21 ),· .. , (Xlffi ,X2m ) and (Y U ,Y21 ), .. ·, (Yln ,Y2n ) are two 

independent random samples from bivariate uniform populations with p.d. f. 's 

2 )2 2f(X I ,X2) = 1/(1I'CI 2), 0";; (xI-J.LI) + (x2-J.L2 ..;; c i ' 

and g(YI,y2) = 1/(1I'c/), 0";; (YCJ.L1)2 + (Y2-J.L2)2..;;c/, 

where!!; = (1J 1'1J2) is the known common mean, c1 and c2 are unknown scale 

parameters. Set (} =cI /c2 ' Then the problem is to test the hypothesis H': (} = I 

against either one- or two-sided alternatives. Since E«XI -IJ 1)2 + (X2 -1J2)2) = 
cI 2 /2, and E«Y I -1J1)2 + (Y2 -1J2)2) = c/ /2, we would like to compare the 
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non parametric test statistic Rm n with the test statistic , 

For i=I, ... , m andj=I, ... ,n, let 

X~ = [(Xli-JlI)2+(X2i-Jl2)21/cI2, 

Yj = [(YICJlI)2 + (Y2j-Jl2)21/c2 2. 

Then X'I' ... , X~ and Y'l' ... , Y~ are two independent random samples from 
the same population and 

m 2 2 
.~ [(Xli-JlI) + (X2CJl2) ] 1m 

** 1=1
Fm,n =--------~---

.~ [(YIj-JlI)2 +(y2j-Jl2)2] / n 
J=1 

c 2 
I =----._------------­

c 2 
2 

By the fact that 2V' :. 11, the Central Limit Theorem, and the result in:.n 00 

Cramer (1946), p. 254 }, it is easy to see that F~:n, appropriately nonned, is 
asymptotically normal for every (} = c i /c2 € n = (0,00). . , 

The following lemma will give us the approximate values of E(F;n) andl 

** I I 'Var(Fm n) to order m- and n­ . . .:s , 

Lemma 4.1: Let Xl' . . . , Xm and Y I' . . . , Yn be two independent rando ..: 
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samples from the same population which has finite moments with mean Il and 

variance a2• Then 

mown.' 	 X. a2 
(1) 	 E(~) = 1 +--and 

Y TIJl2 

x . a2 1 1 
(2) 	 Yare-=-) = - (- +-) , 

Y 112 m n 

which are approximate values to order m-1 and n- 1. 

les from x 	 X X (Y-Il) (Y -1l)2 (Y-Il)3 	+ ... ]Proof: Consider -=-= = -[1 - -- + -'-- ­
Y 1l+(Y-Il) Il Il 112 11 3 

X -2 	 - )32(Y-Il) 	 3{Y_1l)2
Thus, (~)2 = X ---:----.:.... +--- 4(Y-1l +... ]

Y -[1 
112 Il 112 113 

E{Y-Il) E[(),-1l)2] E[{Y-1l)3]
Accurdingly E( _X ) _ E{X) . + +--­, ---[1

Y Il Il 112 11 3 

+... ] 

a2 m3 
1 [ 1 - 0 + -- - -- + ... ] ,where m3 is the 

nll2 n21l3 
third central moment, 

a2 
= 1 +--, and 

nll2 

esult in 
X X Xmed, is 	 Yare-=-) = E[(-=-)2] _ [E(-=-)] 2 
Y Y Y 

3(2 2E(Y-Il) 3E[(Y-1l)2] 4E[(V-Il)3],n) and = E(-)[ 1 - +--- ­
112 Il 112 113 

andom 
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(a 2/m+Jl 2 ) 3a2 4m3 
----[ 1-0+----+ ... ] 

Jl2 DIl 2 n2Jl3 

2a2 2m3 a4 
- (1+-----+--+ .... ) 

DIl 2 n2Jl3 n2Jl4 

a2 1 1 
=-(-+-), 

Jl2 m n 

un 

H' 

AF 

Prc 

when both m and n are so large that terms in m and n of order less than -1 are 

regarded as negligible. This completes the proof. 

Next let us derive the p.d.f. of U = [(Xl -Jl 1 )2 + (X2 -Jl2)2] 1/2 if the joint 

p. d. f. of Xl and X2 is 

Tis 

If we set Xl - J.l 1 =ucos t and x2 - Jl =usin t, then the joint p. d. f. of U and 

g(u,t) = U/(7TC2), o~ u ~ c and 0 ~ t < 27T • 

Thus the p.d.f. ofU is 

We are ready to evaluate the ARE(R,F**) for bivariate uniform distributions. By us 

Theorem 4.1: Let (Xll ,X21 ), . . . , (X1m ,X2m ) and (Y11'Y21)' . . . , (Y In'Y2n ) 

be two independent random samples from bivariate uniform populations with 

p.d. f.'s 

=E([I 

= Val 
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and g(yl,y2) = 1/(1Tc/), o~ (yl-~li + (y2-~2)2 ~c22 

respectively, where If. = (/J.l ,/J.2) is the known common mean, cl abd c2 are 

unknown scale parameters. Set (J = c1 fc2. For the hypothesis testing problem 

H': 0=1 against either one- or two-sided alternatives, we have ARE(R,F**) = 

ARE(R *,F**) = 1. 


Proof: Since [dE(Rm n)/d9] 19 = 1 
, 

= mn f;' u[s(u)] 2du 


= mn f~l u(2u/c ?)2du 


= mn, and 


[Var(~,n)] I 9 = 1 


= mn(m+n+l)/12, it implies that 


([dE(~,n)/d9] 19 = 1)2 

=e(~,n) 

Var(~,n) 19 =1 

(mn)2 
= 

mn(m+n+l)/12 


= 12mn/(m+n+l). 


By using the fact that E([(Xl-~li + (X2-~2)2] / cl 2) 


= E([(YC~1)2 + (Y2-~2)2] / c/) = 1/2, Var([(Xl-~1)2 + (X2-~2)2] / c l 2) 


= Var([(Yl-~l)2+(Y2-~2)2] /c/) = 1/12, and Lemma 4.1,weobtain 
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. 1/12 
= 02(1 + .) 

n(1/2)2 

1 

= 02(1 + 3n ), and 


.~ [(XU-1-I 1)2 + (X2i-1-I2)2] / (c 12m) 
** 1=1

[Var(Fm n)] O=l=Var (------------- ) 

, 	 .~ [(Y 1J·-1-I1)2 + (Y2i-1-I2)2] / (c/n) 
J=l ­

1/12 1 1 
---(-+-) 

(1/2)2 m 	 n 

1 1 1 
=-(-+-) . 

3 m n 

1 . 
4(1+_)2** 2** ([dE(Fm,n)/dO] 10=1) 3n 

Hence e(Fm n) = ------ ­
, ** 1 1 1

[Var(F m n)] 10=1, -(-+-)
3 m n 

1 
= 12rnn(1 + _)2 / (m+n). 

3n 

e(Rm n) ** 	 ,Therefore ARE(R,F ) = lim --- ­
m,n ~ 00 e(F~*n), 

12rnn/(m+n+ 1) 
= lim 
mn~oo 1 2 

, 12rnn(1 + -) / (m+n) 
3n 

= 1 . 
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Applying the technique used in Liu (1981), we can prove that Rm,n and R~ , n 

have the same limiting distribution under both H' and A' if the underlying popula­

, tions are bivaria te uniform. Hence the tests Rand R* have the same ARE with 

Ii respect to the test p**, which concludes the proof. 
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