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We consider the problem of outliers in incomplete multivariate data when the aim is to
estimate a measure of mean and covariance, as is the case, for example, in factor
analysis. The ER algorithm of Little and Smith which combines the EM algorithm for
missing data and a robust estimation step based on an M-estimator could be used in
such a situation. However, the ER algorithm as originally proposed can fail to be robust
in some cases, especially in high dimensions. We propose here two alternatives to avoid
the problem. One is to combine a small modi� cation of the ER algorithm with a
so-called high-breakdown estimator as the starting point for the iterative procedure,
and the other is to base the estimation step of the ER algorithm on a high-
breakdown estimator. Among the high-breakdown estimators which are actually built
to keep their robustness properties even if the number of variables is relatively large,
we consider here the minimum covariance determinant estimator and the t-biweight
S-estimator. Simulated and real data are used to compare and illustrate the different
procedures.

1. Introduction
Many statistical procedures such as principal components analysis, factor analysis and
covariance structure analysis require the estimation of a vector of means and a
covariance matrix from the data at hand. Aquestion that might arise when one performs
these types of analysis is the extent of the in�uence of outliers or extreme data on the
�nal results. Outliers or extreme data are taken here to mean observations of a subject
that either do not behave like the majority (true extreme data) or that have not been
recorded properly (false extreme data). Some might argue that in the �rst case, since
there is no measurement error, the subject should be kept in the sample and the analysis
carried out as usual. However, even in the fairest world, who wants a single subject to
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dominate the outcome of the analysis? As will be shown below, such a situation can
occur when classical sample means and covariances are used.

Robust statistics deal with the problems caused by outliers or extreme data which
are a particular case of model misspeci�cation. Robust theory provides tools not only to
assess the robustness properties of statistical procedures, but also estimators and testing
procedures that are resistant to model deviations in general and extreme data in
particular. The general theory is given in Huber (1981) and Hampel, Ronchetti,
Rousseeuw, and Stahel (1986), and a non-technical presentation of the subject can be
found in Wilcox (1998). Robust covariances were �rst investigated by Devlin,
Gnanadesikan, and Kettenring (1975), Maronna (1976), Huber (1977) and Campbell
(1980), and robustness in the context of covariance structure analysis can be found in
Yuan and Bentler (1998). The latter consider the case of complete data and show by
means of the in�uence function IF (Hampel, 1974), a mathematical tool to assess the
robustness properties of a statistical procedure, that classical estimators of structured
parameters are not robust if the covariance matrix of the raw data is not estimated
robustly. It is therefore crucial to have good robust procedures for the estimation of
covariance matrices.

The statistical literature contains several proposals for estimators of the mean and
covariance in multivariate data when it is suspected that the data contain outliers or
extreme observations; see Stahel (1981), Donoho (1982), Tyler (1983, 1994), Rous-
seeuw (1984, 1985), Tamura and Boos (1986), Davies (1987), Lopuhaä (1991), Woodruff
and Rocke (1994) and Kent and Tyler (1996). While the problems of high breakdown
and ef�cient computation have been considered, one problem has been largely ignored:
with real data one often encounters the problem of missing observations. There are
several reasons why this problem is important, especially in the social and economics
sciences, where missing values are the rule rather than the exception.

Let y i be the i th of n observations on a p-variate distribution with mean m and
covariance S. It is often supposed that the distribution is multivariate normal or more
generally an elliptical distribution. Some of the observations might be missing in that
some of the yi j are observed for some j [ f1, . . . , pg and the others are not observed or
missing for the other j. In other words, y i = [y T

[o i ], y T
[mi ]]

T, so that a distinction is made
between the observed (oi ) and the missing (mi ) data. According to Rubin (1976),
missing values are usually assumed to be either missing at random (MAR), missing
completely at random (MCAR), or neither MAR nor MCAR. An important condition for
the missing data to be MAR is that their (missing) value is independent of the fact that
they are missing. For example, they cannot be missing because they exceed a given
threshold (see Little & Rubin, 1987). MCAR is a stronger hypothesis than MAR, but the
latter is suf�cient for correct likelihood-based inferences. In this paper, we therefore
assume that data are at least MAR. One could ignore the missing values in that the
vectors y i containing missing observations are discarded and then proceed to apply the
maximum likelihood (ML) or a robust estimator to estimate the parameters. However,
this procedure has two important drawbacks: �rst, one could lose a lot of information by
reducing the sample size considerably when only a few ‘items’ are missing, thus making
the estimators less ef�cient; and second, the procedure could lead to a sample of size too
small for any parameters to be estimable (if the size is smaller than p or even nil). In
particular, when using robust M-estimators or S-estimators as proposed in Yuan and
Bentler (1998), the sample size should be considerably larger than p.

Classically, to estimate the mean and covariance from a multivariate sample one uses
the ML estimator by assuming independent and identically distributed observations
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from the multivariate normal distribution. When there are missing data, these are
replaced by their expected value in the MLestimating equations and the EM algorithm
(Dempster, Laird, & Rubin, 1977) is used to compute the ML estimator. The EM
algorithm is an iterative procedure which switches between an expectation (E) step
in which the expected values of the missing data are computed and a maximization (M)
step in which the ML estimating equations are solved.

Little and Smith (1987) and Little (1988) propose basing the M-step on a robust
estimator belonging to the general class of M-estimators (see Huber, 1981). This rather
ad hoc procedure has been suggested because it is known that in general the ML
estimator is not robust to small model departures or data contamination. Robust
estimators are built to be resistant to model misspeci�cations in general and outliers
in particular. In large dimensions, however, the choice of the M-estimator is important,
since some of them are known to have a breakdown point of at most 1/( p + 1)

(Maronna, 1976) which can be rather small in high dimensions. This means that if the
proportion of outliers exceeds 1/( p + 1) (or even if it is near to this value), the robust
estimator is no longer robust. This can happen because there are two types of
robustness: in�nitesimal and global. The �rst is concerned with the effect of in�nite-
simal model deviations as measured by IF and, therefore, estimators with a bounded IF
are said to be robust in that sense. The second is concerned with the maximal amount of
model misspeci�cation (for example, proportion of extreme data) the estimators can
withstand before they ‘break down’ or their bias becomes arbitrarily large (see also
Hampel et al., 1986). High-breakdown point estimators are robust in the latter sense (as
well as in the former sense). Such estimators are desirable when robust estimators in the
in�nitesimal sense have low breakdown points. In this paper we propose high-break-
down estimators for the mean and covariance when there are missing data. This is
achieved by adapting redescending M-estimators to the case of missing data.

In Section 2, we �rst highlight the robustness problems of the MLestimator and then
present the ER algorithm and its limitations. Applications of high-breakdown point
estimators to incomplete data are developed in Section 3. The estimators are then
compared by means of simulated and real data sets in Section 4. Finally, in Section 5 we
also provide details of where routines can be found to compute high-breakdown point
estimators with missing data. These routines are in the form of an S-PLUS library which is
easy to implement and easy to use for the non-specialist.

2. The ML estimator and the ER algorithm
We �rst describe the MLestimation of the mean and covariance matrix by means of the
EM algorithm. Then, analytically and through a real data set, we show that outliers may
spoil the estimates. The ER algorithm is then also presented and discussed.

2.1. Robustness properties of the ML estimator with missing data
In our case, we need to estimate the parameters m and S, the mean and covariance of the
underlying multivariate distribution. For notational convenience, letv = [mT, vech(S)T]T,
where the function vech stacks the non-duplicated elements of S into a p/( p + 1)/2
column vector. The objective function is

max
v

Xn

i = 1

log f (y i , v),
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where f is the density of the postulated distribution (here the multivariate normal
distribution). For distributions of the exponential family, this is equivalent to solving for v

E[t(y ) | v] ± E[t(y ) | y [o], v] = 0, (1)

where t(y ) are suf�cient statistics. Equation (1) de�nes the ML estimator with MAR
values. Note that (1) may have multiple solutions when there are missing values. If the
multivariate normal distribution is postulated, (1) becomes

Xn

i = 1

s (y i ; v) =
Xn

i = 1

m ± ŷ i

vech(S) ± vech((ŷ i ± m)(ŷ i ± m)T) ± vech(Ci )

µ ¶
= 0, (2)

where s is the score function,

ŷi j =
yi j, if yi j is observed,

E[yi j | y [oi ], v], if yi j is missing,

(

=
yi j if yi j is observed,

m [mi ] + S[moi ]S
± 1
[oo i ](y [o i ] ± m [o i ]) if yi j is missing,

(
(3)

and

Ci j k =
0, if yi j or yi k is observed,

Cov[yi j , yi k | y [oi ], v], if yi j and yi k are missing,

(

=
0 if yi j or yi k is observed,

S [mmi ] ± S [moi ] S
± 1
[oo i ] S [omi ] if yi j and yi k are missing,

(
(4)

where, for example, S [oo i ] denotes the partition of S corresponding to the observed part
of y i , etc.

There is no analytical solution to (2) and therefore one can use the EM algorithm
(Dempster et al., 1977) to solve the equations. The EM algorithm is an iterative
computational method to �nd ML estimates of parameters when the data are not fully
observed. The special case of estimating the mean and the covariance matrix from
incomplete multivariate data has also been discussed, among others, by Beale and Little
(1975) and Little and Rubin (1987). The EM algorithm switches between an E-step in
which the ŷ i and Ci are computed given values of m and S, and an M-step in which (2) is
solved using ŷ i and Ci computed in the E-step. One can also use the sweep operator of
Beale and Little (1975) to ease the programming.

To assess the robustness properties of any statistic, for example an estimator, one can
use the in�uence function IF. For M-estimators (the MLbelongs to this class) it is known
to be proportional to the score function (see Hampel et al., 1986). Let z = [z T

[o] z
T
[m]]

T be
any point in the p-dimensional space from which we observe only a part (z [o]). The
in�uence function of the ML with missing values is proportional to

[IF T
mo

IF T
mm

IF T
S oo

IF T
S om

IF T
S m m

]T,

where

IFmo
= [m[o] ± z [o]],

IFmm
= [S [mo] S

± 1
[oo](m [o] ± z [o])],

IFS oo
= [vech(S [oo]) ± vech((m [o] ± z [o])(m [o] ± z [o])

T)]
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IFS o m
= [vech(S [om]) ± vech((m [o] ± z [o])(m [o] ± z [o])

T
S ± 1

[oo] S [om])],

IFS m m
= [vech(S [mo] S ± 1

[oo] S [o m]) ± vech(S [mo] S ± 1
[o o](m [o] ± z [o])(m [o] ± z [o])

TS ± 1
[oo] S [om])].

This shows that the MLis not robust since its IF is unbounded for arbitrary values of z .
Actually, the in�uence of outliers when there are missing values is even worse than in
the complete-data case. Indeed, an extreme value in the observed part of z not only
in�uences the corresponding part in the mean vector and covariance matrix, but also
the non-observed part of the latter. In other words, IFmm

depends on z [o], and so also
does IFS o m

and IFS m m
.

2.2. Example: Working memory data
We illustrate here the non-robustness of the ML estimator with missing data by means
of data belonging to a data set collected for the study of age differences in working
memory (see Ribaupierre and Ludwig, 2000). The data were collected on a group of
98 men and women aged 56 and over who performed a set of different tasks: box
crossing (Baddeley, Della Sala, Gray, Papagno, & Spinnler, 1997); logical memory,
which is a subtest taken from the Wechsler Memory Scale—Revised (Wechsler,
1987); and the continuous monitoring task (Kray, Frensch, & Lindenberger, 1996).
The box crossing task is a combination of a verbal memory span and the crossing of
boxes on a sheet of paper. The scores considered here are the number of crosses
made on the single (BCXS) and dual (BCXD) conditions of the task. The logical
memory task is either an immediate (ML1TOT) or a postponed (ML2TOT) story recall
task. Finally, in the continuous monitoring task (CMT), which is computerized,
participants adjust a half disc to a model which changes in either size, colour or
both. The scores we consider are time needed for adjusting the half disc in size along
(CMTTMSS), colour alone (CMTTMCS) and in size and colour in dual condition
(CMTTMSD and CMTTMCD respectively). The data are incomplete in that for 22
subjects not all the scores have been recorded. We can suppose that the missing data
are MAR.

In theory, one would expect a relatively strong within-task correlation, and a
relatively strong negative correlation between the box crossing and the CMT scores
because they are both connected to a processing speed factor (Salthouse, 1996). On the
other hand, the correlation between these variables and the logical memory scores
should be weaker. One can look at the scatter plots of the data (see Fig. 1) to see if these
expectations are observed. On the whole, we indeed can see a relatively strong within-
class correlation, except that for the logical memory task (ML1TOTand ML2TOT) there
seem to be a few participants whose score on ML1TOT is weak whereas their score on
ML2TOT is high, and others for whom the relationship is the other way round. For the
majority, however, the correlation looks strong and positive. The correlation between
the scores on the box crossing and the CMT does indeed look negative and probably also
relatively strong, but for some participants the relationship between these scores seems
to deviate from that of the majority.

Assuming that the complete data are from a multivariate normal distribution, we
apply the EM algorithm to �nd the ML estimator of v = [mT, vech(S)T]T with starting
value the ML estimator computed on the data where the missing values have been
replaced by the median value of the corresponding observed variables. The resulting
estimates will be identi�ed by the subscript EM. For the sake of clarity, we present here
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the results for the correlation matrix F

mEM = [12 .90 11.84 17 .57 13.56 14.24 21.93 21.94 33.05],

FEM =

BCXS BCXD ML1TOT ML2TOT CMTTMSS CMTTMSD CMTTMCS CMTTMCD

BCXS 1.0 0.80 0.28 0.31 ± 0.43 ± 0.54 ± 0.59 ± 0.52

BCXD 1.0 0.29 0.26 ± 0.51 ± 0.53 ± 0.55 ± 0.53

ML1TOT 1.0 0.20 ± 0.01 ± 0.02 ± 0.13 ± 0.23

ML2TOT 1.0 ± 0.25 ± 0.27 ± 0.28 ± 0.26

CMTTMSS 1.0 0.84 0.72 0.65

CMTTMSD 1.0 0.78 0.72

CMTTMCS 1.0 0.89

CMTTMCD 1.0

2

666666666666666666664

3

777777777777777777775

.

A robust procedure (which will be explained later) gives the following estimation
results

mERTBS = [13.34 12.49 18.49 12.32 12.92 20.16 20.00 31.18], (5)

FERTBS =

BCXS BCXD ML1TOT ML2TOT CMTTMSS CMTTMSD CMTTMCS CMTTMCD

BCXS 1.0 0.81 0.40 0.46 ± 0.42 ± 0.49 ± 0.50 ± 0.44

BCXD 1.0 0.29 0.41 ± 0.45 ± 0.45 ± 0.48 ± 0.43

ML1TOT 1.0 0.84 ± 0.15 ± 0.24 ± 0.31 ± 0.34

ML2TOT 1.0 ± 0.25 ± 0.41 ± 0.43 ± 0.44

CMTTMSS 1.0 0.84 0.67 0.71

CMTTMSD 1.0 0.73 0.77

CMTTMCS 1.0 0.88

CMTTMCD 1.0

2
666666666666666666664

3
777777777777777777775

.

(6)

It is interesting to note that the correlation matrices are on the whole not that different,
except for the correlation between the two logical memory tasks (ML1TOT and
ML2TOT). This correlation is very small when estimated by means of the classical ML
estimator, whereas it appears very strong when a robust estimator is used. If one recalls
the scatter plot of the data (see Fig. 1), this result is not surprising since we have already
seen that the correlation between ML1TOT and ML2TOT seems strong for the majority
of the participants, but a few of them do not seem to follow the same pattern. This
example shows that outliers can bias the MLestimator, whereas the robust estimator is
not so in�uenced by a few outlying subjects.

2.3. The ER algorithm
In the presence of contaminated multivariate data with missing values, Little and Smith
(1987) proposed the expectation–robust (ER) algorithm which modi�es in an ad hoc
manner the EM algorithm so that extreme observations are downweighted. The
estimated weights are based on the Mahalanobis distance. The algorithm is de�ned by
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combining the usual E-step with the following robust modi�cation (R-step):

m (t + 1) =

P n
i = 1 wi ŷ

(t )
iP n

i = 1 wi
,

vech(S)(
t + 1) =

P n
i = 1 w2

i vech(ŷ (t)
i ± m (t + 1))(ŷ (t )

i ± m (t + 1)) + vech(C (t )
i )P n

i = 1 w2
i ± 1

,

where wi = w(di )/di , and

(di )2 = (ŷ i ± m)T(S)± 1(ŷ i ± m) (7)

is the squared Mahalanobis distance at iteration t (i.e. with ŷ (t)
i , m (t) and S (t )). The vector

of �lled-in values ŷ i and Ci are de�ned in (3) and (4). Here w denotes a two-parameter
bounded-in�uence function (Hampel, 1974) de�ned by

w(di ) =
di , if di # do i ,

do i expf± (di ± do i)
2/2 b2

2 , if di > do i ,

»
(8)

where do i =
�����
p i

p
+ b1 /2 and p i is the number of variables present for observation i . The

quantities b1 and b 2 are to be speci�ed by the data analyst. The choice of b1 determines
the cut-off, and b2 speci�es how rapidly the weights decrease. Based on Hampel (1973),
Little and Smith (1987) suggested b1 = 2 and b2 = 1.25. If case i is uncontaminated, the
data are normal and missing values are MAR, then (7) is asymptotically x 2

p i
. The Wilson–

Hilferty transformation of the chi-square distribution (see Kendall & Stuart, 1969,
Chapter 16) yields

((d i )2 /p i )
1/3 Ç, N(1 ± 2/(9 p i ), 2/(9 p i )). (9)

In order to detect atypical observations, Little and Smith (1987) therefore proposed a
probability plot of

Z i =
((di )2/p i)

1/3 ± 1 + 2/(9 p i )�����������������
[2/(9 p i )

p (10)

versus standard normal order statistics in which di are computed using the ML
estimates of m and S obtained by the ER algorithm. Little and Smith (1987) propose as
starting value the ML estimator computed on the data where the missing values have
been replaced by the median values of the corresponding observed variables. The
resulting estimates will be identi�ed by the subscript ER.

2.4. Robustness properties of the ER algorithm
Although the ERalgorithm is relativelysimple to implement, it suffers from an important
drawback: its breakdown point is low. This is essentially due to the starting point of the
algorithm and also to the form of the weights. We now illustrate this problem with
simulated data. Since the estimators we study here are all af�ne equivariant, the choice
of covariance matrix is arbitrary and therefore we chose to generate 50 data points from
a multivariate standard normal distribution MN(0, I). We constructed so-called shift
outliers (see Rocke & Woodruff, 1996) which are well known to be the hardest to
detect. They are built by adding the quantity r

���������������������������������
0.999p± 1(x 2

p)± 1
p

to all components of
some of the data. r roughly represents the importance of the shift added to the data, and
we chose r = 2 for the �rst 10 observations and r = 0 for the others. Thus 20%of the
data are outliers. We also randomlyremoved 25 elements of the data matrix. It should be
stressed that we tried smaller amounts of contamination as well as r = 1.5 and r = 4,
and we found similar results to the case we present here.
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The ML estimator computed using the EM algorithm gives the following results:

mEM = [0.631 1.03 0.977 0.804 1.04],

S EM =

4.35 3.31 3.35 2.98 2.98

3.81 3.52 2.58 2.94

4.19 2.86 2.86

3.50 2.71

3.42

2

666666664

3

777777775

.

We can see that the outlying observations have a large in�uence on the estimates.
Indeed, the variances are overestimated, as are the covariances. Actually a correlation is
found between the variables which are supposed to be independent. By using the ER
algorithm it is hoped, however, that the outlying observations do not have such an
effect. The estimation results are

mER = [0.647 1.05 0.989 0.792 1.04],

S ER =

4.37 3.34 3.40 3.13 3.03

3.89 3.59 2.69 3.02

4.28 2.96 2.94

3.59 2.80

3.52

2

666666664

3

777777775

.

EM and ER lead to similar estimated values for m and S. These estimators are clearly
in�uenced by the outlying observations. This shows that ER may fail to be robust when
the proportion of outliers is relatively large.

Figure 2 presents the transformed distances (10) on the simulated data when using
several estimators. We can see that when one uses the ER algorithm, none of the
contaminated observations is revealed as an outlier when we know that there are ten of
them (the value of 1.96 is taken as a benchmark for detecting outliers). The ERalgorithm
is therefore not satisfactory in situations of this kind. We will return to these data when
we discuss high-breakdown estimators which actually are able to detect outliers when
they are relatively numerous.

3. High-breakdown estimators in incomplete data
We propose two strategies for constructing a high-breakdown point estimator of the
mean and covariance in multivariate data with missing values. The �rst is to provide a
high-breakdown point estimator as starting value for the ERalgorithm, and the second is
to adapt a high-breakdown estimator to incomplete data. For the latter we also need a
high-breakdown estimator as a starting point for the algorithm. We propose here to
adapt the minimum covariance determinant (MCD) estimator to the case of missing
values. But why not just consider the MCD estimator alone as a high-breakdown
estimator for the mean and covariance? The problem is that it is known to be very
inef�cient, so that usually it is used as a starting point for more ef�cient estimators such
as M-estimators.
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3.1. The MCD estimator in incomplete data
We now present the MCD estimator and an algorithm to compute it when the data are
incomplete.

3.1.1. The MCD estimator
The minimum covariance determinant estimator is given by the sample mean and
covariance of the subset of h observations for which the determinant of their covariance
matrix is minimal. The MCD mean estimator is then the sample mean of those h points,
and the MCD covariance estimator is their sample covariance matrix. The usual value of
h, that which achieves the highest breakdown point, is h = b(n + p + 1)/2c, where bxc
denotes the integer part of x . Such a choice gives a breakdown point of nearly 50%, but
also the larger ef�ciencyloss with respect to the MLestimator at the true model (i.e. with
no data contamination). We can reasonably consider a smaller value for the breakdown
point of, say, 25%or 20%and therefore choose h = b0.75nc or h = b0.8nc to increase
the ef�ciency of the MCD when the sample is not suspected to be heavily contami-
nated. For multivariate data sets, it takes too much time to �nd the exact estimate, so an
approximation is computed. We present here the forward search algorithm to compute
(an approximation to) the MCD.

The MCD estimator is af�ne equivariant but is not the only high-breakdown point
af�ne-equivariant estimator. The minimum volume ellipsoid (Rousseeuw, 1984) is also a
high-breakdown point af�ne-equivariant estimator. However, Butler, Davies, and Jhun
(1993) show the consistency and asymptotic normality of the MCD estimator of the
multivariate mean, and the consistency of that of the covariance, with a rate of
convergence of n± 1/2 compared to n± 1/3 for the minimum volume ellipsoid.

Several numerical algorithms have been proposed for computing the MCD. Atkinson
and Cheng (2000) show that by using the forward search algorithm (see below), the
resulting procedure is fast—in particular, it is much faster than the feasible solution
algorithm of Hawkins (1994). They also provide a procedure for choosing the right value
for h. In the following subsection, we adapt the procedure to the problem of missing
data, although the same ideas could in principle be applied to any procedure such as the
one proposed by Rousseeuw and Van Driessen (1999), which is suspected to be even
faster than the forward search algorithm in large-sample problems.

For complete data, the forward search algorithm as presented by Atkinson (1994)
can be summarized for the MCD estimator by the following pseudo-code. Given values
for s (to be discussed later) and a subset Qk of qk observations:
1. Compute the sample mean and covariance, y (Qk) and S(Qk).
2. Order all n observations according to increasing Mahalanobis distances computed

using y (Qk) and S(Qk).
3. Choose the �rst h observations, compute their sample mean y h(Qk) and

covariance matrix Sh(Qk) and its determinant Dk .
4. If Dk < Dk± 1, replace the previous values of mMCD, SMCD and D by ȳ h(Qk), Sh(Qk)

and Dk , respectively.
5. If qk = n stop, else choose the �rst qk+ 1 = qk + s # n observations of the ordered

sample in step 2 which de�ne a new subset Qk+ 1 and go to step 1 by replacing Qk
by Qk+ 1.

The algorithm starts with a randomly chosen subset of size q1 = p + 1. One forward
search �nds an MCD estimator mMCD and SMCD with minimum determinant D. The
forward search procedure is in fact repeated for several randomly chosen initial subsets.
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In our experience 100 initial samples is a good choice, but there is no theoretical result
on the optimal choice. The �nal MCD estimator is then given by the MCD of the search
with minimum determinant D. If for one search S(Qk) becomes singular, the search is
cancelled and replaced by another one. Finally, the choice of the increment s is usually
s = 1, although it is suspected that larger values would increase the speed of the
algorithm without jeopardizing too much the probability of �nding the MCD. To our
knowledge, no research has yet been done on the choice of s.

3.1.2. MCD with incomplete data
The MCD estimator with missing data can easily be de�ned by computing the sample
mean and covariance via the EMalgorithm of the subset of h observations for which the
determinant of their covariance matrix is minimal. The forward search algorithm is then
adapted here to the case of missing data. However, although with complete data the
usual choice is h = b(n + p + 1)/2c, we found that with incomplete data this value is too
small, probably because of the loss of information due to the missing data. We have not
studied the relationship between the value of h and the percentage of missing data. We
can only recommend taking larger values of h; in our experience h = b0.75nc or
h = b0.8nc are reasonable values when the proportion of contaminated data is not
expected to be greater than 20–25%.

Adapting the procedure to the case of missing data is straightforward. Basically, we
use the EMalgorithm to compute the sample mean and covariance in the process of the
forward searches when some of the observations in the subset Qk are missing. Thus,
the only difference between this and the complete data case lies in the calculation of the
Mahalanobis distances used to order the observations. If for the i th observation there
are missing values, the Mahalanobis distances are based on the observed values, leading
to the distances

d 2
[o i ](Qk) = (y [o i ] ± ȳ (Qk)[o i ])

TS(Qk)± 1
[oo i ](y [oi ] ± ȳ (Qk)[o i ]). (11)

To order the distances and take into account the non-equal number of missing values for
each observations, we need to standardize the distances. We selected the Wilson–
Hilferty transformation of the chi-squared distribution given in (10) to order the
observations in step 2. The reason for this choice is that we suspect that using (7)
with imputed values instead of (11) with the Wilson–Hilferty transformation would give
an advantage to observations with missing values. The reason is that the imputed values
in (7) are nearer to the estimated vector of the mean and therefore have smaller
Mahalanobis distance than full observations with similar values for the observed part.
With (11), the non-observed part is not taken into account in the computation of the
Mahalanobis distance, and the latter is standardized for the number of observed
values by means of the Wilson–Hilferty transformation. We have, however, no proof
that our statement is correct. Simulations have actually shown no signi�cant
differences between the two possible approaches in that the forward search algo-
rithm led to the same or similar estimates. In what follows, the resulting estimates
will be identi�ed by the subscript ERMCD when the MCD is used as a starting point
for the ER algorithm.

3.2. The TBS estimator
The best-known high-breakdown point estimators are actually S-estimators, �rst
proposed by Rousseeuw and Leroy (1987, p. 263). In particular, the translated-biweight

328 Tsung-Chi Cheng and Maria-Pia Victoria-Feser



S-estimator (TBS), proposed by Rocke (1996), belongs to this class. In what follows, we
will show how the estimating equations for the TBS estimator and the TBS estimator for
missing data can be seen as special cases of

1
n

Xn

i = 1

wm
i (m ± ŷ i)

w d
i vech(S) ± w h

i (vech((ŷ i ± m)(ŷ i ± m)T) ± vech(Ci))

µ ¶
= 0. (12)

Equation (12) actually also de�nes an M-estimator which generalizes (2) by incorporat-
ing weights. With missing data ŷ i and Ci are given by (3) and (4), whereas with complete
data ŷ i = y i and Ci = 0.

An S-estimator of multivariate mean and covariance is de�ned as the solution in m and
S which minimizes | S | subject to

1
n

Xn

i = 1

r(((y i ± m)TS± 1(y i ± m))1/2) =
1
n

Xn

i = 1

r(di) = b0 , (13)

where r is a non-decreasing function which usually satis�es Ex 2
p
[r(d )] = b0. The

breakdown point is given by the ratio of b0 to the maximum of r (see Lopuhaä &
Rousseeuw, 1991). Therefore, b0 is usually computed for a chosen breakdown « and a
r-function by means of

b0 = « max
d

r(d ). (14)

It is known that such an S-estimator also satis�es the equations of an M-estimator of
mean and covariance de�ned by (12) in which

w m
i = n1(di) = kw(di /k)/di , (15)

w h
i = n2(di) = pn1(di /k), (16)

w d
i = n3(di) = w(di /k)di /k, (17)

with ŷ i = y i , Ci = 0, w(d ) = ¶ /¶dr(d ), di are the Mahalanobis distances

d 2
i = (y i ± m)TS± 1(y i ± m), (18)

and k is such that

1
n

Xn

i = 1

r(di /k) = b0 . (19)

Rocke (1996) showed that an S-estimator can be found iterativelyonce b0 has been set in
(14), by �rst computing the scaling factor k for the Mahalanobis distances (computed
using current values of m and S) in (19), then the weights in (15), (16) and (17). The
estimates of m and S are then updated in (12) given these weights. Rocke (1996) also
proposes replacing the standardization step (19) with one that consists of equating the
median of r(di) with the median under normality. In this case, the scaling factor k
would be

k =
d(q)����������������������������

x 2
p(q/(n + 1))

q , (20)

where d (q) denotes the q th ordered distance, and q = b(n + p + 1)/2c.
Equation (13) de�nes general S-estimators which depend on the choice of the

r-function or its derivative, the w-function. A common choice for the function w is
Tukey’s biweight. However, as Rocke (1996) argues, in high dimensions it fails to
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downweight outliers with large distances. This is measured by using the concept of
asymptotic rejection probability (ARP) which can be interpreted as the probability of
an estimator, in large samples under a reference distribution, giving a null (or nearly
null) weight. Although the ARP should be small for the sake of ef�ciency, it is useful to
be able to downweight points that are very improbable under the null model. Rocke
(1996) shows that the ARP of the S-estimator based on the biweight function tends to 0
as the dimension p rises. This means that points lying far away from the centre of the
data are not downweighted when p is large. Therefore he proposes a modi�ed biweight
estimator, namely the TBS estimator de�ned through

w(d; c , M) =

d, 0 # d < M,

d 1 ±
d ± M

c

³ 2́³ 2́

, M # d # M + c,

0, d > M + c.

8
>>><

>>>:

The corresponding r function is given, for M # d # M + c, by

rM # d # M+ c (d; c , M) =
M2

2
±

M2(M4 ± 5 M2c 2 + 15 c 4)

30c 4

+ d 2

Á
0.5 +

M4

2 c 4 ±
M2

c 2

!
+ d 3

Á
4M
3 c 2 ±

4 M3

3 c 4

!

+ d 4 3 M2

2 c 4 ±
1

2 c 2

³ ´
±

4 Md 5

5 c 4 +
d 6

6 c 4 ,

and for all d by

r(d ; c , M) =

d 2

2
, 0 # d < M,

rM # d # M+ c (d ; c , M), M # d # M + c,

M2

2
+

c (5 c + 16 M)

30
, d > M + c.

8
>>>><

>>>>:

The parameters c and M can be chosen to give the desired breakdown point « and ARP
a, i.e.

« max
d

r(d ; c , M) = Ex 2
p
[r(d ; c , M)] = b0 ,

M + c =
����������������������������
(x 2

p)± 1(1 ± a)
p

.

The choices of « and a are to be made by the analyst. The former is the suspected
maximal amount of contaminated data, and for the latter we propose choices between
0.1%and 1%.

Rocke (1996) discusses several choices for the function r de�ning the S-estimator.
The striking feature is that whatever the choice, what remains very important is the
starting point of the algorithms. Indeed, (12) admits several solutions which depend on
the starting point of the algorithms. Even the TBS estimator can loose its high-break-
down properties if the starting point is not a high-breakdown point estimator, as would
be the case if one chooses the sample mean and covariance on the whole data set. We
therefore recommend using, for example, the MCDestimator computed by means of the
forward search algorithm as a starting point for the TBS estimator.
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3.3. The TBS estimator with incomplete data
When the data are incomplete and an S-estimator is preferred to a monotone
M-estimator, then weights in (12) can be chosen accordingly and ŷ i and Ci are given
by (3) and (4). As for the MCD estimator, one has to choose how to de�ne the
Mahalanobis distances (18) used in the computation of the weights. We propose
basing the weights on Mahalanobis distances computed on the observed values, i.e.

d 2
[o i ] = (y [o i ] ± m[o i ])

TS ± 1
[oo i ](y [o i ] ± m[o i ]). (21)

We then obtain the following system de�ning the S-estimator of m and S with missing
data

1
n

Xn

i = 1

n1(d[oi ])
y [oi ] ± m[oi ]

S [moi ] S
± 1
[ooi ](y [o i ] ± m[oi ])

" #
= 0, (22)

1
n

Xn

i = 1

n2(d [o i ])
S [ooi ] S [omi ]

S [moi ] S [mmi ]

" #

± n3(d[o i ])S

( )

= 0, (23)

where

S [oo i ] = (y [o i ] ± m[oi ])(y [o i ] ± m[o i ])
T,

S [omi ] = ST
[moi ] = (y [o i ] ± m[o i ])(y [oi ] ± m[o i ])

TS± 1
[oo i ] S [omi ],

S [mmi ] = S [moi ] S
± 1
[oo i ](y [o i ] ± m[o i ])(y [o i ] ± m[o i ])

TS ± 1
[oo i ] S [omi ]

+ S [mmi ] ± S [moi ] S
± 1
[oo i ] S [omi ].

The TBS estimator for missing data can be found by using an iterative procedure like the
one proposed by Rocke (1996) for S-estimators, to which we add an expectation step for
computing the conditional expectations ŷ i and Ci given current values of m and S. In
other words, the TBS estimator can be computed using an ER-type algorithm in which,
given current values for m and S, the quantities ŷ i , Ci and d i = d (y [o i ]) are computed in
the E-step using respectively (3), (4) and (21). In the R-step, using ŷ i , Ci and di
computed in the E-step, the quantities k and the weights w m

i , w d
i and wh

i are computed
by means respectively of (19) (or (20)), (15), (16) and (17), and �nally the values of m
and S in (12) are updated considering ŷ i , Ci , w m

i , w d
i and wh

i as �xed.
We will call the resulting algorithm the expectation–robust algorithm based on the

TBS estimator with missing data (ERTBS). It should be noted that in the case where all
the weights are equal to 1, one obtains the ML estimator with missing data. We also
propose using the MCD estimator as a starting point. The resulting estimates will be
identi�ed by the subscript ERTBS.

The robust estimator proposed by Little and Smith (1987) does not have the same
form as in (12). Actually, the weights are not directly applied to the correction matrices
Ci , which in our opinion does not make it consistent. Therefore, to be fair in our
comparisons, we slightly modify the R-step of the ER algorithm to

m (t + 1) =

P n
i = 1 wi ŷ

(t )
iP n

i = 1 wi

vech(S)(t + 1) =

P n
i = 1 w2

i vech((ŷ (t )
i ± m (t + 1))(ŷ (t)

i ± m (t + 1)) + C(t)
i )P n

i = 1 w 2
i ± 1

,

with wi de�ned in (8).
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4. Examples
In this section, we examine the estimators discussed in the previous sections on
simulated and real data and compare the results.

4.1. Simulated data
We turn now to the simulated data presented in Section 2.3. We �rst compute the
MCD estimator, which will be used as starting point for ER or ERTBS. We choose to
base the MCD on h = b0.75nc and do 100 forward searches. The resulting estimate is
used as starting point for the ER (modi�ed version), and we obtain the following
results:

mERMCD = [± 0.259 0.122 0.113 ± 0.0355 0.205],

S ERMCD =

1.23 0.18 0.25 0.14 0.05

0.75 0.39 ± 0.26 0.12

1.02 ± 0.02 0.02

0.96 0.00

0.82

2

666666666666664

3

777777777777775

.

It is clear that the results have been improved by a good starting point for ER. The
estimates are of the same order of magnitude as the true values. A normal probability
plot of the transformed distances Z i is given in Figure 2 (ERMCD) and it shows that the
outlying observations have been found and therefore their in�uence upon the estimates
downweighted.

For the ERTBS estimator, a choice also needs to be made a priori for the
breakdown point and ARP. We tried several combinations of values, which all lead
to similar results. The corresponding normal probability plots are given in Figure 2
(the �rst value in parentheses is for the breakdown point, the second for ARP) where
one can see that for all combinations, the outlying observations are detected and
therefore their in�uence upon the estimates downweighted. We also found that the
estimates are of the same order of magnitude as the true values and as the estimates
provided by ERMCD.

4.2. Working memory data
In Section 2.2, we saw that the MLand a robust estimator gave quite different results on
the working memory data. The robust estimates given in (5) and (6) are the ERTBS with
breakdown point 50%and ARP 1%, i.e. a very robust estimator. Computing ERMCD
using h = b0.75nc gives

mERMCD = [13.4 12.5 18.6 12.5 12.8 20.4 20.3 31.7],
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FERMCD =

BCXS BCXD ML1TOT ML2TOT CMTTMSS CMTTMSD CMTTMCS CMTTMCD

BCXS 1.0 0.84 0.43 0.51 ± 0.36 ± 0.49 ± 0.49 ± 0.46

BCXD 1.0 0.29 0.42 ± 0.44 ± 0.48 ± 0.51 ± 0.48
ML1TOT 1.0 0.85 ± 0.09 ± 0.16 ± 0.27 ± 0.28

ML2TOT 1.0 ± 0.19 ± 0.29 ± 0.37 ± 0.35

CMTTMSS 1.0 0.80 0.68 0.69
CMTTMSD 1.0 0.75 0.77

CMTTMCS 1.0 0.90
CMTTMCD 1.0

2

66666666666666664

3

77777777777777775

,

which are similar estimates to those of ERTBS. Compared to the classical MLestimator, a
high-breakdown point estimator gives a different look at the data.

5. Conclusions
We have considered two alternatives for high-breakdown robust estimation of the mean
and covariance of multivariate data when there are missing data. One is a modi�cation of
the ER algorithm of Little and Smith (1987) for which we propose to use as our starting
point a high-breakdown estimator, namely the MCD estimator for missing data. It is
computed by means of a modi�cation of the forward search algorithm. The other is a
generalization of the MLestimator for missing data to the class of S-estimators in which
we propose the use of the TBS estimator (Rocke, 1996) which is known to have a high-
breakdown point. It is also computed by means of an ER-type algorithm and, to make it
really robust, we propose using a high-breakdown point estimator such as the MCD
estimator as the starting point. For the simulated data set and the real data set, we found
that both procedures give similar results, and are robust to relatively large numbers of
outliers, which is not the case for ER with a non-robust starting point.

It should again be stressed that a robust estimation of the mean and covariance of
multivariate data is important if one wants to conduct statistical analyses such as factor
analysis that are not too much in�uenced by extreme data. Yuan and Bentler (1998)
showed that the in�uence of such data on covariance structure analysis is limited if the
covariance matrix is robustly estimated. Jöreskog (1979, p. 109) mentions the problem
of robustness when presenting the MLestimator for covariance structure analysis which
depends on the sample covariance matrix, saying that ‘if the distribution deviates far
from the multinormal it is probably wise to ‘robustify’ the (sample) variances and
covariances’. We can only endorse this type of statement.

Finally, to estimate means and covariance matrices for multivariate data with missing
values in practice, we have put the EM and ERTBS routines into an S-PLUS library that is
available at http://www.hec.unige.ch/professeurs/VICTORIAFESER_Maria-Pia/pages_
web/Recherche/Spluslib.htm. A ‘readme’ �le is also provided that explains how to
install the library and how to use the different functions. The data analysed in this paper
are also available at the same site.
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Jöreskog, K. G. (1979). Structural equation models in the social sciences: Speci�cation, estimation
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