The Emerald Research Register for this journal is available at a The current issue and full text archive of this journal is available at
www.emeraldinsight.com/researchregister a) www.emeraldinsight.com/0265-671X.htm

JQRM NEW RESEARCH

21,4 . . .
Economic statistical
process control for over-adjusted
a1z process mean
Recgived Noyember 2001 Su-Fel’l Yal’lg
Revised April 2003 Department of Statistics, National Chengchi University, Taiper, Taiwan, and
Chung-Ming Yang

Department of Insurance, Ling-Tung College, Taichung, Taiwan

Keywords Control charts, Markov processes, Statistical process control

Abstract An economic adjustment model of a process whose quality can be affected by multiple
special causes, resulting in changes of the process mean by incorrect adjustment of the process when
it s operating according to its capability. A statistically constrained adjustment model is developed
Jor the economic statistical design of X control chart to control the process mean affected by multiple
special causes. The objective is to determine the design parameters of the X control chart, which
mimimize the total quality control cost. A Markov chain approach is used to derive the model. It is
demonstrated that the expressions for the expected cycle time and the expected cycle cost with multiple
special causes are easier to obtain by the proposed approach than by extending or adopting that in
Collani et al. Application of the model is demonstrated through a numerical example.

Introduction

Control charts are important tools of statistical quality control (SQC). These charts are
used to decide whether a process has achieved a state of statistical control and to
maintain current control of a process. The use of control charts as a process monitoring
and control tool has received much attention recently.

Deming (1982) explains that there are two kinds of mistakes the production
worker can make on the job. These are to over-adjust a process or to under-adjust a
process. He goes on to explain that the control chart provides “a rational and
economic guide to minimize loss from both mistakes”. Precise methods to design
control charts that maximize the profit or minimize the cost of a process have been
proposed by a number of authors. These methods yield control chart designs known
as economic design. Economic design of a control chart was first proposed by
Duncan (1956). The pioneering work of Duncan was later extended by others. A
review of the literature is available in Montgomery (1980) and Vance (1983).
Economic design optimizes the economic model of a production process by
considering the costs of under-adjustment along with other costs, but it assumes that
the search for a special cause is perfect.

In reality, a common problem in statistical process control (SPC) is process
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about the process state is that due to sampling. Consequently, a control chart signal
outside the control limits is associated with process adjustment. If the signal is a false
alarm, the process will be adjusted incorrectly. Woodall (1986) noted the effect of this
over-adjustment as being an increase in the variability of the process. The increase in
variability and the corresponding loss of quality can be quite marked as noted by
Collani et al. (1994). This problem is common in practice and therefore of importance.
Collani et al. (1994) first proposed economic adjustment design for X control chart to
monitor a process with two types of mistakes. They assumed that there exists a
single special cause that may cause the shift of a process mean. Their model allows
for the determination of the design parameters of the X control chart that maximizes
the profitability of the process or, equivalently, minimizes the process loss from two
types of mistakes of over-adjustment and under-adjustment. However, their
calculations for the expected cycle time and expected cycle cost/profitability are
complicated, and it is not easy to extend their approach to the case of multiple special
causes. In this paper, we consider that the quality of output can be affected by
multiple special causes, resulting in shifts in the process mean, due to
over-adjustment during operation. The X control chart is used to signal any one or
any combination of the special causes, which results in a shift of the process mean. A
Markovian chain approach is used. The proposed approach would derive the
expected cycle time and the expected cycle cost more easily than by extending or
adopting that in Collani ef al (1994). In the next section, the economic adjustment
model is derived by a Markovian chain approach. A direct search optimization
technique is used to determine the design parameters of the X control chart that
minimizes the loss of this process. An example illustrating the proposed method for
multiple special causes is given in the third section. A brief summary is provided in
the final section of this paper.

Economic adjustment model: a Markov chain approach

A production process may be in control or out of statistical control. If the process is
influenced by any special causes then the process is out of control; otherwise the
process is in control. Suppose that there exist two special causes, say SC; and SCs, for
a production process. We assume that the process mean would be shifted if any one
or any combination of the special causes influences the process. In this analysis, we
are using the X control chart to signal the need for adjustment in the key dimension of
the product. The in-control process can be out of control if it is incorrectly adjusted.
Specifically, we take a sample of size n units of output every h hours of production
time and adjust the process if the sample mean falls outside the control limits of the X
control chart. Our objective is to derive the economic adjustment model using the
Markov chain approach and to find the set of parameters n, h, and k (control
coefficient of X control chart) such that the average long-term loss of the process is
minimized.

Process assumptions and notation

The assumptions of the process are described as follows. Suppose that the product’s
quality can be represented by one key dimension, say X. When the process is in control,
X ~ N(u, o). There are three situations for the occurred two special causes; that is,
either SC;, SC,, or both. When any situation of the special causes of poor quality occurs
in the process, there is a shift in the distribution of X to X ~ N(u + §jo, o?) with
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probability w and to X ~ N(u — §;o, o?) with probability 1 — w, where 6 > 0 and
0 <w <1, where j =1,2,3. The time until the occurrence of any special cause is
assumed to be independent and exponential with a mean of 1/); A; > 0, where
i =1, 2. We also assume that the process cannot correct itself, and the time to sample
and plot X is small and hence can be neglected in the model. However, it should be
noted that the proposed Markov chain approach could be extended to include cases
involving the time to sample and plot X.

An adjustment to the process is performed if the sample mean falls outside the
control limits of the X control chart, respectively LCLy and UCLy, where:

LCLX =M — k(T/\/ﬁ7

UCLy = n + ko//n,

where k is the number of standard deviation above or below the center line of the X
control chart. The adjustment can take one of three forms:
(1) When the shift results in X ~ N(u + 8,0, 0?), SC; is adjusted to let the mean of
X be w; when the shift results in X ~ N(u — 8,0, 02), SC, is adjusted to let the
mean of X be w.
(2) When the shift results in X ~ N(u + 80, 62, SCs is adjusted to let the mean of
X be w; when the shift results in X ~ N(u — 80, o), SCs, is adjusted let the
mean of X be u.
(3) When the shift results in X ~ N(u + 830, o), both SC; and SC;, are adjusted to
let the mean of X be w; when the shift results in X ~ N(u — 830, o), both SC;
and SC, are adjusted to let the mean of X be pu.

The decision rule can result in an over-adjustment following false alarms for the
process mean. The probabilities to adjust SC;, SC,, and SC; are g1, g2, and g3
respectively, following an alarm. It is assumed that a transition in the process from in
control to out of control during sampling is impossible. The following notation is used.
Before deriving the economic adjustment model using Markov chain approach, we
define some variables as follows. B

ay = probability that the process is over-adjusted when the X control chart gives a
false alarm:

agy=1-P(ICLg = X = UCLg|lx ~ N(, 0?)) = 2d(—k),
where ®(.) is the cumulative probability of a normal distribution.
Bz =probability that the process is under-adjusted since it is influenced by either

SCy, SC, or both, but X control chart gives no true alarm, where:

Bs, = wP(LCLg = X = UCLglx ~ N(p + §o, 0%) + (1 — w)P(LCLy = X
= UCLglx ~ N(u = §o,0%)) = Dk — §/n) — O(—k — §i/n),

i=1,2,3.



T; = expected time of over-adjusting either a SC;, SC, or both, following a false
alarm.

T, = time before the special cause SC; occurs in the process, Ty ~ exp(A;),
i=1,2

Ty = expected time to search and repair SCy, SC,, or both.

C: = expected cost of over-adjusting either SC;, SC, or both.

Cy = production cost per unit time when the process is in control.
Ciy = production cost per unit time when the process is only affected by SC.
C, = production cost per unit time when the process is only affected by SCo.

Ci2 = expected cost per unit time when the process is affected by SC; and SC..
Cy = expected cost to search and repair SC;, SCs or both.

a = fixed cost per sample and test.

b = cost per unit sampled and tested.

7. expected arrival time of the special cause SCq, given that it occurred in the first
sampling interval, where (see Lorenzen and Vance, 1986):

1= (A4 hhe M
N A — Ne —Aih ’

i=1,2

T

7 expected arrival time of the ith special cause, given that SC; and SC, occurred
within time interval h, 1 = 1, 2, where (for proofs, see Yang, 1997):

7y = Emin(Tse1, Tse2)| Tsei <h, 1=1,2)
= [exp(" A" A + 1/A71/25 1/ A2)) — exp(" AP/ Az — exp(”A3)/ M
+1/(A + A)1/[(1 — exp(C AL — exp(” AD)],
7o) = Emax(Ts, Tseo) Tsei < h,i=1,2)
= [exp(" A} AD(h + 1/(A{ A2)) — exp(" AD)(h + 1/A1) — exp(" AD)(h + 1/A9)

+1/A1 +1/d — 1/(A1 + A)1/1A — exp(" A1 — exp(”AD)].

Description of Markov chain

In order to use the Markov chain approach to derive the expected cycle time (ET) and
the expected cycle cost (EC), all possible states at the end of each sampling and
testing time must be examined. Depending on the state of the system, the transition
probabilities and transition costs can be computed. There are 16 possible states at the
end of every sampling and testing time, and these states are defined as follows
(Table I).
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Table 1.
Definition for each state

State  SC; occur?  SC, occur?  x-bar signal?  Process adjustment?  Process over-adjusted?

1 No No No No No
2 No No Yes SCy Yes
3 No No Yes SCs Yes
4 No No Yes SCy + SC, Yes
5 Yes No No No No
6 Yes No Yes SCy No
7 Yes No Yes SCo Yes
8 Yes No Yes SCy + SCy Yes
9 No Yes No No No
10 No Yes Yes SCy Yes
11 No Yes Yes SCy No
12 No Yes Yes SC; + SCq Yes
13 Yes Yes No No No
14 Yes Yes Yes SCy No
15 Yes Yes Yes SCo No
16 Yes Yes Yes SCy + SCq No

These states can be classified into two types of states: transient states and absorbing
states. The states 6, 11, and 16 are absorbing states, and the others are transient states.
Transition probability from state 1 to state j in time interval h is described in Appendix 1.

The transition probability matrix is denoted as P11 = [P(1,)],1,] =1,2,3,4,5,7, 8,
9,10, 12,13,14,15; P, = [P, D], 1=1, 2, 3,4,5,7, 8,9, 10, 12, 13,14,15, j = 6, 11, 16;
zero matrix 0 = [P(i,j)], P;;=0fori=6,11,16,j =1,2,3,4,5,7,8,9, 10, 12, 13,14,15;
identity matrix I = [P(@,))], PG,j) =1 for 1, j=6, 11, 16, and matrix P is the
combination of sub-matrices P;1, P1s, I, and 0. That is:

b P Pr
o I

The cycle time is the time from the start of the process in control until an alarm is
detected, repaired, and the process is restarted or equivalently it is the time from
transient state 1 to reach any absorbing state. The state variable Y, (t = 0, h, 2h, ...)is
a Markov chain on the state 1, 2, .. ., 16 and so the Markov property can be effectively
used to find the expected cycle time.

Expected cycle time and cost
Let random variable T; be the time until absorption from transient state 1. Then, using
the Markov property and conditioning on the first step:

P(T; = h + Ty) = P(,j) where j = 6,11, 16,1 # ],
P(Ty=h+T;+T)=PG,j)  wherei6,11,16,j = 2,3,4,7,8,10,
P(T; = h + T¢ + Ty + Tj) = PG, j) where i # 6,11,16,j = 8,12, M
P(T; = h+Tj = PG, j) where i # 6,11,16,j = 1,5,9, 13,

P(T;=h+Ts +T) =PG4, ) where 1 # 6,11,16,j = 14, 15.



Equation (1) can be expressed in matrix form:
M=hl + PllMsrl + P11M + PlesrstM

=h(I — Py) "1 + A = Py1) 'P11Mgq + (I — P11) " 'P12Mgeo,

where: M is a (13 X 1) vector, with the expected time up to absorption from transient
state 1, 1 # 6, 11, 16; 1 is a (13 X 1) vector, with elements 1; My is a (13 X 1) vector,
MI = [0T; T T 0Ty T+ T O Ty T+ T 0 Ty T I; Mz is @ (3% 1) vector, MZ, =
[Ts Ter Ter], P17 1s defined as above.

The expected cycle time is the first element of vector M, i.e. My or E(T;).

Once the expected cycle time is obtained, the expected cycle cost must be calculated,
and the economic adjustment model can be derived by taking the ratio of the expected
cycle cost to the expected cycle time.

The derivation of the expected cycle cost uses the Markov property in a similar
manner to that used for the expected cycle time. Let C(j, j) be the expected cumulative
cost that is associated with transition from state i to j in time interval h; 1,j = 1,2, ..,
16. The calculation of C(j, j) is illustrated in Appendix 2.

The transition cost matrices are denoted as: C;1 = [C(1,1)],1,]=1,2,3,4,5,7, 8,9,
10,12, 13,14, 15; C1o = [CA, D), 1=1,2,3,4,5,7, 8,9, 10, 12, 13, 14, 15, j = 6, 11, 16;
zero matrix 0 = [C(1,))], C(,j) = Ofori=6,11,16,j = 1,2,3,4,5,7,8,9, 10,12, 13, 14,
15; Cos = CgI, Iis identity matrix for i, j = 6, 11, 16, and matrix C is the combination of
sub-matrices C;1, Cis, Cop, and 0. That is:

Ci G
10 Cu|

The cycle cost is the cumulative cost from the start of the process, in control, until an
alarm is detected, the process is repaired and re-started, or equivalently, it is the cost

from transient state 1 until it reaches an absorbing state.
Let random variable C; be the cumulative cost up to absorption from transient state
1,1=1,2, ..., 15. Then using the Markov property and conditioning on the first step:

P(C; = C4,j)) = PG, j) where j=6,11,16,1 # j,

PG = C4,)) + G) = P(,)) where 1,7 # 6,11, 16. 2

Equation (2) can be expressed in matrix form:
U="Pp *C1 +Prp * C21 +P1U,

where * denotes the Hadamard product of the two matrices, and U is a (13 X 1) vector
with the expected cost up to absorption from transient state 1, 1 # 6, 11, 16.

So U=(I—P;) [Py *Ci;11 +Pyg * Cp1], where the first element of the
vector, U], is the expected cycle cost.

Determination of optimal design parameters
Applying the property of renewal reward processes (Ross, 1993), the objective function
(L), the expected cost per unit time is derived by taking the ratio of the expected cycle
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cost (U1) to the expected cycle time (M;); L = U;/M;. The expected long-term loss is
the function of design parameters n, h, k; L(n, k, h). Hence, the optimal design
parameters of the economic statistical adjustment design of X control chart can be
determined by minimization of the statistically constrained objective function, that is:

MinL(n, k, h)
B}?f < BL]’) ] = 132,3

where ay, is the upper bound of ay; By, is the upper bound of By, j = 1, 2, 3. It may be
noted that the proposed approach can also be used to derive the identical economic
adjustment model obtained by Collani ef al (1994) if the expected time of
over-adjustment = 0, the expected time to search and repair a special cause = 0, the
expected cost of incorrect adjustment = 0, the expected cost to search and repair a
special cause = 0, and profit maximization is used, instead of cost minimization, in a
single special-cause economic adjustment model.

A numerical example
A simple case is used to illustrate the proposed method, and the application of the
proposed control charts. Suppose that two possible out-of-control machines may
influence the process mean, and the process mean may be over-adjusted when a false
alarm occurred on the control chart. ~

To determine the design parameters of the X chart with minimum cost and required
statistical properties, the following set of hypothetical process and cost parameters is
chosen:

W1 = Wp = 0.57 81 = 2, 32 = 2.57 33 = 3.0, )\1 = 0.05, )\2 = 0.04,21 = 0.5,b = O.LCf
=20,Cq =35, Tf = 0.3, Ty = 0.6,Co = 5,C;, = 10,C, = 15,C1o = 35, 0 = 0, &

=1.

The algorithm used to obtain the approximate optimum values (n*, h*, k*) of the
design values (n, h, k), with constraints 0 <k < 6,1 <n=250<h=8 and 0 <
ag, Bz < 0.1is a simple grid search method yielding the following result: n¥ = 25,
h* ="1.0, kx = 3.0. )

That 1s, the upper and lower control limits of the economic statistical X chart should
be set at 0.6 and — 0.6, respectively. To monitor the process states, every one hour a
sample of 25 is taken and tested.

There are four possible results for the process. These outcomes with the associated
actions are:

(1) The sample mean % falls within the control limits of X chart — this indicates that

the process is in control so the process continues and the next sample is taken
after one hour.

(2) The sample mean # falls outside of the control limits of X chart — this indicates
that the process should be stopped and SC; is adjusted.



(3) The sample mean 7 falls outside of the control limits of X chart — this indicates
that the process should be stopped and SC, is adjusted.

(4) The sample mean ¥ falls outside of the control limits of X chart — this indicates
that the process should be stopped and SC; and SC, are adjusted.

Summary

A model of a production process is proposed, whose quality can be affected by the
occurrence of two special causes, which result in a different shift in the mean of a
process. A shift in either may also result from over-adjustment of the process when the
process 1s in control. Deming (1982) discusses this common situation in practice. The
proposed model is an improvement to the economic design, since it has the required
statistical properties and considers the effect of process over-adjustment when there
are multiple special causes. Using the proposed design, a process may be adjusted with
minimum cost and required statistical properties, since the only information about
process state available is from sampling.

A Markov chain approach is extended to derive the economic adjustment model
used to determine the design parameters of the X control charts, which together
minimize the long-term cost resulting from process over-adjustment or
under-adjustment. It is demonstrated that the expression for the economic
adjustment model is easier to obtain through the proposed approach rather than by
others. Several important extensions of the developed model can be developed. It is
straightforward to extend the proposed model to study other control charts, like
EWMA, CUSUM-charts or charts for attributes. The differences between the models lie
in the derivation of the probabilities of Type I and Type II errors. One particularly
interesting research area for future research involves the economic statistical modeling
of multiple dependent production processes.
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Appendix 1

Py =
exp(—Aimexp(—A2h)(1 — ag)

Pis=(0-
exp(—A1h))exp(—Az/)(By, )
P1g = exp(—A1h) X

(1 — exp(A2/))(By,)

P2 =
exp(—Arhexp(—Agh)gl(ag)
Pig=(1-

exp(—A1h))exp(—Axh)-gl(1 —

Bx,)
P110 = exp(— A1) X

(1 — exp(=A2l))gl(1 — By,)

Pz =
exp(—Amexp(—Azxh)g2(ag)
Pis=0-
exp(—A1/))exp(—Azh)-g2(1 —
Bx,)

P111 = (exp(—A1h) X

(1 — exp(—A2/))yg2(1 — By,)

Pra=
exp(—Aexp(—Agh)g3(ag)
Pig=01-
exp(—A1h))exp(—Azh)g3(1 —
Bx,)

P11z = (exp(—A1h) X

(1 — exp(—A2/))g3(1 — By,)

Table AL Pis=(—exp(-A)x  Pru=(—exp(-ah)x  Prs=(—exp(-ah)x  Pyss = (1~ exp(~Ai/)x
Row 1 (1 — exp(=A2/))(By,) (I —exp(=A2l))ygll = Bg) (1 —exp(=Aah)g2(1 — Bg,) (1 —exp(—A2/))g3(1 — By,)
Py1 =0 Pyo =0 Pyz=0 Pyy=0
Py5 = exp(=A2)(By,) Pyg = exp(—A2)ygl(l — By,)  Poz =exp(—A2lyg2(1 — By,) Pag = exp(—A2/)g3(1 — By,)
Pyg=0 P21o=0 Py =0 P12 =0
Table AL Pry=(1- Pris=(1— Paig=(1—
Row 2 Py = (1 = exp(—Ash)(By,)  exp(=dah) gl — By,) exp(~ Al g2(1 = By,) exp(~ Ay g3l — By,)
P31=0 P32 =0 P33=0 P34=0
P35 =0 P3g=0 P37=0 P3s=0
P310 = exp(— M 7)-gl(1 — P31 = exp(—A1h)-g2(1 — P31 = exp(— M 7)-g3(1 —
P39 = exp(—A11)(By,) Bx,) By,) Bx,)
Table AIIL Piu=@1- Pyis=(1— Pyig=(1-
Row 3 P31z = (1 — exp(—M/)(Bg,)  exp(—him)gl(l — By,) exp(—Mh)yg2(1 — By,) exp(—h) g3 — By,)
Py =0 Py =0 Py3=0 Pys=0
Py5=0 Pig=0 Py7=0 Pig=0
Table AIV. Pig=0 Piip=0 Py =0 Py =0
Row 4 Pi1s = By, Pyya =gl = By,) Py15 = g2(1 = By,) Py16 = g3(1 = By,)
P51 =0 P52 =0 Ps3=0 P54 =0
P55 = exp(—A2/)(By, ) P56 = exp(—Azh)ygl(1 — By,)  Psz =exp(—Ash)g2(1 — By,)  Psg = exp(—A2/)g3(1 — By,)
Psg=0 Ps10=0 P511=0 Ps12=0
Table AV. Psiu=(01- Psis =1~ Psie =01~
Row 5 Ps13 = (1 — exp(=A21))(Bg,)  exp(—=rel)gld — Byg,) exp(—A2l)g2(1 — By,) exp(—A2/))g3(1 — By,)
Pg1 =0 P2 =0 Pg3 =0 Pga=0
Ps5 =0 Pge =1 Pg7 =0 Pgg =0
Table AVI. Peo =0 Ps10 =0 P =0 Po12 =0
Row 6 Psi3 =0 P1s =0 Ps15 =0 Ps16 =0
P71 =0 Pra=0 Pr3=0 Pra=0
P75=0 P76 = P;7=0 Prg=0
Table AVII. Pro=0 P =0 Pr=0 P12 =0
Row 7 P71 = By, Pr1a =gl = By,) Pr15 = g2(1 - By,) Pr16 = g3(1 = By,)




Pg1 =0
Pgs =0

Pgg = exp(—M ) (By,)

Pga=0
PS,G = 0

Pg10 = exp(—M/)ygl(l —

Pg3=0
Pg7 =0

Pg11 = exp(—Mh)yg2(1 —

P8,4 = 0
Pgg = exp(—M)(B)(B2)

Pg12 = exp(—MA)yg3(1 —
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Pg13 = (1 —exp(=Mil)(By,) Psuu=(1- P15 =(1 - Pgie=(1—
Table AVIIL

exp(—M))ygl(d — By,) exp(—Ail))yg2(1 — By,) exp(—\))yg3(1 — By,) Row 8
Pys =0 Pog =0 Py7; =0 Pog =0
Pgy = exp(—A1h)(By,) P10 = exp(=A1h)ygl(d - Pop1 = exp(—A1h)g2(1 - P2 = exp(—A1h)yg3(1 -

Bx,) Bx,) Bx,)
Po13 = (1 — exp(—Ail)(Bg,) Poru=(1-— Poi5=(1- Po1g=(1— Table AIX.

exp(—Ah))gld — By) exp(—Aih)g2(1 — By) exp(—Aih))yg3(1 — By) Row 9
Pip1 =0 P2 =0 Pi3=0 Pios =0
Pys =0 Pys =0 Pyp7 =0 Pyg =0
Piog =0 Pio10 =0 Py =0 P12 =0 Table AX.
Pias = By, Pis =gl = By, Pro1s = g2(1 = By,) Pro6 = g3(1 = By, Row 10
Py1=0 Py2=0 Puz=0 Pra=0
Pus=0 Pug=0 Pnz=0 Ppg=0
Png=0 Piio=0 Phn=1 Pi112=0 Table AXI.
Piiz=0 Pnu=0 Pnis=0 Ppis=0 Row 11
P21 =0 P2 =0 P23 =0 Proga=0
Pio5 = exp(=A2/)(By,) Piog = exp(=As)-gl(l — By) Proz = exp(=A2h)g2(1 — By,) Pros = exp(—A2h)yg3(1 — By,)
Pi2g=0 Pi210=0 P =0 P22 =0
Ppiz=(01- Ppu=0- Pyis =01 — Prps=0- Table AXII.
exp(—Aah)(By,) exp(—Aa/)gl(l — By,) exp(—Aah)yg2(1 — By,) exp(—Aa/)yg3(1 = By,) Row 12
P31 =0 P132=0 P33 =0 Piza=0
Pis =10 Pize=10 Piz=0 Pizg=10
Pizg=10 Pi310=10 Pz =0 Piz12=10 Table AXIII.
Pis1s = (1 — exp(=M)(By,) Pis1a = gl(1 = By,) Pig1s = g2(1 — By,) Pis16 = g3(1 — By, Row 13
Py1=0 P = Pys= Pus=0
Pys =0 Pl = Pyz = Pug=0
Piyg = exp(—A1h)(By,) Pia10 = exp(—Mh)ygl(l — P = exp(—Ah)yg2(1 — Prs12 = exp(—A1h)yg3(1 —

%, Bx,) %

Puiz=(01- Puu=01- Puis =01~ Pis=(1— Table AXIV.
exp(—M ) (By,) exp(—A1h)gll — By,) exp(—MM)yg2(1 — By,) exp(—A1/)g3(1 — By,) Row 14
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P51 =0

P55 = exp(—A2/)(By,)

Pis6 = exp(—A2h)ygl(1 — By,)

Pi53=0

Pi57 = exp(—A2h)g2(1 — By,)

P15 = exp(—A2h)yg3(1 — By,)

422 Pi59=0 Pi510=0 P51 =0 Pi512=0
Table AXV. Pisis=(1~— Pisu=01- Pisis=(1— Pisi6=(01—
Row 15 exp(—A2/)(By,) exp(—A2h) gl — By) exp(—A2/)yg2(1 — By,) exp(—A2/)g3(1 — By,)
Pi1 =0 P2 =0 Pz =0 Piga =0
Pis =0 Pig6 =0 Pz =0 Pigs =0
Table AXVI. Pis9 =0 Pig10 =0 Py =0 P12 =0
Row 16 P13 =0 Pis1a =0 P15 =0 Pigis =1
Appendix 2
Ci1 = (Coh) + (a+bn) Ci2 = (Coh) + (a +bn) + C¢ Ci3 = (Goh) + (a+bn) + G Cra = (Coh) + (a +bn) + C¢
Cis=Con +CGh—m)N+  Cp=(Comn+Cith—m))+ Ciz=ECom +CGh—m+  Cg=(Comn +Cith—m)) +
(a+bn) (a+bn)+ Cy (a+bn)+C (a+bn) 4+ Cy +C¢
Co=Cn+Ch-mn)+@+ Cio=Cm+Cih—n)+(@+ Ciin=Com + (Ci(h — m) + Ciiz=Com + (Ci(h — m) +
bn) bn)+C; (a+bn) + Cy (a+bn) +Cy +C¢
Cri3 = Comy + Crus = Comy + Cri5 = Comay + Cri6 = Comyy +
Table AXVIIL. AR (75 — 710)) + Crath = ALERD) (7 — 7)) + Crah — Ay (n9) — 7)) + Crath = ALY (75, — 70)) + Crah —
Row 1 7)) + (@ + bn) 7)) + (@+bn) + Cy 72) + (@+bn) + Cy 7))+ (@+bn) + Cy
C1=0 Co2=0 C3=0 Cou=0
Cog = (Cih)+(a+bn)+Cy +
Co5 = (Cth) + (a+ bn) Co = (Cih) + (a+ bn) + Cy Co7 = (Cih) + (a+ bn) + C¢ Ce
Co9=0 Co10=0 Con1 =0 Co12 =0
Table AXVIIL Co3=Cimp > Cory = Cim4+Cra(h—m)+ Co15 = Cime+Crath—m)+ Co16 = Ci24Cra(h—m)+
Row 2 +Cpa(h — 7) + (a+ bn) (@+bn)+Cy (a-+bn)+Cq (@+bn)+Cy
C1=0 C2=0 C3=0 Ca=0
C35=0 C36=0 C37=0 C35=0
C312 = (Czh)+(a+bn)+Cy; +
C39 = (G3h) + (a + bn) Co=0Ch+@+bn)+C Cu=Ch+@+bn)+Cs G
Table AXIX. Gz =Cm +Ceth—m)+  Gu=0Cn+Cph-m)+ Cis=Cn+Cah—m)+ C6=Com +Ciath — ) +
Row 3 (a+bn) (a+bn) +Cyr (a+bn)+Cy (a+bn) +Cyr
Ci1=0 Ciz2=0 Ci3=0 Ciy=0
Cy5=0 Cie=0 Cy7=0 Cig=0
Table AXX. Cig=0 Ci10=0 Cinn =0 Ci12=0
Row 4 Cy13 = (Ci2h) + (@ +bn) Cy14 = (Ci2h)+(a+bn)+Cy; Cy15 = (Crzh)+(a+bn)+Cys

Cy16 = (Cr2h)+(a+bn)+Cy




C571 =0

C575 = (Cih) + (a + bn)
Cs9=0

Cs13=Cim + Cia(h —

Cs2=0

C5=6 =(Ch)+@+
bn) + Cq

C510=0

Co1s =Cimp +Croh —

Cs3=0

C5‘7 = (Clh) + (a+
bn) + C¢

Cuu=0

Cs15 =Cim 4+ Co(h —

Csu=0
C5,8 = (Cih)+(@+
bn)+Cs + Cy
Cs12=0

Cs16 = Cim + Cia(h —

Over-adjusted
process mean
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Table AXXI.
)+ (a + bn) 7) + (a+bn) + Cy ) + (a+bn) + Cy ) + (@ +bn) + Cy Row 5
Ce1 =0 Co2=0 Ce3=0 Cea=0
Cos = Ces =Csr Ce7=0 Cos =
Coo=0 Co10="0 Co11 =0 Co12=0 Table AXXII.
Cor3 =0 Cora =0 Co15 =0 Co16 =0 Row 6
Cr1 = Cr2=0 Crz3=0 Cra=0
G5 = Cr6=0 Gz = Crs = (C2h) + (a +bn)
Crg = Cr0=0 G = Cr12=0 Table AXXIII.
Crs = Cish + (@ + bn) Cras=Cih+@+bm +Cy  Crs=Cizh+@+bn)+Cy  Crip = Cioh + @+ bn) + Cy Row 7
Cs1=0 Cs2=0 Cs3=0 Cga=0
Cg5=0 Cse =0 Cs7=0 Cgs =0
Cg 12 = (Czh)+(a+bn) + Cy+
Cgg = (Coh) + (a+ bn) Cg10 = (C2h) + (@ +bn) + C; Cg11 = (Ch)+(@a+bn)+Cy  Cf
Co13 =Com +Cath — 1)+ Cu=0Cmn+Cuh-m)+ Cus=Cn+Cah—-m)+ Cgie=Com +Ciath — 1) + Table AXXIV.
(a+bn) (a+bn) + Cy (a+bn)+Cy (a+bn) + Cy Row 8
Co1 =0 Coz =0 Coz=0 Coy=0
95 =0 Cos =0 Co7 =0 Cog =0
Co12 = (Coh)+(a+bn)+Cy +
Co9 = (Czh) + (a + bn) Coro=(Ch)+@+bn)+C  Conn = (Ch)+(a+bn)+Cs Gt
Co13 = (Com + (Crz(h — Co1a = Com + Cro(h — 7))+ Coi5 = Com + Cizth — 7))+ Co16 = Com + Cro(h — 7))+ Table AXXV.
) + @+ bn) (a+bn)+Cq (a+bn)+Cyr (a+bn)+Cq Row 9
Ci1 =0 Ci2=0 Ci3=0 Cia =0
Cio5=0 Cios =0 Cio7r =0 Cios =0
Ci9 =0 Cio10=0 Cion =0 Cio12=0 Table AXXVL
Cio13 = Cizh + (a + bn) Cio4 = Ci2h + (@ +bn) + Cy Cio,15 = Ci2h + (@ +bn) + Cy Cio,16 = Ci2h + (@ +bn) + Cy Row 10
Cia1=0 Cinz=10 Ciz=0 Cia=0
Cius=0 Cug=0 Cuz=0 Cug=0
Cig=0 Cio=10 Ciin = Csr Ciiz=0 Table AXXVIL
Ciiz=0 Cia=0 Ciis=0 Cii6=10 Row 11
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Ci21=0

Cizs = (Cih) + (@ +
bn)

Cr29=0

Cre3=Cim +
Ciph—m) + @+

Cio2=0

Cize = (Cih) + (a +
bn) + Cy

ClZ‘lO =0

Cros = Comy +
Coh—m)+@+

Ci23=0

Cro7=(Ch) + @+
bn) + C¢

Ciz1 =0

Cro1s=Cim +
Cioth—m)+ @+

Ci24=0

Crzg = (Gih)+(@+
bn)+Ct + Cy

Ciz12=0

Ci216 = Cim2 + Cioh —

Table AXXVIII.
Row 12 bn) bn) + Cy bn) + Cy 7) + (@ +bn) + Cy
Ci31=0 Ci32=0 Ci33=0 Ci34=0
Ci35=0 Ciz6=0 Ci37=0 Ciz5=0
Table AXXIX. Ci39=0 Ci310 =0 Cisn =0 Ci312=0
Row 13 Cpy=Cr2h+(a+bn) Cizia =Czh+@+bn) +Cy Cizis =Creh+@+bn)+Cy Cizip = Cizh + (@ +bn) +Cy
Ciu1=0 Cuz2=0 Cuz=0 Cua=0
Cus =0 Cus=0 Cuuz=0 Cug=0
Cun = (Gh) + (a +bn) + Cia12= (C2h)+(@+bn)+Cy +
Cis9 = (Ch) + (a + bn) Cipo=Ch) +@+bn)+C  Cy Ce
Table AXXX. Ciaps = (Cm + (Cath — Ciuu =G +Ceth = m)+  Cups =Cm +Ceh—m)+ Cuie =Com +Cath — 1) +
Row 14 7)) + (a+ bn) (a+bn) + Cyr (a+bn) +Cy (a+bn) +Cy
Ci51 =0 Cis2=0 Cis3=0 Cis54 =0
Ci58 = (Cih)+(a+bn)+C; +
Ci55 = (C1h) + (a + bn) Cis6=(Cih)+(@+bn)+Cy  Cis7=Ch+@+bn)+C  Cy
Ci59=0 Ci510 =0 Cisn =0 Ci512=0
Table AXXXI. Ci513=Cim+ (Cr2th — m)+ Ci510 =Com +Coh — 1)+ Ci515 =Cim +Ca(h — )+ Cis6 = Cime + (Cra(h — ) +
Row 15 (a+bn) (@+bn)+Cy (@+bn)+Cy (@+bn) +Cq
Ci51 =0 Cis2 =0 Cis3 =0 Ci64 =0
Ci5 =0 Cis6 =0 Cis7 =0 Cisg =0
Table AXXXIIL Cieo =0 Cie10 =0 Cie1 =0 Cis12 =0
Row 16 Cig13 =0 Cig1a =0 Cio15 =0 Cis16 = Cor




