
Abstract To determine whether a chromosomal band is a
fragile site rather than a spontaneous breakpoint, an es-
sential step is to test the nonrandomness of breakage at the
region. In this paper, the nonapplicability of the testing
procedure introduced by Bohm et al. is discussed, and a
new detection procedure is proposed. This new procedure
considers the relations of one site with the others, and can
be applied to tests of the nonrandomness of breakpoints
under either the proportional probability model, or the
equiprobability model. A data set for Chinese patients
with colorectal carcinoma is analyzed as an illustration of
the proposed method.

Introduction

Fragile sites are an important issue in human genetics, and
have attracted attention because of their apparent associa-
tion with the origin of chromosomal rearrangements in
cancer (Hecht and Glover 1984; Hecht and Sutherland
1984; Le Beau and Rowley 1984; Le Beau 1986; De
Braekeleer 1987; Ardisia et al. 1993; Ohta et al. 1996;
Sozzi et al. 1996). To determine whether a chromosomal
band is a fragile site, rather than a spontaneous break-
point, an essential step is to test the nonrandomness of
breakage at the region. All the published methods test the
nonrandomness either following the proportional proba-
bility model (PPM) or the equiprobability model (EPM).
The PPM assumes that the probability of a random break

at a band is proportional to the band width, whereas the
EPM assumes that the probability of a random break is in-
dependent of the band width. Basically, the current meth-
ods can be divided into two major types: one considers
that, either based on EPM or PPM, determination of the
nonrandomness of breakage of a band is only related to its
theoretical breakage proportions over all bands, and noth-
ing to do with the observed band orders (Smith 1986; De
Braekeleer and Smith 1988; Mariani 1989; Tarone 1989;
Vasarhelyi and Friedman 1989; Jordan et al. 1990; Tai et
al. 1993, 1998); the other considers that, also based on
EPM or PPM, the observed band orders should be pooled
into analysis, such that testing results of random or non-
random breakpoints coincide with the observed band or-
ders (Bohm et al. 1995). The two types of analytical
method are derived from two different ways of thinking
about the reasonable definition of a nonrandom break-
point. There is no theoretical or applied evidence to show
that the latter is better than the former, simply because the
latter uses a more complicated multinomial distribution as
the basis for statistical analysis and the former uses the bi-
nomial assumption. In this paper, we shall first demon-
strate that it is not correct as Bohm et al. (1995) contended
that their test procedures can be directly modified to scale
the multinomial-homogeneity expectations to reflect band
width. Second, a new detection procedure that detects
nonrandom breakpoints using the highest observed break-
age is proposed. To demonstrate the applicability of our
method, a real data set for Chinese patients with colorec-
tal carcinoma is analyzed for illustration.

Nonapplicability of the procedures 
of Bohm et al. under PPM

Let k be the number of all bands investigated and m the
number of cell metaphases observed in a study. For each
band in a metaphase, two observations of gaps or breaks
may be detected because there are two homologous chro-
mosomes corresponding to a band. Let Nij be the number
of breaks observed at the two homologous chromosomes of

Chia-Ding Hou · Jengtung Chiang · John Jen Tai

Testing the nonrandomness of chromosomal breakpoints 
using highest observed breakages

Hum Genet (1999) 104 :350–355 © Springer-Verlag 1999

Received: 27 August 1998 / Accepted: 18 December 1998

ORIGINAL INVESTIGATION

C.-D. Hou
Department of Statistics, Fu Jen Catholic University, 
Taipei, Taiwan, ROC

J. Chiang
Department of Statistics, National Chengchi University, 
Taipei, Taiwan, ROC

J. J. Tai (Y)
Institute of Epidemiology, National Taiwan University, 
1 Jen-Ai Road, Section 1, Taipei, 100 Taiwan, ROC 
Fax: +886-02-23511955



the ith band of the jth metaphase, Nij = 0, 1 or 2, where 
i = 1,2,…k, j = 1,2,…m, and the marginal total Ni = Σm

j = 1 Nij

be the total number of breaks observed at the ith band
over m metaphases. The total number of breaks detected
is n = Σk

i = 1 Ni. Denote the proportion of breaks occurring
at the ith band to the total breaks in a haploid set by Pi for
i = 1, 2, ...k, then the vector of the observed number of
breaks (N1, N2, ..., Nk) is multinomially distributed as:

(N1, N2,..., Nk) ~ mult(n,k,P~), (1)

where P~ = (P1, P2,..., Pk). Based on this distribution, Bohm
et al. (1995) thought that a nonfragile site has a small and
essentially equal probability of breakage, and a fragile site
has a large and not necessarily equal probability of break-
age. Under the EPM point of view, they assumed that the
k chromosomal sites can be indexed according to their or-
der in probability of breakage, i.e.,

P1 ≤ P2 ≤ ..... ≤ Pk

The first k1 (≤ k) sites are defined to be nonfragile and the
remaining k – k1 sites are defined to be fragile if probabil-
ities of breakage satisfy

P1 = P2... = Pk1
< 1–K < Pk1 + 1 ≤ PK1 + 2 ≤ ... ≤ Pk

They test incrementally smaller subsets of the data for ho-
mogeneity under model (1), which assigns equal probabil-
ities to a maximal set of nonfragile and unrestricted prob-
abilities to the remaining fragile sites with significantly
higher number of breaks, i.e., test the null hypothesis

H0 :P1 = 1–k1
, P2 =  1–k1

,... Pk1
=  1–k1

(2)

stepwise at significance level α––t+1 at the tth iteration [the use
of significance level α––t+1 at the tth iteration is an application
of the Bonferroni approach, see Seber (1977)] using the
Pearson’s χ2 statistic

(3)

or the likelihood ratio statistic

(4)

where 

Bohm et al. (1995) concluded that their testing procedure
can be directly modified to scale the multinomial-homo-
geneity expectations to reflect band width and hence their
procedure can be used under the PPM assumption. Let wi

be the width of the ith band in a haploid and W = Σk
i = 1wi

be the total width of all bands. Let P~
0 = (P0

1, ..., P0
k) = 

(w1––w
,...,wk––w

). According to their contention, under the PPM 

assumption, we can replace hypothesis (2) by

H0 :P1 = P0
1,....., Pk1

= P0
k1

(5)

and replace statistic (3) by

or replace statistic (4) by

and perform the above prodecure to identify fragile sites
iteratively. Imposing the observed orders on the null hy-
pothesis of EPM, it is acceptable using the method of
Bohm et al. to exclude a band of the highest observed
rank stepwise if the testing result is significant at some it-
erations, But, obviously, since the observed band orders of
a set of breakage data cannot reflect the true orders under
PPM, imposing the observed orders on the null hypothesis
of PPM for testing, their method is not applicable. The
following two examples as listed in Tables 1 and 2 are used
for illustration of this point.
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Table 1 Analysis of artificial
data using the procedure of
Bohm et al. (1995). (α = 0.05),
B~ = (B1, B2,...,B7), N~ = (50, 17,
10, 8, 7, 1, 7), W~ = (50, 17, 10,
8, 7, 6, 2). Bi, band i; N~ , vector
of observed breakages; W~ , vec-
tor of band widths; R~ = 
(R1,...,Rk), Ri = , P

~
i = 

, i = 1,...,k; α* = α–––
t+1

; 

P~
0, breakage proportion under 

PPM; P~
~

observed breakage
proportion

N
N

i

i
k
1∑

P̃
P

i

i
0

Iteration P~
0 P~

~
R~ χ2 χ2

α*,(k–1)
Conclusion

t

1 (0.5,0.17,0.1 (0.5,0.17,0.1 (1,1,1, 16.67 14.45 B1 is fragile
0.08,0.07, 0.08,0.07 1,1,
0.06,0.02) 0.01,0.07) 0.163,3.5)

2 (0.34,0.2, (0.34,0.2, (1,1, 16.67 13.84 B2 is fragile
0.16,0.14 0.16,0.14, 1,1,
0.12,0.04) 0.12,0.04) 0.167,3.5)

3 (0.303,0.242, (0.303,0.242, (1,1, 16.67 12.76 B3 is fragile
0.212,0.182, 0.212,0.03, 1,0.167,
0.091) 0.212) 3.5)

4 (0.348,0.304, (0.348,0.304, (1,1, 16.67 11.34 B4 is fragile
0.261,0.087) 0.043,0.304) 0.167,3.5)

5 (0.467, (0.467, (1,0.167, 16.67 9.58 B5 is fragile
0.4,0.133) 0.067,0.467) 0.467)

6 (0.75,0.25) (0.125,0.875) (0.167,3.5) 16.67 7.24 B7 is fragile

7 1 1 1 0 – B6 is nonfragile



In the first example in Table 1, by examining the ratio
between the two breakage proportions under either the ob-
served distribution or the PPM, the result indicates 

nonfragility at band 1 to band 6 ( = 1, i = 1,..., 5; =

0.16) but fragility at band 7 ( = 3.5). However, fol-

lowing the procedure of Bohm et al., except for band 6, all
the others are declared fragile. In the second example in
Table 2, the observed distribution indicates nonfragility at 

band 1 ( = 0.5) but fragility at band 7 (P = 3.5).

However, a converse result is obtained for the two bands
if the procedure of Bohm et al. is followed. The anom-
alous conclusions of the above examples show the nonap-
plicability of their procedure under PPM due to failure ad-
equately to detect outlying cells simultaneously.

An alternative procedure 
using highest observed breakages

Bohm et al. (1995) mentioned that their procedure does
not circumvent the problem inherent with the sparse con-
tingency tables obtained from chromosomal breakage data
for single individuals. Koehler and Larntz (1980) con-
cluded from simulation that the χ2 approximation to Pear-
sons’s χ2 or likelihood ratio test statistics tends to be poor
for sparse tables containing both small and moderately large
expected frequencies. Vasarhelyi and Friedman (1989)
and Tarone (1989) also concluded that a χ2 test is inade-
quate for localization of preferential sites of breakage at
the level of chromosomal bands because the calculations
involve a large number of chromosomal bands and a small
number of breakpoints in each band.

In addition, calculating the Pearson’s χ2 (or likelihood
ratio) statistics iteratively for testing nonrandomness us-
ing the procedure of Bohm et al. (1995) requires computer
assistance, because n and k are usually large in real data.
This is inconvenient for a cytogeneticist who does not
have much training in statistical computation. Therefore,
developing a method that can avoid using a computer
should be useful. In the following, a new detection proce-
dure is proposed. This new procedure detects the nonran-
domness of breakpoints using the highest observed break-

age. This procedure can be directly modified to reflect
band width and hence can be used to identify fragile sites
under the PPM assumption. Moreover, the accuracy of
this new procedure can be evaluated using the lower and
upper bounds for the critical value of the M test proposed
by Fuchs and Kenett (1980). Calculation of this procedure
can be programmed on a hand calculator, so this new pro-
cedure is simpler than the approach proposed by Bohm et
al. (1995), particularly under the EPM.

The M test was developed to detect outlying cells in
the multinomial distribution and to test the null hypothe-
sis (5) as well. To detect positive outliers (i.e., fragile
sites), we can apply the M test and use the largest order
statistic of the standardized observation (standardized ob-
served breakage in the problem of detecting fragile sites), 
max

1≤ i ≤k1
N*i , where

as our test statistic. Sharp lower and upper bounds for the
critical value of the M test were proved to be

Z1–α1
, Z1–α2

(6)

where

αα2 = ––
k1

and Z1–α1
and Z1–α2

are the 100 × (1–α1)th and 100 ×
(1–α2)th percentiles of the standard normal distribution,
respectively. Since the upper bound on the critical value
of the M test is simple to compute and use of it results in
a conservative test, we can use the upper bound as our
critical value (by computing the lower bound, the accu-
racy of the upper bound can be evaluated).

To detect the chromosomal fragile sites [i.e., the posi-
tive outlying cells under multinomial model (1)] under the
PPM assumption, we can apply the M test and create the
following procedure:

(i) Let t = 1

(ii) Let α* = α––t+1
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Table 2 Analysis of an artificial data set using the procedure of
Bohm et al. (1995). (α = 0.05), B~ = (B1, B2,...,B7), N~ = (25, 20, 15,
14, 10, 9, 7), W~ = (50, 20, 10, 7, 6, 5, 2). Bi, band I; N~ , vector of
observed breakages; W~ vector of band widths; R~ = (R1,...,Rk), Ri =

, P
~
i = , i = 1,...,k, α* = α–––

t+1
; P~

0, breakage proportion

under PPM; P~
~

observed breakage proportion

N
N

i

i
k
1∑P̃

P
i

i
0

Iteration P~
0 P~

~
R~ χ2 χ2

α*,(k–1)
Conclusion

t

1 (0.5,0.2,0.1 (0.25,0.2,0.15, (0.5,1,1.5, 40.37 14.45 B1 is fragile
0.07,0.06, 0.14,0.1, 2,1.67,
0.05,0.02) 0.09,0.07) 1.8,3.5)

2 (0.4,0.2, (0.27,0.2, (0.67,1, 10.24 B2~B7 are nonfragile
0.14,0.12, 0.19,0.13, 1.33,1.11,
0.1,0.04) 0.12,0.09) 1.2,2.33)



(iii) Test the null hypothesis

H0 :P1 = P0
1, ..., Pk = P0

k

using the test statistic max
1≤ i ≤k1

N*i (i.e., the highest observed 

“standardized breakage number”) and the critical value 
.

(iv) If the hypothesis in step (iii) is not rejected at the α*
significance level, then CONCLUDE that all the remain-
ing sites are not fragile sites and STOP.

(v) If the hypothesis in step (iii) is rejected at the α* sig-
nificance level, then EXCLUDE the site with the highest
observed standardized breakage number (i.e., the site cor-
responding to max

1≤ i ≤k1
N*i ), let t = t + 1, k = k – 1, and let  

(w1,..., wk) and (P0
1, ..., P

0
k ) = (w1–––

∑wi
,...,wk–––

∑wi
) be the vectors of 

band widths and probabilities of breakage under random
breakage of the remaining sites, respectively. RETURN to
step (ii).

Continue the above steps iteratively until we obtain a sub-
set of the data for which we are not able to reject the hy-
pothesis in step (iii). The sites in this set are considered as
nonfragile sites. The other sites are fragile sites.

Let us consider the examples given in the previous sec-
tion again. The data sets given in Tables 1 and 2 are rean-
alyzed using the new procedure introduced in this section.
Results of this analysis are listed in Tables 3 and 4. From
the results given in these tables, it is obvious that the new
procedure can adequately detect the positive outlying
cells (i.e., fragile sites) simultaneously with the rejection
of the null hypothesis (5) under the PPM assumption.

Fuchs and Kenett (1980) concluded in their paper that,
among all the cases, the maximum difference between the
bounds on the power of the M test, as calculated by using
the upper and the lower bound in equation (6), was less
than 0.004. Therefore, the upper bound turns out to be
very accurate. Furthermore, for the problem of testing the
null hypothesis (5), the computed lower bounds for the as-
ymptotic power of the M test exceed the power of the χ2

test, particularly when the number of outliers is limited (to
less than 5–10% of the number of cells) and the deviations
are fairly unequal.

Since the EPM can be viewed as a special case of the
PPM, under the EPM assumption, we can let (P0

1, P
0
2,...,

P0
k) = (1–k , 1–k ,...,1–k ) and directly modify the procedure pro-

posed above as follows

(i) Let t = 1

(ii) Let α* = α––t+1

(iii) Test the null hypothesis

H0 :P1 = 1–
k
, P2 = 1–

k
, ... Pk = 1–

k

by using the test statistic max
1≤ i ≤K

Ni (i.e., the highest observed 

breakage) and the critical value .

(iv) If the hypothesis in step (iii) is not rejected at the α*
significance level, then CONCLUDE that all the remain-
ing sites are not fragile sites and STOP.

(v) If the hypothesis in step (iii) is rejected at the α* sig-
nificance level, then EXCLUDE the site with the highest

n
k

Z
n k

kK
+ −

−( )
*

( )
1 2

1
α

Z
k1−α*
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Table 3 Analysis of the artificial data set given in Table 1 using
our procedure. (α = 0.05), B~ = (B1, B2,...,B7), N~ = (50, 17, 10, 
8, 7, 1, 7), W~ = (50, 17, 10, 8, 7, 6, 2). Bi, band I; N~ , vector of ob-
served breakages; W~ vector of band widths; R~ = (R1,...,Rk), Ri =

, P
~
i = , i = 1,...,k, α* = α–––

t+1
; P~

0, breakage proportion

under PPM; P~
~

observed breakage proportion

N
N

i

i
k
1∑P̃

P
i

i
0

Iteration P~
0 P~

~
R~ max

1≤ i ≤k
Conclusion

t

1 (0.5,0.17,0.1, (0.5,0.17,0.1, (1,1,1,1,1 3.57 2.69 B7 is fragile
0.08,0.07, 0.08,0.07, 0.16,3.5)
0.06,0.02) 0.01,0.07)

2 (0.51,0.173, (0.538,0.183, (1.05,1.06, 0.53 2.77 B1, B2, B3, B4,
0.102,0.082, 0.108,0.086 1.06,1.05, B5, B6 are nonfragile
0.071,0.061) 0.075,0.011) 1.06,0.18)

Z
k1−α*

Table 4 Analysis of the artifi-
cial data set given in Table 2
using our procedure. (α = 0.05),
B~ = (B1, B2,...,B7), N~ = (25,20,
15,14,10,9,7), W~ = (50,20,10,
7,6,5,2). Bi, band I; N~ , vector
of observed breakages; W~ vec-
tor of band widths; R~ = 
(R1,...,Rk), Ri = , P

~
i =

, i = 1,...,k, α* = α–––
t+1

; 

P~
0, breakage proportion under 

PPM; P~
~

observed breakage
proportion

N
N

i

i
k
1∑

P̃
P

i

i
0

Iteration P~
0 P~

~
R~ max

1≤ i ≤k1
Conclusion

t

1 (0.5,0.2,0.1, (0.25,0.2,0.15 (0.5,1,1.5 3.57 2.69 B7 is fragile
0.07,0.06 0.14,0.1, 2,1.67,
0.05,0.02) 0.09,0.07) 1.8,3.5)

2 (0.51,0.204 (0.269,0.215, (0.527, 2.96 2.77 B4 is fragile
0.102,0.071, 0.161,0.151, 1.054,1.578,
0.061,0.051) 0.108,0.097) 2.127,1.77,

1.902)

3 (0.549,0.22, (0.316,0.253, (0.576,1.15, 2.30 2.81 B1, B2, B3,
0.11,0.066, 0.19,0.127, 1.727,1.924, B5, B6 are
0.055) 0.114) 2.073) nonfragile

Z
k1−α*



observed breakage, let t = t + 1, k = k – 1, and RETURN
to step (ii).

Continue the above steps iteratively until we obtain a sub-
set of the data for which we are not able to reject the hy-
pothesis in step (iii). The sites in this set are considered as
nonfragile sites. The other sites are fragile sites. Obvi-
ously, our test procedure is simpler than the one proposed
by Bohm et al. (1995) in calculation and can be pro-
grammed on a hand calculator.

Numerical studies

In this section, we reanalyzed the data set given in Wang
et al. (1992) using the new procedure introduced in the
previous section. The data set involves the frequency and

spectrum of both common and rare fragile sites in 30 Chi-
nese patients with colorectal carcinoma. [A brief descrip-
tion of this real data set was given in Tai et al. (1993)].
The results under the EPM and the PPM assumption are
given in Tables 5 and 6, respectively.

As shown in Table 5, employing our approach, 41 frag-
ile sites were detected at a significance level of 0.001 un-
der the PPM assumption. Among these 41 sites 35 are
listed in HGM10 (Sutherland and Ledbetter 1989). To
save space we omit a proportion of the detected fragile
sites in Table 5.

According to Table 6, employing our procedure, 49
fragile sites were detected at a significance level of 0.001
under the EPM assumption. Among these 49 sites, 43 are
listed in HGM10 (Sutherland and Ledbetter 1989). Again,
a proportion of the detected results in Table 6 are omitted
to save space. Employing the procedure of Bohm et al.
(1995), 74 fragile sites were detected at a significance
level of 0.001 under the EPM assumption. (The same 
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Table 5 Chromosomal sites classified as fragile under the propor-
tional probability model (PPM) using our procedure in 30 Chinese
patients with colorectal carcinoma. (Dotted vertical lines indicate
omitted data)

Site Fre- Band Test  Bounds forb HGM10c

quency widtha statistic critical value
ni wi max

1≤ i ≤k
N*i [Z1–α1

,Z1–α2
]

1p21 19 16 10.4496*** [4.3353,4.3355] C
[4.6772,4.6772]
[5.1293,5.1293]

1p22 15 17 8.2332*** [4.3747,4.3749] C
[4.7139,4.7140]
[5.1630,5.1631]

1p31 18 29.5 7.4731*** [4.4067,4.4069] C
[4.7438,4.7438]
[5.1905,5.1905]

1p32 9 11 6.7425*** [4.4180,4.4181] C
[4.7543,4.7543]
[5.2002,5.2002]

1q25 8 9 6.8022*** [4.4233,4.4235] C
[4.7593,4.7593]
[5.2048,5.2048]

· · · · · ·
· · · · · ·
· · · · · ·
· · · · · ·

22q12 20 7 15.7136*** [4.2461,4.2465] C
[4.5942,4.5942]
[5.0533,5.0533]

Xp22 149 23 51.0815*** [3.9471,3.9486] C
[4.3180,4.3183]
[4.8018,4.8018]

Xq22 31 9 20.1852*** [4.1789,4.1794] C
[4.5318,4.5319]
[4.9962,4.9962]

*, **, and *** represent significant fragility at α = 0.05, 0.01 and
0.001, respectively
a The relative width of each of the 320 bands was measured using
the banding diagram of the International System for Chromosome
Nomenclature (ISCN 1981)
b The three intervals are the bounds for the critical value of the M
test at α = 0.05, 0.01 and 0.001, respectively, where [Z1–α1

,Z1–α2
] is

defined as in equation (6)
c C, P, and T represent the sites that are identified as fragile by 
the Tenth International Workshop on Human Gene Mapping
(HGM10) (Sutherland and Ledbetter 1989)

Table 6 Chromosomal sites classified as fragile under the
equiprobability model (EPM) using our procedure in 30 Chinese
patients with colorectal carcinoma. (Dotted vertical lines indicate
omitted data)

Site Frequency Bounds for critical HGM10b

(test statistic) valuea

ni [Z1–α1
,Z1–α2

]

1p21 19*** [7.8535,7.8539] C
[8.3280,8.3281]
[8.9550,8.9550]

1p22 15*** [7.2487,7.2489] C
[7.6865,7.6865
[8.2658,8.2658]

1p31 18*** [7.7214,7.7218] C
[8.1879,8.1879]
[8.8044,8.8044]

1p32 9*** [6.4998,6.5000] C
[6.8927,6.8927]
[7.4133,7.4133]

1q25 8*** [6.0896,6.0897] C
[6.4577,6.4577]
[6.9460,6.9460]

· · · ·
· · · ·
· · · ·
· · · ·

22q12 20*** [8.1155,8.1159] C
[8.6063,8.6063]
[9.2544,9.2544]

Xp22 149*** [11.4986,11.5015] C
[12.2214, 12.2219]
[13.1639,13.1640]

Xq22 31*** [9.3008,9.3016] C
[9.8677,9.8678]
[10.6137,10.6137]

*, **, and *** represent significant fragility at α = 0.05, 0.01 and
0.001, respectively
a The three intervals are the bounds for the critical value of the M
test at α = 0.05, 0.01 and 0.001, respectively, where [Z1–α1

,Z1–α2
] is

defined as in equation (6)
b C, P, and T represent the sites that are identified to be fragile by
the Tenth International Workshop on Human Gene Mapping
(HGM10) (Sutherland and Ledbetter 1989)



conclusion is reached no matter whether Pearson’s χ2 is
standardized or not). Each site with a number of break-
ages greater than or equal to 4 will be identified as fragile
by using their procedure.

Conclusion

Bohm et al. (1995) concluded that their testing procedure
can be used to detect fragile sites under PPM assumption.
However, as we comment in the second section, their con-
clusion is incorrect. Their procedure cannot be used to de-
tect fragile sites under the PPM assumption. Porfirio et al.
(1987) showed that the number of breakage events found
on a chromosomal band is related to the length of the
band; the length positively influences the probability of
showing a break. If we follow the discovery of Porfirio et
al. (1987) and adopt the null hypothesis, which considers
the expected breakage frequencies to be proportional to
the band widths under random breakage, then the proce-
dure proposed by Bohm et al. (1995) remains problematic
and cannot be used to detect fragile sites.

In this article, we introduce a new procedure that de-
tects fragile sites using the largest order statistics. This
new procedure can be applied to tests of the nonrandom-
ness of breakpoints under either the PPM or the EPM.
Moreover, the accuracy of the new procedure can be eval-
uated via the lower bounds on the critical value of the M
test proposed by Fuchs and Kenett (1980). Fuchs and
Kenett (1980) concluded in their paper that, among all
cases, the maximum difference between the bounds on the
power of the M test, as calculated by using the upper and
the lower bound in equation (6), was less than 0.004.
Therefore, the upper bound turns out to be very accurate.
Furthermore, for the problem of testing the null hypothe-
sis (5), the computed lower bounds for the asymptotic
power of the M test exceed the power of the χ2 test, par-
ticularly when the number of outliers is limited (to less
than 5–10% of the number of cells) and the deviations are
fairly unequal.

It is natural to ask what the total significance level of
the new procedure introduced here is [this problem is also
applicable to the procedure introduced by Bohm et al.
(1995) and most statistical methods in this area, too]. This
question is obviously a difficult one and the answer is not
at all immediate since the test statistics used at each itera-
tion are correlated. More research is needed to solve this
problem.
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