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Introduction
Control charts are important tools of statistical quality control. These charts are
used to decide whether a process has achieved a state of statistical control and to
maintain current control of a process. Today, most products are produced by
several different process steps. In multiple step processes a Shewhart control
chart is often used at each individual step. If the steps of the process are
independent, then using a Shewhart control chart at each individual step is a
meaningful procedure. However, in many processes the steps are not independent
and thus the charts are difficult to interpret. One approach to solve this problem
is to use a multivariate control chart such as Hotelling T2. The disadvantages of
using a T2 chart are that one must assume that the process quality characteristics
are multivariate normal random variables and, once an out-of-control signal is
given, it is often difficult to determine which component of the process is out of
control. Another alternative to this problem was proposed by Zhang (1984). He
calls his charts “cause-selecting charts”. The cause-selecting control chart is
constructed for a variable only after the observations have been adjusted for the
effect of some other random variables. Zhang’s cause-selecting control charts are
the concepts of overall quality and specific quality. Zhang defines overall quality
as that quality due to the current subprocess and any previous subprocesses.
Specific quality is that quality which is due only to the current subprocess. The
cause-selecting charts are designed to further distinguish between controllable
assignable causes and uncontrollable assignable causes. Controllable assignable
causes are those assignable causes that affect the current subprocess but no
previous subprocesses. The uncontrollable assignable causes are those assignable
causes affecting previous processes that cannot be controlled at the current
process level. The advantage of this approach is that once an out-of-control signal
is given, it is often easy to determine which component of the processes is out of
control. Wade and Woodall (1993) review the basic principles of the cause-
selecting chart, the simple case of a two step process and give an example to
illustrate the use of the cause-selecting chart. They also examine the relationship
between the cause-selecting chart and the multivariate T2 chart. In their opinion
the cause-selecting control chart has some advantages over the T2 chart. 

To use any control charts, three design parameters must be specified; the
sample size, the sampling interval, and the number of standard deviation above
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or below the centre line of the control chart. The choice of these design parameters
influence the costs of sampling and testing, costs of searching and repairing and
costs due to the production of nonconforming items. Therefore, it is logical to
consider the design of control charts from an economic viewpoint. 

Duncan (1956) first proposed an economic model for the optimal economic
design of the X

–
control chart. He recommended the use of a concept which he

called an economic design to obtain the optimal design. The pioneering work of
Duncan was later extended by others, including the X

–
and R charts employed

jointly (Saniga, 1977, 1979; Yang, 1993). Rahim, Lashkari and Banerjee (1988)
discussed the uses of joint X

–
and S2 charts according to economic considerations

when sample sizes are moderately large. Collani and Sheil (1989) proposed the
economic design of the S chart when the assignable cause could only influence the
process variance. However, the economic model for dependent subprocesses has
not been addressed. In this paper the multiple assignable-cause economic model
for an individual X chart and cause-selecting control chart the simple case of a
two step process will be proposed. 

The derivation of cost model
Let X represent the quality measurement of interest for the first step of the
process and let Y represent the quality measurement of interest for the second
step. Suppose that a sample with size one is taken at the end of the second process
every h hours and observations (Xi, Yi ) are measured on the same item of
production. It is assumed that the Xi values are independent and Xi ~N(µ0, σ0

2)
when the process is in control. The relationship between X and Y should be
known before the cause-selecting control chart is constructed. The cause-
selecting chart is then based on values of the outgoing quality Y that have been
adjusted for the value of in-coming quality X. The individual X chart is based on
values of the in-coming quality X. 

The model relating the two variables can take many forms. We assume the
model is the simple linear regression model:

E(Yi|Xi) = a0 + a1 Xi = µi. (1) 
The model need not be linear for constructing the cause-selecting chart. That is,
the cause-selecting technique can be applied to a nonlinear model. The values Y
are also independent and Yi~N(µi, σ1

2 ) given Xi when the process is in control. We
use the individual X chart on the X variable and the cause-selecting chart on the
Y variable. The centre line, upper control limit and lower control limit of the
individual X chart are set at µ0, µ0 + k1 σ0 and µ0 – k1σ0 respectively, where k1 is
the number of standard deviation above or below the centre line of the individual
X chart. The cause-selecting chart is a Shewhart type of control chart for the
cause-selecting values, Zi, where Zi = (Yi – µi)/σ1, are the values of Yi adjusted for
the effects of Xi. Thus, the Zis are independent N(0, 1) random variables. The
centre line, upper control limit, and lower control limit for the cause-selecting
control chart are 0, k2, and –k2 respectively, where k2 is the number of standard
deviations above or below the centre line of the cause-selecting chart. 
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A process is out of control when it is influenced by assignable causes. We
assume that there are uncontrollable assignable cause and controllable assignable
cause, say A1 and A2. A1 can only affect the previous process and cannot be
controlled at the current process. A2 can only affects the current process but no
previous subprocess. Once the previous process is influenced by A1, the process
mean of X shifts from µ0 to µ01 (= µ0 + δ0σ0) and the process mean of Y given X
shifts from µi to µi1, and the variances of X and Y given X are unchanged. If the
process is only influenced by A2 then the process mean of Y given X shifts from
µi to µi2 (= µi + δ1 σ1) and the distribution of X is unchanged. Assignable causes
A1 and A2 would be allowed to occur in the first step and the second step of the
process simultaneously; the process mean of X would shift from µ0 to µ01, and the
process mean of Y given X would shift from µ1 to µi3 (= µi1 + δ1σ1). Other
assumptions and the nature of the operation condition are summarized as follows. 

(1) The time (TAi) until the occurrence of assignable cause (Ai) is assumed
exponential distribution with parameter λ i, i = 1, 2. TA1 and TA2 are
independent. 

(2) When the process goes out of control it will not improve. That is, the
process mean can only shift to worse values of the process parameters.

(3) The time of taking a sample, inspection, and charting are negligible. 
(4) The search and repair time is a constant Tsr when there is at least one true

alarm for the individual X chart and the cause-selecting chart. The search
and repair time is a constant Tf when there is at least one false alarm for
the two charts. 

(5) The search and repair cost is a constant Csr when there is at least one true
alarm for the two charts. The search and repair cost is a constant Cf when
there is at least one false alarm for the two charts. 

(6) A quality cycle is defined as the time between the start of successive in-
control periods. Then the process is expressed as a series of independent
and identical cycles. That is, the process is a renewal process. The
accumulated cost per cycle is the cycle cost. The cycle costs are
independent and identically distributed. Such a process is known as a
renewal reward process (see Ross, 1989).

(7) The cost of sampling and testing is b, b > 0. 
(8) The process is discontinuous. That is, the process ceases during the search

state.
The cost model is thus derived using the renewal theory approach (Banerjee and
Rahim, 1987). Some notations used are defined as follows:

E(T ):The expected cycle time. 
E(C ): The expected cycle cost.

α: The probability that at least one of the control charts has a false
alarm. 

α = α1 + α2 – α1α2, where
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α1 is the probability that the individual X chart has a false alarm. 
α1 = P(Xi < µ0 = k1 σ0|Μ0) + P(Xi < µ0 –k1 σ0| µ0) 
= 2 (1–Φ(k2)), 

where Φ(.) is a cumulative standard normal distribution,
α2is the probability that the cause-selecting chart has 

a false alarm. 
α2 = P(Yi > µi + k2 σ1|µ1) + P(Yi < µi –k2 σ1| µi) 

= P (Zi > k2) + P (Zi < – k2) = 2(1–Φ(k2)).
β01: The probability that there is no alarm for the charts given the

previous process is in control and the current process is out of
control. 

β01 = (1 – α1) β2, where
β2: is the probability that the cause-selecting chart has no

alarm given that the current process is out of control and
the previous process is in control.

β2 = P (–k2 < Zi < k2|δ1 σ1) = Φ (k2 –δ1) – Φ (–k2 –δδ1), 
where

Z ′
i = (Yi –µi)/σ1 ~ N(δ1, 1) because of Yi ~N (µi2, σ1

2)
given Xi and Xi ^ N(µ0, σ 2

0).
β10: The probability that there is no alarm for the charts given that the

previous process is out of control and the current process is in
control. 

β10 = (1 –α2) β1, 
where
β1 is the probability that the individual X chart has no alarm given
that the previous process is out of control.

β1 = P(µ0 – k1 σ0 < Xi < µ0 + k1 σ0 |µ01) = Φ (–δ0 + k1) 
–Φ (–δ0 –k1).

β11: The probability that there is no alarm for the charts given that the
previous process and the current process are all out of control. 

β11 = β1 β2,
where
β3 is the probability that the cause-selecting chart has no alarm
given that the previous process and the current process are all out
of control.
β3 = P (–k2 < Zi

′′< k2 |δ1 σ1) = Φ (k2 –δ1) –Φ (–k2 –δ1), where Zi
′′ =

(Yi –µi1)/σ1 ~N (δ1, 1) because of Yi ~N (µi3, σ1
2) given Xi, and

Xi ~N (σ01, σ0
2}). In fact, β3 = β2.

C0: Quality cost/hour while production is in control.
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C1: Quality cost/hour while the previous process is only disturbed
by the assignable cause A1.

C2: Quality cost/hour while the current process is only disturbed
by the assignable cause A2.

C12: Quality cost/hour while the previous process and current
process are only disturbed by the assignable causes A1 and
A2.

τi: The expected arrival time of the assignable cause Ai given
that it occurred in the first sampling and testing interval,
i = 1, 2. That is,

τ i = E (TAi|TAi < h) = [1 – e–λ
i
h –λ i he –λ

i
h)] / [λ i

(1– e–λ
i
h)], i = 1, 2.

τ(i ): The expected arrival time of the ith arrived assignable cause
given that A1 and A2 occurred in the first sampling and
testing interval, i = 1, 2. That is,

τ1 = [e–(λ
1

+ λ
2)h (h + 1/λ1+1/λ2 – 1/(λ1+λ2 )) – e–λ

1
h/λ2

– e –λ
2
h/λ1 + 1/(λ1 + λ2 )] / [(1 – e–λ

1
h)(1– e –λ2

h)],
τ (2) = [e–(λ

1 + λ
2

)h (h +1/(λ1 + λ2)) – e–λ
1
h(h + 1/λ1) 

–e–λ
2
h (h+1/λ2) + 1/λ1 + 1/λ2 – 1/(λ1 + λ2 )] [(1 – e–λ

1
h)(1 –

e–λ
2
h)],

(proof, see Appendix).
In order to obtain the expression for the expected cycle time (E(T)), we
decomposed the cycle into the following three components:

(1) the in-control period;
(2) the time to obtain a true alarm given that the process is out of control;
(3) the time needed to find and repair the assignable causes. 

To use the renewal equation approach we have to study the possible states at the
end of the first sampling and testing. Depending on the state of the system, one
can compute the expected residual cycle length and the expected residual cost.
These values, together with the associated probabilities, lead us to formulate the
renewal equation. The analysis developed below depends on the possible states at
the end of the first sampling and testing. These states are defined as follows
(Table I).

State 1: the previous process and the current process are all in control, and
there is no alarm for the individual X chart and the cause-selecting
chart. 

State 2: the previous process and the current process are all in control, but
there are at least one alarm for the charts. 

State 3: the previous process is out of control and the current process is in
control, but there is no alarm for the charts. 
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State 4: the previous process is out of control and the current process is in
control, and there is at least one alarm for the charts. 

State 5: the previous process is in control but the current process is out of
control, but there is no alarm for the charts. 

State 6: the previous process is in control but the current process is out of
control, and there is at least one alarm for the charts. 

State 7: the previous process and the current process are all out of control, but
there is no alarm for the charts. 

State 8: the previous process and the current process are all out of control, and
there is at least one alarm for the charts.

Table II displays the possible states of the system, and the expected residual cycle
length with the associated probability of being in each respective state. 
Consequently,

Simplifying this we get

E T h P T P P P R P Pf i
i

i( ) [( ) /( – – )] [ /( – – )]= + +
=
∑2 1 2

3

8

1 21 1

E T h P E T P E T T P Rf i
i

i( ) ( ) ( ( ) ) .= + + + +
=
∑1 2

3

8

State Previous process Current process At least one alarm for cause selecting
number In control? In control? chart and individual X chart?

1 Yes Yes No
2 Yes Yes Yes
3 No Yes No
4 No Yes Yes
5 Yes No No
6 Yes No Yes
7 No No No
8 No No Yes

Table I.
Definition for each state

State Probability Expected residual cycle time

1 P1 = e–λ
1
h e–λ

2
h (1 – α) R1 = E(T)

2 P2 = e–λ
1
h e–λ

2
hα R2 = Tf + E(T)

3 P3 = (1 – e–λ
1
h) e–λ

2
hβ 10 R3 = h/(1 –β 10 ) + Tsr

4 P4 = (1 – e–λ
1
h) e–λ

2
h (1 –β 10) R4 = Tsr

5 P5 = e–λ
1
h (1 – e–λ

2
h)β 01 R5 = h/(1 –β 01) + Tsr

6 P6 = e–λ
1
h (1 –e–λ

2
h) (1 –β 01) R6 = Tsr

7 P7 = (1 – e–λ
1
h) (1 – e–λ

2
h )β 11 R7 = h/(1 –β 11) + Tsr

8 P8 = (1 e–λ
1
h) (1 – e–λ

2
h ) (1 – β 11) R8 = Tsr

Table II.
Probability and expected

residual cycle time for
each state
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the cycle cost into the following two components:

(1) the cost occurred in the first sampling and testing;
(2) the expected residual cost, which is the cost occurred from the time that

the process is influenced by any assignable cause to when all assignable
causes are repaired. 

We present the possible states of the system, and the costs occurred in the first
sampling and testing with the expected residual costs in Table III.
Consequently:

Simplifying

E C P P b C h P C P P

PiR P P

b C he e C e C C

f

i
i

h h
f

h
sr

( ) [( )( ) ] /( – – )

        [ /( – – )]

       { ( – [

'

–( ) –( ) –( )

= + + +

+

= + + + +

=
+ +

+

∑

1 2 0 2 1 2

3

8

1 2

0 1 2 1 2 1 2 0 1

1

1

1λ
λ

λ
λ

λ λα τ

E C P b C h E C P b C h E C C P R

P P E C P P b C h P C P R

f i i
i

f i i
i

( ) [( ) ( )] [( ) ( ) ]

( ) ( )  ( )( ) .

'

'

= + + + + + + +

= + + + + + +

=

=

∑

∑

1 0 2 0
3

8

1 2 1 2 0 2
3

8

= + + + + +

+ +

[ (  – ) ( – )  /( – )

 ( – ( ) /( – ) ( – ( )( – ( ) /( – )] /

[ –

–( ) ( ) – –

–( – – –

h e T e T e e h

e e h e e h

h
f

h
sr

h h

h h h h

λ λ λ λ λ

λ λ λ λ

α λ β β

β β β β

1 2 1 1 2 10 10

1 2 01 01 1 2 11 11

1 2 1 1

1 1 1 1 1

1 ee h–( ) ]λ λ
1 2
+ (2)

State Cost in the first sampling and testing + Expected residual cost

1 R1′ = b + C0h + E(C)
2 R2′ = b + C0h + Cf = Tf + E(C)
3 R3′ = b + C0τ1 + C1(h – τ1) + hC1/(1 – β 10 ) + Csr
4 R4′ = b + C0τ1 + C1(h – τ1) + Csr
5 R5′ = b + C0τ2 + C2(h – τ2) + hC2/(1 – β 01) + Csr
6 R6′ = b + C0τ2 + C2(h – τ2) + Csr
7 R7′ = b + C0τ1 + (τ2 – τ1)(C1λ1 + C2λ2)/ + hC12/(1 – β 11) + Csr

(λ1 + λ2) + C12 (h – τ2)
8 R8′ = b + C0τ(1) + (τ(2) – τ(1))(C1λ1 + C2λ2)/(λ1 + λ2) + C12 (h – τ 2) + CsrTable III.

Cost for each state
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Applying the property of renewal reward process (Ross, 1989), the objective
function, the expected cost per unit time (E(V∞)) is derived by taking the ratio of
the expected cycle cost (E(C)) and the expected cycle time (E(T)); E(V∞) =
E(C)/E(T). The objective function is the function of design parameters h, k1 and k2.
Hence, the optimal design parameters can be determined by minimizing the
objective function.

An example
An example is given to illustrate the method proposed. Suppose that the
combination of cost and process parameters is δ0 = 3.5, δ1 = 3.0, λ1 = 0.01, 
λ2 = 0.05, b = 5, µ0 = 0.0, σ0 = 1.0, σ1 = 0.25, Tsr = 0.8, Tf = 0.2, C0 = 5, C1 = 10,
C2 = 15, C12 = 25, Cf = 30, Csr = 50. In the process of obtaining the approximate
optimal values h*, k1

* and k2
* , we treat h, k1 and k2 as discrete variables and

assume that the values of h, k1 and k2 are within the ranges between 0.0 and 8.0 (0
< h < = 8.0 and the unit length of h is 0.1), 0.0 and 4.0 (0 < k1 < = 4.0, 0 < k2 
< = 4.0 and the unit lengths of k1 and k2 are 0.1) respectively. We also add a
constraint (α < = 0.1) to the model because in many economic designs the
probability of Type I error of control chart is much higher than that in a statistical
design, and this will result in more false alarms than expected (Woodall, 1987).
The algorithm used to obtain the approximate values h*, k1

* and k2
* of the design

variables h, k1 and k2 is the simple grid search method. Consequently, h* = 7.7, k1
*

= 2.6, k2
* = 1.7, E(V∞) = 5.7, α* = 0.098, β10

* = 0.168, β01
* = 0.096, and, β11

* =
0.018. That is, the upper and lower control limits of the economic individual X
chart should be set at 2.6 and –2.6 respectively. The upper and lower control limits
of the economic cause-selecting chart should be set at 1.7 and –1.7 respectively. To

        ( – )]( – ) ( – ) /( – )

        [ ( – )]( – ) ( – )

          /( – ) [ (

– – – –

– – –

–
( )

+ +

+ + +

+ +

C h e e e e h C

C C h e e e

e h C C

h h h h

h h h

h

1 1 1 2 1 2 10 1 10

0 2 2 2 2 1 2

1 01 2 01 0 1

1 1 1

1 1

1

τ β β

τ τ

β β τ

λ λ λ λ

λ λ λ

λ ττ τ λ λ λ λ

τ

β β

λ λ λ λ

λ λ

( ) ( )

( )
– – – –

(– )

– )( ) /( )

        ( – )]( – )( – ) ( – )( – ).

          /( – )}/( – ) ( )

2 1 1 1 2 2 1 2

12 2 1 2 1 2

11 12 11 1 2

1 1 1 1

1 1

C C

C h e e e e

h C e

h h h h

h

+ +

+ +

3

Combination Individual X chart Cause-selecting Action process
number signal? chart signal? stops?

1 No No No
2 No Yes Yes, search and repair A2
3 Yes No Yes, search and repair A1
4 Yes Yes Yes, search and repair A1 and A2

Table IV.
Decision rules
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monitor the process state, every 7.7 hours a sample with size one (Xi, Yi) is taken
and tested. There are four possible testing results for the two processes. These
outcomes with associated various actions are given in Table IV. Combination 1
means that Xi falls inside the individual X chart and cause-selecting value, Zi, also
falls inside the cause-selecting chart, so the process continues and the next sample
is taken after 7.7 hours. Interpretations for combination 2, 3 and 4 are similar to
combination 1. 

Conclusions and suggestions
The cause-selecting chart could be used in conjunction with individual X chart for
the two processes. They may effectively distinguish the uncontrollable assignable
cause and controllable assignable cause. The method of designing the economic
cause-selecting chart and individual X chart simultaneously has been proposed.
If the engineers would like to maintain the processes with minimum cost and
determine effectively which component of the process is out of control then the
economic cause-selecting chart is preferable. 

In practice, the true relationship between X and Y is always known. Hence, the
mean of Y given X, E(Y|X), and the variance of Y given X, V(Y|X), have to be
estimated from an initial sample of n observations. For model-fitting methods and
diagnosis see Montgomery and Park (1982), Weisberg (1985), and others. The
cause-selecting values, Zi, the residuals generated by model used are Zi = Yi – Y^i,
where Y^i, is  the fitted value of Yi given Xi. The centre line for the economic cause-
selecting chart is Z

–
= 0. The control limits for the economic cause-selecting chart

are given by UCL = k2 σ∧ 1 is the square root of the mean square error.
Alternatively, UCL = k2 MR

––
and LCL = k2 MR

––
, where MR

––
= 

The method proposed can be extended to the case of multiple assignable causes
occurring in the current process and previous processes.
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Appendix
The source for this proof is Yang and Jeng (1994)
τ(1): = E(T(1)|T(2)< h) = E(T(1)′) 

= [e–(λ
1

+λ
2

)h (h + 1/λ1+1/λ2
–1/((λ1 + λ2 )) – e–λ

1
h/λ2 – e–λ2h/λ1+1/(λ1+ λ2 )]/ [(1 – e–λ

1
h)

(1 – e–λ
2
h)],

τ(2): = E(T(2)|T(2)< h) = E(T(2)′)
= [e–(λ

1
+λ

2
)h (h + 1/(λ1 + λ2)) – e–λ

1
h(h + 1/(λ1) – e–λ

2
h(h + 1/λ2) +1/ λ1+1/λ2 –1/(λ1+ λ2)]/

[(1 – e–λ
1
h)(1 – e–λ

2h)], 
where T(1) = min(TA1, TA2), T(2) = max(TA1, TA2), 
T(1)′ = min (T1′, T2′), T(2)′ = max (T1′, T2′), and 
Ti′ is the truncated random variable of TAi, i = 1,2. 

Proof:
TAi ~exp(λi). Let TAi have p.d.f. f(ti), i = 1, 2. 
The joint p.d.f. of T1′ and T2′ is 
h(t1′, t2′) = [f(t1)/p(0 < TA1 < h)].[f(t2)/p( 0 < TA2 < h)] = h(t1′)h(t2′) 
= [λ1e–λ

1
t
1
′/(1 –e–λ

1
h)].[λ2e–λ

2
t
2
′/(1 – e–λ

2
h)], 0 < t1

′, t2
′ < h.

The joint p.d.f. of T(1)
′ and T(2)

′ is 
g(t(1)′, t(2)′) = h(t(1)′, t(2)′) + h(t(2)′, t(1)′) 
= [λ1e–λ

1
t(1)′λ2e–λ

2t(2)′]/[(1 – e–λ
1h)(1 – e–λ2h)]

+ [λ1e–λ
1
t
(2)′λ2e–λ

2
t
(1)′]/[(1 – e–λ

1h)(1 – e–λ
2
h)], 0 < t(1)′, t(2)′< h. 

So we may derive the result
τ(1): = ∫0

h ∫t(1)
h g(t(1)

′, t(2)
′), dt(2)

′ dt(1)
′

= [e–(λ
1

+ λ
2)h (h + 1/λ1 + 1/λ2 –1/(λ1 + λ2)) – e–λ

1h/λ2– e–λ
2

h/λ1 + 1/(λ1+ λ2)] / 
[(1– e – λ1

h)(1– e–λ
2
h)]

Similarly,
τ(2): = ∫0

h ∫0t′(2)
′ g(t(1)

′, t(2)
′), dt(1)

′ dt(2)
′

= [e–(λ
1

+ λ
2)h (h + 1/λ1 + λ2)) – e–λ

1
h (h+1/λ1) –e–λ

2
h/(h+1/λ2) + 1/(λ1+ 1 λ2

–1/(λ1 + λ2)]/[(1– e–λ
1
h)(1– e–λ

2
h)].


