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Abstract

In this paper, we use recently developed methods of very robust regression to extend missing value
techniques to data with several outliers. Simulation experiments reveal that additional outliers may be
imputed if one ignores the outliers already in the data. The combination of the forward search algorithm
for high breakdown point estimators and the EM algorithm or multiple imputation for missing values can
avoid problems of this kind. Some multiple deletion diagnostics for linear regression with incomplete
data are also discussed. c© 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

The study of missing values is one of the most important topics in applied statis-
tics, especially in survey problems and medical and biological data. In this paper, we
use recently developed methods of very robust regression to extend missing value
techniques to data with several outliers. The usual assumption is that missing values
are “missing at random” (MAR) (Rubin, 1976; see also Little and Rubin, 1987):
the missing-data mechanism does not depend on Xmis (the set of missing values)
though it may possibly depend on Xobs (the set of observed values). If the missing-
ness mechanism does not depend on the parameters of the model, this assumption is
called distinct. Moreover, if both MAR and distinctness hold, then the missing-data
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mechanism is said to be ignorable (Little and Rubin, 1987; Rubin, 1987). Little (1992)
suggests that model-based methods, such as maximum likelihood (ML), Bayesian
methods and multiple imputation (MI), are best among the current methods for
dealing with missing values.
The EM algorithm (Dempster et al., 1977) is an iterative computational method

to get a maximum-likelihood estimate when the data can be conveniently viewed as
incomplete. It has been widely used to cope with missing data problems. However,
it does not provide the variance–covariance estimate of estimated parameters for the
linear regression model with incomplete data. There are several approximate meth-
ods to get the asymptotic standard errors of ML estimators, for example, scoring or
Newton algorithm, bootstrapping the sample, or constructing numerical approxima-
tions to the information matrix by the EM computations (see Little, 1992). Beale
and Little (1975) gave an approximate formula for estimating the covariance matrix,
which has quite stable performance through di�erent missing patterns in a simula-
tion study (Little, 1979). Rubin (1987) proposed multiple imputation, that requires
multiply-imputed values for each missing value, resulting in multiple completed data
sets. One of the advantages of this method is to avoid underestimation of the true
variance.
Now consider the e�ects of outlying cases. The E-step of the EM algorithm which

involves �lling in missing values is based on the expected values of the data. Under
the normal model of applying multiple imputation, the distribution of missing ele-
ments is de�ned by the multivariate normal linear regression of the missing variables
on the observed variables (see Rubin and Schafer, 1990). However both of them are
a�ected by outlying cases. We may therefore impute extra outliers if the existing
outliers are ignored. The masking and swamping phenomena are more serious in
incomplete data than those without missing values.
For the detection of multiple outliers from linear regression problems without

missing data, it essentially needs the high breakdown estimators, such as the least
median of squares (LMS) and least trimmed squares (LTS) (see Rousseeuw, 1984;
Rousseeuw and Leroy, 1987). A problem with these high breakdown estimators
is the lack of e�cient algorithms. Several algorithms have been proposed recently
(e.g. Atkinson, 1994; Hawkins, 1994; Atkinson and Cheng, 1999). Among these
newly developed methods, Atkinson’s (1994) forward search algorithm for the LMS
is comparatively fast. Atkinson and Cheng (1999) adapt the forward search algorithm
for the LTS, which maintains a high breakdown point, to resist the contamination of
data, as well as to keep a high e�ciency. For the outlier problems in missing values,
Shih and Weisberg (1986) extended the distance measure (Cook and Weisberg, 1980)
of assessing the in
uence of the ith case by deleting it from the model for incomplete
data. Some quantities of multiple diagnostics will be discussed in this paper. However
they are less attractive and limited in the problems of high dimension and large
sample size. A procedure using estimators with a high breakdown point is then
proposed to detect multiple outliers for the linear regression model with incomplete
data. The main idea of the algorithm follows the forward search algorithm, that starts
with a randomly selected subset of observations. The observations of the subset are
incremented in such a way that outliers are likely to be excluded. If the data are
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missing, the EM or MI is applied to estimate parameters which are related to the
forward steps. Therefore, it can reveal the outlying cases as well as impute missing
values excluding those outliers from the data. Before doing this, we shall give a
comparison of estimation between the EM and MI for a linear regression model
with missing values in the explanatory variables.
In Section 2, a brief outline of the EM algorithm and multiple imputation is pre-

sented, and then a simulation study shows the characteristics of these two methods. In
Section 3, we �rst consider the multiple deletion regression diagnostic for incomplete
data, and then propose a robust procedure that combines the forward search algo-
rithm with the EM or MI to detect outliers from the linear regression model with
incomplete data. Some examples are used to illustrate the algorithm in Section 4
and comments are given in Section 5.

2. Missing values: Imputation

In this section, we will brie
y describe the idea of the EM algorithm and multiple
imputation methods, and also give a comparison between them.

2.1. The EM algorithm

The EM algorithm is an iterative method for the computation of the maximiser of
the posterior distribution of the observed data. Each iteration of the EM algorithm
consists of two steps: expectation (E step) and maximisation (M step). First of all,
we brie
y review the basic terminology of the algorithm. The basic idea behind the
EM algorithm is based on the procedure of augmenting the observed data y by a
quantity z, which is referred to as latent data, and then computing and maximis-
ing the posterior expectation of log (p(�|y; z)). One �rst computes the expectation
of log (p(�|y; z)) with respect to the conditional predictive distribution p(z|y; � (i)),
where � (i) is the current approximation to the mode of the observed posterior. This
is known as the E step. Then, one obtains the maximiser of this conditional expecta-
tion at the M step. The conditional predictive distribution is then updated using the
new maximiser and the algorithm is iterated until convergence. Speci�cally, let � (i)

be the current estimate of the parameter �. Given the current approximation to the
maximiser of the observed estimate � (i), the E step of the EM algorithm is de�ned
to compute the expected loglikelihood

Q(�|� (i))
∫
z
log(p(�|z; y))p(z|� (i); y) dz:

The M step then consists of maximising this expected function with respect to � to
obtain the update � (i+1).
Consider the model,

Y =X� + ” = �0 + X
 + ”; (1)
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where Y is an n× 1 vector of response variables, X is an n× p matrix with p− 1
explanatory variables, � = (�0; �1; : : : ; �p−1) is the vector of regression coe�cients,
and ” is an n × 1 vector of errors distributed N(0; �2I). For the complete data,
�̂ = (XTX)−1XTY is the least-squares estimator, which however is spoiled by one
or a few outliers. When data are incomplete, some values of the n× p data matrix
Z = (Y;X) = (zij) are “missing at random”. One approach to �tting the regression
is to maximise the likelihood of an approximating joint distribution for z = (y; xT),
where z is often the multinormal distribution, i.e.

zi =
(
yi
xi

)
∼ MNp

[(
�y
�x

)
;
(
�2y �yx
�xy �xx

)]
: (2)

Given the maximum-likelihood estimates (MLE) of � and �, the usual methods
for obtaining estimates for the conditional distribution of y|x can be used.
Iterative procedures for computing the MLE of �=(�;�), using the EM algorithm

are as follows. Let �0 be a starting value of �; Ri be the vector of observed variables
in the ith case, and �jk be the j-k entry of �. The E step �lls in the data matrix
and estimates conditional covariances of the unobserved values given the observed
ones. The �lled-in values are merely conditional expectations: for each i = 1; : : : ; n
and j = 1; : : : ; p

ẑij; t =E(zij|Ri; �t); zij not observed;

= zij; zij observed: (3)

Similarly, the conditional covariance matrix, Ĉ i; t for case i, given Ri and �t has
(j; k)th element

ĉjk; t = cov(zij; zik |Ri; �t); zij; zik not observed;

=0 at least one of zij; zik observed: (4)

The M step obtains the estimates of � and � by

�̂j; t+1 =
1
n

n∑
i=1

ẑij; t ; j = 1; : : : ; p;

�̂jk; t+1 =
1
n

n∑
i=1

{(ẑij; t − �̂j; t)(ẑik; t − �̂k; t) + ĉjk; t}; j; k = 1; : : : ; p: (5)

Iterate (3)–(5) until �t converges. At convergence, we denote the �tted matrix by
Ẑ=(Y; X̂)=(ẑij), the conditional covariance matrix for the ith case by Ĉi. The MLEs
of the regression parameters � and �2 can be obtained by the usual transformations:


̂ = �̂
−1
xx �̂xy;

�̂0 = �̂ − �̂
T
�̂x;

�̂2 = �̂2y − �̂yx�̂
−1
xx �̂xy:

(6)
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From (5) and (6), one can show that the convergent form of the MLE of 
 can then
be written as


̂ = (X̂
T
X̂ + Ĉ)−1X̂

T
Y; (7)

where Ĉ =
∑n

i=1 Ĉ i (Shih and Weisberg, 1986).
Little and Rubin (1987, pp. 141–145) have applied the sweep operator to get

the above estimation results, which allows easy implementation. Unfortunately, it
does not provide the covariance matrix of the estimated regression coe�cients. Little
(1979) gave an approximate method for estimating covariance matrix (see also Beale
and Little, 1975),

Aw = �̂
2S−1

w = �̂2(X̂
T
ŴX̂)−1; (8)

as an estimate of Var(�̂) in the incomplete data problem, where Ŵ is a diagonal
matrix with entries as follow:

wi =

{
1 for complete observations;
�̂2y=�̂

2
yi otherwise:

Here �̂2yi denotes the estimated residual variance of y given the observed part of
x for the ith case and �̂2y denotes the estimated residual variance of y given all
independent variables.

2.2. Multiple imputation

Instead of imputing a single value for each missing value, multiple imputation
is a technique designed to handle missing data, which �lls in the missing values
several times, then creating several completed data sets for analysis (see Rubin,
1987; Rubin and Schenker, 1986; Rubin, 1996; Schafer, 1997). Each data set is
analysed separately using techniques designed for complete data, and the results
are then combined in such a way that the variability due to imputation may be
incorporated. In the notation of Rubin, let Yobs be the set of observed values and Ymis
be the set of missing values. Then the posterior density of a population quantity Q
can be written as

h(Q|Yobs) =
∫
g(Q |Yobs; Ymis)f(Ymis |Yobs) dYmis;

where f(·) is the posterior density of the missing values and g(·) is the complete-data
posterior density of �. Therefore, multiple imputations are simulated draws from the
posterior distribution of the missing data.
The values of complete-data statistics Q̂ and U calculated on the s completed data

sets are Q̂∗1; : : : ; Q̂∗s and U∗1; : : : ; U∗s. The repeated-imputation estimate is

�Qs =
s∑
l=1

Q∗l=s; (9)
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and the associated variance–covariance of �Qs is

Ts = �Us +
s+ 1
s
Bs; (10)

where

�Us =
s∑
l=1

U∗l=s= within-imputation variability (11)

and

Bs=
s∑
l=1

(Q∗l − �Qs)(Q∗l − �Qs)
T=(s− 1)

= between-imputation variability: (12)

The large s repeated-imputation inference treats (Q − �Qs) as a normal distribution
with variance–covariance matrix Ts. Letting s=∞, we have

(Q − �Q∞) ∼ N(O; T∞);
where T∞ = �U∞ + B∞.

2.3. A simulation study comparing EM and MI

In this subsection, a simulation experiment is carried out to verify the character-
istics of the EM algorithm and multiple imputation. Consider a model like (1), with
the design matrix X generated from the multivariate normal distribution MN(O; Ip).
All parameters of regression coe�cients are assigned to 1, and �i ∼ N(0; 1). Once
the data are generated, let 10%, 20%, 30% and 40% of the elements of the X matrix
be randomly missing. Two kinds of data are generated: sample sizes n = 100 and
200 with dimension p= 4.
Glynn et al. (1993) give a short simulation study of multiple imputation applied

to the linear regression model. They only consider missing values on the dependent
variable Y . As mentioned by many authors (see Shih and Weisberg, 1986; Little,
1992), they will not convey any information on the estimation of regression coe�-
cients if dependent variable Y is missing. This kind of situation is therefore excluded
from the following studies. The data are �rstly converted into the monotone missing
pattern (see Little and Rubin, 1987; Schafer, 1997) when applying the EM and MI.
The multiple imputation procedure we employed here however is slightly di�erent
from that of Schafer, (1997). The imputed values X̂ l of the MI procedure are gen-
erated from a normal distribution with mean (3) and covariance (4), that is to say,
after convergence of the EM algorithm

Xmis; I ∼ MN(X̂ I ; ĈI);
where I indicates the subset of observations with the same missing pattern. One
or more imputed data sets will then be obtained. The usual least-squares regression
analysis is carried out for each of the imputed data sets, yielding bl and �̂

2
yl. The
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multivariate analogous of (9)–(12) are

bl = (X̂
T
l X̂l)−1X̂Y; l= 1; : : : ; s;

�b=
s∑
l=1

bl=s;

U =
s∑
l=1

�̂2yl(X̂
T

l X̂l)−1=s;

B =
s∑
l=1

(bl − �b)(bl − �b)T=(s− 1);

Var( �b) =U +
s+ 1
s
B:

(13)

Two, three and 10 repeat imputations are considered in the study. Following the
simulation study of Little (1979), for each problem 300 data sets are used to calculate
the pivotal quantity

PQ(�̂j) = (�̂j − �j)=
√
Var(�̂j):

As large sample theory is applicable, PQ(�̂j) should have approximately a standard
normal distribution. Tables 1 and 2 are the mean sums of squares (MSPQ) of PQ(�̂j)
for sample sizes 100 and 200, respectively. Under the assumption that the pivotal
quantities are standard normal deviates, the MSPQ has expected value 1.

Table 1
The mean sums of squares of 300 simulated data sets of sample size n = 100 and p = 4 containing
di�erent proportions of missing values (the values in parentheses are numbers of repeat imputation
samplings in multiple imputation)

Proportion of Methods Regression coe�cients
missing values (%) �1 �2 �3 �0

EM 1.385 1.133 1.154 1.059
10 MI(2) 1.252 1.090 1.113 1.012

MI(5) 1.207 1.046 1.037 0.990
MI(10) 1.220 1.034 1.076 0.955

EM 1.499 1.479 1.535 1.445
20 MI(2) 1.271 1.404 1.379 1.348

MI(5) 1.172 1.289 1.326 1.268
MI(10) 1.236 1.266 1.331 1.234

EM 1.704 1.791 1.782 1.563
30 MI(2) 1.402 1.581 1.662 1.441

MI(5) 1.294 1.485 1.523 1.284
MI(10) 1.305 1.566 1.496 1.315

EM 2.562 2.573 2.549 2.398
40 MI(2) 2.372 2.441 2.351 2.263

MI(5) 1.867 2.228 2.265 1.966
MI(10) 1.780 2.016 2.175 1.871
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Table 2
As Table 1 with sample size n= 200

Proportion of Methods Regression coe�cients
missing values (%) �1 �2 �3 �0

EM 1.239 1.108 1.058 1.211
10 MI(2) 1.152 1.002 0.984 1.180

MI(5) 1.070 1.005 0.967 1.108
MI(10) 1.075 1.017 0.976 1.094

EM 1.328 1.349 1.270 1.241
20 MI(2) 1.288 1.215 1.127 1.150

MI(5) 1.091 1.113 1.084 1.115
MI(10) 1.085 1.148 1.097 1.077

EM 1.784 1.469 1.557 1.570
30 MI(2) 1.464 1.440 1.381 1.499

MI(5) 1.317 1.297 1.306 1.299
MI(10) 1.366 1.212 1.259 1.236

EM 2.349 2.071 2.166 2.253
40 MI(2) 1.813 1.996 2.106 1.992

MI(5) 1.632 1.646 1.924 1.800
MI(10) 1.653 1.731 1.710 1.831

From Tables 1 and 2, we see that all the MSPQ values from the MI are closer
to 1 than those from the EM algorithm. This implies that MI provides a good
approximation of the covariance matrix of coe�cient estimates. The imputations
repeated 5 and 10 times in MI have better results than do only two imputations.
When the proportion of missing values is small, 5 times seem to be enough for
most cases. However when the dimension and proportion of missing values increase,
more imputations lead to better results.

3. Robust procedure for incomplete linear regression

In this section, we are concerned with the detection of outliers from a linear
regression model with incomplete data. Firstly, simulated data are used to illustrate
the problem of �lling in missing values while ignoring existing outliers. Then some
aspects of multiple deletion diagnostics adapted from complete data are presented.
Finally, a robust procedure is proposed to deal with problems of this kind.

3.1. Additional outliers are imputed when existing outliers are ignored

Table 3 shows simulated complete data from model (1) with sample size 30,
dimension 3, and including two outliers. The design matrix of the good data is
generated from MN(0; I); � iid∼N(0; 1), and the model is y = 2 + x1 + 0:5x2, whereas
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Table 3
Simulated data with two outliers, cases 29 and 30

Case X1 X2 Y

1 −0.2530425 0.78629518 2.12037182
2 −1.3424740 −0.09442905 0.59034646
3 1.0774149 0.27445057 3.27688575
4 −0.7256962 0.16148840 1.32058346
5 −1.3008882 1.54671621 1.48515952
6 1.5066662 −1.07856095 2.91094041
7 −2.5234580 0.03951394 −0.47175393
8 −0.3100128 0.21172406 1.80243886
9 0.4973584 −1.41039443 1.83068776
10 −0.5289536 −1.32829022 0.79587841
11 0.3795035 0.83916545 2.76672387
12 −1.5931098 −0.62407494 0.09427933
13 0.7042318 1.27642202 3.41215062
14 −1.8497643 −0.81236935 −0.25570947
15 −0.2748396 1.13541174 2.31134653
16 −0.1045025 −0.10942876 1.88417208
17 0.8271669 0.03965216 2.78954291
18 −0.6508313 0.85837823 1.77749276
19 −0.4010624 −0.54199392 1.38752222
20 0.9175199 0.43785310 3.09088349
21 −1.3967365 0.65102905 0.93447423
22 0.7595087 −0.34827709 2.65531683
23 −1.1566393 0.78649443 1.28391695
24 1.5474712 −0.58440167 3.25499225
25 0.5085918 0.58523446 2.83696365
26 −2.1660635 −1.58705235 −1.01987839
27 −0.6296006 −0.98754519 0.80522650
28 1.3586968 −0.09049257 3.25004196
29 4.3663468 4.63854504 0.42494628
30 5.9602356 4.84597874 2.11098456

the bad data are from

(
y
xi

)
∼ MN




 25
5


 ;


 0:5 0:0 0:00:5 0:0

0:5




 :

The scatter plots are shown in Fig. 1(a)–(c).
With the forward search algorithm of Atkinson (1994), the algorithm normally

starts with a randomly sampled subset with m = p + 1 cases from the data. Then
the subset is augmented based on the ordered residuals calculated by the current
subset, until all cases are included. Therefore outliers are likely to be excluded
during the processes of subset augmentation. Using the same idea, the forward search
algorithm for the LTS provides a very robust method to detect multiple outliers as
well as parameter estimates with a high e�ciency for the linear regression model
(see Atkinson and Cheng, 1999).
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Fig. 1. Simulated data. (a) X 2 vs. X 1; (b) Y vs. X 1; (c) Y vs. X 2; (d) A stalactite plot using the
forward searches for the LTS.

Very robust �tting using LTS �tted to 80% of the data and the forward search
algorithm reveal that cases 29 and 30 are extreme outliers. Fig. 1(d) is a stalactite
plot, showing those cases identi�ed as outliers during the forward search. 100 random
searches for the algorithms were used as suggested in Atkinson (1994). In the plot the
values of the scaled absolute studentised residuals greater than 3 are indicated by ∗,
and those greater than 2 by +. To illustrate the e�ect of these outliers on missing
data procedures, we assume that cases 27 and 28 are missing at random as shown
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Table 4
Cases 27 and 28 assumed missing at random (the values in parentheses are values imputed by the EM
algorithm)

Case X1 X2 Y

27 −0.6296006 NA (0.194) 0.80522650
28 NA (0.703) −0.09049257 3.25004196
29 4.3663468 4.63854504 0.42494628
30 5.9602356 4.84597874 2.11098456

in Table 4. Fig. 2(a)–(c) are the scatter plots of the imputed data from the EM
algorithm. Although it is not obvious from the scatterplots, the two missing cases 27
and 28 are also identi�ed as outliers when the forward search algorithm is applied
with 80% of data �tted in the LTS criterion. The stalactite plot of the best result
from 100 searches is shown in Fig. 2(d). This example shows that we may easily
impute “bad” values to missing observations if we do not take care of the existing
outliers.

3.2. Multiple deletion diagnostics in incomplete data

The approach to missing data problems when outliers are present of Shih and
Weisberg (1986) involves the use of regression diagnostics. One way to the regres-
sion diagnostics is to identify those cases that give the largest change in a speci�c
aspect of an analysis when one or more cases are removed from data. From now
on, we let X =X to make the notations be the same as discussed in the regression
literature. For �tting with complete data, the in
uence of the ith case can be assessed
by the distance measure

Di = (�̂(i) − �̂)TXTX(�̂(i) − �̂)=p�̂2:
Cook and Weisberg (1980) give a detailed discussion of this distance for data without
missing values. Shih and Weisberg (1986) developed Cook’s distance for the e�ect
of “deleting one case at a time” from incomplete data, which is de�ned to be

Di(Ŵ) = (�̂(i) − �̂)TX̂
T
ŴX̂(�̂(i) − �̂)=p�̂2;

where �̂(i) is the coe�cient estimate after deleting case i; i=1; : : : ; n, and Ŵ is given
in (8). Observations with the largest values are referred to as (potentially) in
uential.
However, the method may fail to identify the right in
uential observations if there
exist multiple outliers in the complete data set. Multiple deletion diagnostics are then
considered. For complete data, the Cook’s distance of multiple deletion (see Cook
and Weisberg, 1980; Atkinson, 1985, p. 221) is

DI = (�̂(I) − �̂)TXTX(�̂(I) − �̂)=p�̂2;
where �̂(I) is the coe�cient estimate when the set I of observations is deleted. The
analogue of Cook’s distance with incomplete data is, in a similar way, de�ned as

DI (Ŵ) = (�̂(I) − �̂)TX̂
T
ŴX̂(�̂(I) − �̂)=p�̂2: (14)



372 A.C. Atkinson, T. Cheng / Computational Statistics & Data Analysis 33 (2000) 361–380

Fig. 2. Extra outliers are imputed if existing outliers are ignored when using the EM. (a) X 2 vs. X 1;
(b) Y vs. X 1; (c) Y vs. X 2; (d) A stalactite plot.

We propose the following quantity:

RI =
RSS− RSS(I)

RSS
; (15)

where RSS is the residual sum of squares of all data, whereas RSS(I) is that from
deleting I observations. If RI is relatively small or near 0, the error sum of squares
is due to random sources rather than the I cases. Conversely, RI being larger implies
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that the I cases have more e�ect on the error, which indicates these observations are
outliers.
A related idea which considers the change in volume of the con�dence region for

� measured by the determinant of XTX is (see Belsley et al., 1980, p. 38)

QI =
RSS(I) · det(XT

(I)X(I))
RSS · det(XTX)

:

Similarly, in incomplete data, we can consider

QI (Ŵ) =
RSS(I) · det(X̂T

(I)Ŵ (I)X̂ (I))

RSS · det(X̂T
ŴX̂)

: (16)

All of the above quantities are presented using the approximate covariance of
parameter estimates of Little’s EM algorithm. If the MI is considered, the only
change is that we use (13) instead of the function of Ŵ .
Unfortunately, all the multiple deletion quantities have the same di�culties of be-

ing computationally intensive and not easy to summarise or present. The calculation
also requires large storage in computer memory, increasingly so with higher dimen-
sions and larger sample sizes. For robust statistics and identi�cation of outliers in
complete data, the forward search algorithm provides a feasible tool to �nd some
high breakdown estimators. The results can also be conveniently presented in the
stalactite plot (Atkinson, 1994). In the next section, we propose an extension of this
procedure to the detection of multiple outliers for incomplete data, that combines the
forward search algorithm with EM or MI.

3.3. The forward search algorithm for incomplete data

In the robust approach, we also assume that Z follows a multivariate normal
distribution as in (2). The EM algorithm is �rst applied to impute missing values as
in the previous section. Then, the procedure of detection of outliers is carried out
from the forward search algorithm for the least trimmed squares estimator. Hence
the method considered here, which is a combination of the EM algorithm to �ll in
missing values and the forward search algorithm to detect outliers. The details are
described as follows.
With the forward search algorithm of Atkinson (1994), the algorithm starts with a

randomly sampled m=p+ 1 cases from the data, and a starting value (�̂(0)m ; �̂
(0)

m ) is
given. After convergence of the EM algorithm (3)–(5), we have the estimated mean
and covariance matrix of the m cases, (�̂m; �̂m), imputed values X̂ and regression
coe�cient estimates from (6) or (7),

�̂(m) = (X̂
T

mX̂m + Ĉm)−1X̂
T

mYm;

where X̂m and Ym are the design matrix and response variable corresponding to the
m observations, and Ĉm=

∑
i∈m Ĉi. For given m the residuals from this estimate are

ei;m = yi − x̂Ti �̂(m) (i = 1; : : : ; n). We then order them
e2(1);m ≤ e2(2);m ≤ · · · ≤ e2(n);m: (17)
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The LTS criterion requires the ordered residuals (17) to obtain the variance estimate

�̃2q(m) =
q∑
i=1

e2(i);m=(q− p);

where the choice of q has been discussed in Atkinson and Cheng (1999). Each
forward search involves successively augmenting the subset until m= n and yields a
series of values of �̃2q(m), the minimum value �̃2q; j, de�ning the performance of the
jth search. The overall estimate of �2 from the searches is �̃2q=minj �̃

2
q; j. The forward

search however uses scaled residuals for observations not included in the subset. For
the m included observations, the least-squares residuals e2i;m are used. But, for the
n − m observations not included in the �t, the least-squares residuals are scaled by
the variance of prediction. Let M be the subset with m cases. The ordering is thus
on the n squared residuals r2i de�ned by

r2i = e
2
i;m; i ∈ M;

r2i = e
2
i;m=(1 + di); i 6∈ M;

(18)

with di= x̂
T
i (X̂

T

mX̂m+Ĉm)−1x̂i. The subset size is incremented to m+1, based on the
rule of ordering of residuals (18). Usually one observation is added in the subset,
but sometimes two or more observations are introduced when one or more must

leave. Given a new starting point, (�̂(0)m+1; �̂
(0)

m+1), of a new iterative EM algorithm
based on the m+1 cases, the forward step restarts again to obtain (�̂m+1; �̂m+1), the
�lled-in values and the required estimates. The procedure remains the same as that in
Atkinson and Cheng, except that the EM algorithm is used to �ll in missing values.
The important fact of the forward search algorithm is that outlier cases are likely
to be excluded from the forward processes, resulting in reasonable imputed values,
based on good data. To calibrate the residuals, the forward procedure is also run on
synthetic data with the same structure of explanatory variables X as the data but with
Y simulated from a standard normal distribution. To save computational time, the
missing values of X may be imputed by the median of each variable. The purposes
of this step are to reduce the bias in the estimate �2q and to scale the residuals used
in the detection of outliers as presented in the stalactite plot (Atkinson, 1994). The
residuals used for plotting are the scaled studentised residuals

ti =
ei;m ��q(m)

�̃q(m)
√
(1− hi) ; i ∈ M;

where hi is the hat matrix diagonal of the same form as di but for i ∈ M, and

ti =
ei;m ��q(m)

�̃q(m)
√
(1 + di)

; i 6∈ M;

where ��2q(m) is the average of �̃
2
q(m) for each m, from 100 simulations of forward

searches.
If multiple imputation replaces the EM step in the algorithm, the only di�erence

is the estimation of regression coe�cients using �b of (13) instead of (7), when the
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Fig. 3. Simulated data. A stalactite plot of the best solution from 100 searches using the robust
procedure described in subsection 3:3.

corresponding residuals and hat matrix are

eil = yi − x̂Ti;lbl i = 1; : : : ; n and l= 1; : : : ; s

�e i =
s∑
i=1

eil=s;

dil = x̂
T
i;l(X̂

T

m;lX̂m;l)−1x̂i ;

�di =
s∑
i=1

dil=s:

4. Examples

Two data sets are used to show the performance of the algorithm.

4.1. Simulated data

We �rst applied the above combined algorithm to the simulated data in Section 3.1.
A hundred forward searches were implemented as usual. Fig. 3 is the best solution
among them, which reveals the same outliers as Fig. 1(d). This demonstrates that
the algorithm can impute reasonable results as well as detect outliers.

4.2. Clinical trial data

The data were collected from a clinical trial on 34 male patients. There are three
explanatory variables, body weight (WT) in kg, serum creatinine (SC) concentration
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Fig. 4. Clinical trial data. A stalactite plot of the best solution from 100 forward searches.

in mg=deciliter and age in years. The response variable is endogenous creatinine
(CR). Shih and Weisberg (1986) used this data set to present their method for
assessing in
uence in multiple linear regression with incomplete data. A typical
model recommended in many pharmacokinetics textbooks is (see Shih and Weisberg,
1986),

E(log(CR)) = �0 + �1 log (WT) + �2 log (SC) + �3 log (140− age):
They applied the method of “deleting one case at a time” of Cook’s distances in
complete data to incomplete data, and found that case 27 is in
uential and case 30
has a relatively large in
uence, but not signi�cantly so. Liu (1995) also employed
the data which were modi�ed to the monotone missing pattern, to demonstrate a
Bayesian imputation method using multivariate t distributions. We here use Liu’s
modi�ed data to present the algorithm of Section 3.3.
Fig. 4 is the stalactite plot of the best solution of the 100 searches, which shows

that cases 26–28 are indicated as outliers using 90% of the data to �t the LTS
criterion. Both the EM and MI with �ve imputations give very similar results, because
of the small proportion of missing values. The swamping and masking phenomena
can be easily revealed by the stalactite plot. The �nal step of the forward search
includes all cases, so that the estimate is the MLE (7), leading to the same outliers
as Shih and Weisberg. Hence the cases 27 and 30 are of interest in these data.
Other proportions of the data can be used in the LTS �t, as Atkinson and Cheng

(1999) show. As long as outliers are excluded, the higher the proportion of the data
�tted in the LTS, the higher the e�ciency of parameter estimates and the more stable
the resulting detection of outliers. Di�erent proportions of the data �tted to the LTS
are also considered here. For 80% of the data �tted, only two of 100 searches found
the optimum and revealed the right outliers, whereas for 90% of the data, the leading
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Fig. 5. Diagnostics plot for clinical trial data.

three optima, 5 of the 100 searches, have results as in Fig. 2. Fitting either 80%
or 90% of the data leads to quite similar results and reveals that cases 26–28 are
outliers. For 70% of data �tted the LTS yields results with more outliers including
cases 26–28.
Rousseeuw and van Zomeren (1990) �rst proposed a plot of Studentised residuals

(from the LMS) against the robust distances (from the minimum volume ellipsoid
estimator, MVE) of the X matrix, from which the di�erent types of outliers can
be classi�ed. The cuto�s values are indicated ±2:5 and

√
�2p;0:975 by horizontal and

vertical lines. Fig. 5 is the plot of Studentised residuals (from the LTS) against the
robust distances,

(x̂k − �x(m))T�̂
−1
xx (m)(x̂k − �x(m));

where �x(m) and �̂xx(m) are the sample mean and sample covariance corresponding
to the design matrix at the forward step m, i.e., the subset with m cases. Under
good behaviour of the forward search algorithm, they are essentially the minimum
covariance determinant (MCD) estimators of multivariate location and shape. We can
see cases 27 and 28 are extreme outliers, and case 26 is a mild one, whereas case
30 is an outlier from the X matrix, but it is not a regression outlier. The plot has
been suggested independently by Rousseeuw and Van Driessen (1998) and called
the distance–distance plot (D–D plot).
We now contrast this robust analysis with the application of the diagnostic quanti-

ties discussed in Section 3.2 for these data. Table 5 shows that the values of DI (Ŵ)
are greater than 5.5 for all combinations of deleting three cases. Both RI and QI (Ŵ)
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Table 5
(Clinical trial data) Multiple deletion diagnostics of cases with DI (Ŵ) (I = 3) larger than 5:5

Deleted cases DI (Ŵ) (14) RI (15) QI (Ŵ) (16)

1 27 28 5.784 0.702 0.102
2 27 28 5.669 0.704 0.099
3 27 28 6.416c 0.706 0.090
4 27 28 5.918 0.698 0.093
5 27 28 5.971 0.699 0.098
6 27 28 5.759 0.701 0.099
7 27 28 5.860 0.734c 0.084c

8 27 28 5.562 0.717 0.097
9 27 28 5.800 0.702 0.106
10 27 28 5.529 0.718 0.093
11 27 28 6.044 0.728 0.095
12 27 28 5.808 0.702 0.107
13 27 28 5.976 0.700 0.100
14 27 28 5.764 0.702 0.103
15 27 28 6.021 0.720 0.097
16 27 28 7.688a 0.737 0.076b

17 27 28 5.636 0.710 0.101
18 27 28 5.707 0.707 0.097
21 27 28 5.799 0.723 0.090
24 27 28 5.591 0.702 0.096
26 27 28 6.725b 0.766a 0.072a

27 28 29 5.725 0.703 0.113
27 28 30 6.392 0.739b 0.085
27 28 31 5.614 0.696 0.110
27 28 32 5.926 0.708 0.109
27 28 33 5.701 0.703 0.112
27 28 34 5.630 0.697 0.109
aIndicates the value with the largest departure.
bThe second largest.
cThe third largest.

show that deletion of cases 26, 27 and 28 causes the largest change. In particular, all
the combinations including deletion of cases 27 and 28 have large departures. Be-
cause of the very signi�cant e�ect of case 27 (see the results of Shih and Weisberg),
Table 6 shows the quantities when deleting two cases from the data without case
27. The deletion of cases 26 and 28 has the largest departures of all three quantities.
The di�erent conclusion reached by Shih and Weisberg is due to the single deletion

diagnostic which has a masking e�ect.

5. Comments

The imputation method plays an important role in the problems of missing values.
The current imputation methods for missing values tend to move cases to the centre
of the data since the imputed values are conditional expectations. Such methods may
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Table 6
(Clinical trial data without case 27) Some multiple deletion diagnostics of cases with DI (Ŵ) (I = 2)
larger than 0:45

Deleted cases DI (Ŵ) (14) RI (15) QI (Ŵ) (16)

3 28 0.541 0.252 0.471
7 28 0.585 0.323 0.438
11 28 0.489 0.310 0.493
11 30 0.488 0.190 0.628
15 28 0.469 0.289 0.503
15 30 0.523 0.177 0.627
16 28 0.904c 0.330 0.397b

16 30 0.518 0.176 0.544
17 20 0.527 0.270 0.519
18 20 0.516 0.257 0.506
18 30 0.504 0.169 0.609
19 20 0.772 0.343b 0.441
20 24 0.598 0.250 0.497
21 30 1.015b 0.220 0.536
25 28 0.465 0.330 0.429c

26 28 1.141a 0.405a 0.373a

26 30 0.704 0.222 0.550
28 30 0.903 0.338c 0.443
aIndicates the value with the largest departure.
bThe second largest.
cThe third largest.

impute extra outliers if existing outliers are ignored. Therefore, the swamping and
masking e�ects are more serious in incomplete data. Our studies show that the com-
bination of the forward search algorithm with the EM algorithm or MI is successful
in detecting outliers from linear regression models with an appreciable proportion of
missing values and also provides a very robust estimation procedure. Multiple dele-
tion diagnostics also provide some useful information on potential outliers, despite
the computational problem.
It is well known that high breakdown point estimators may have low e�ciency.

Moreover, missing values may further reduce the e�ciency of the estimates. It is
worth determining how much e�ciency has been lost by the algorithm. We hope
that our current large-scale simulation study will clarify these problems.
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