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This article considers the problem of educational placement. Several discriminant
techniques are applied to a data set from a survey project of science ability. A pro-
file vector for each student consists of five science-educational indictors. The stu-
dents are intended to be placed into three reference groups: advanced, regular,
and remedial. Various discriminant techniques, including Fisher’s discriminant
analysis and kernel-based nonparametric discriminant analysis, are compared.
The evaluation work is based on the leaving-one-out misclassification score.
Results from the five school data sets and 500 bootstrap samples reveal that the
kernel-based nonparametric approach with bandwidth selected by cross valida-
tion performs reasonably well. The authors regard kernel-based nonparametric
procedures as desirable competitors to Fisher’s discriminant rule for handling
problems of educational placement.
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ment, Fisher’s discriminant analysis, generalized kth-nearest-neighbor method, science-
education indicators

Fisher’s discriminant analysis (DA), known in the fields of education and applied
psychology as a “trait-space model” (Cooley & Lohnes, 1971; Tatsuoka, 1971),
has proven useful for identifying the structural dimensions along which groups dif-
fer. With respect to placement problems, however, it has not been very fruitful. The
effectiveness of its classification role is jeopardized by two measurement caveats
(Nunnally, 1978). One is associated with the difficulty involved in obtaining mutu-
ally exclusive groups when membership is designated by a quantitative attribute,
while the other is associated with the use of a set of discriminant variables that mea-
sure only cognitive attributes, such as scores on ability, aptitude, and achievement
tests. Thus, the classification effectiveness of Fisher’s DA might be enhanced in a
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measurement situation wherein exclusive groups are obtainable and the attributes
measured by the discriminant variables are a combination of both cognitive and
noncognitive ones. This suggests that the classification role of Fisher’s DA should
be reevaluated, since the proposed measurement situation has its application in the
current practice of building an educational indicator system for monitoring school-
ing outcomes.

Monitoring students’ school performance in science (Murnane & Raizen, 1988;
Shavelson, Carey, & Webb, 1990; Shavelson, McDonnell, Oakes, Carey, & Picus,
1987; Smith, 1988) requires that the educational indicators used contain cognitive
and noncognitive determinants that work together to influence performance. Such
a set of indicators is considered crucial for tackling two central educational prob-
lems: learning diagnosis and instructional placement. The purpose of this study was
to examine the usefulness of discriminant techniques in allocating students into
instructional-curriculum coherence programs in compliance with their learning
progress levels (Newmann, Smith, Allensworth, & Bryk, 2001).

For the purpose of instructional groupings, it is a common practice to place stu-
dents into remedial-, regular-, and advanced-curriculum programs based on grade
point average (GPA) distributions. GPAs, as accumulated overall performance on
intellectual and qualitative measures, are considered suitable in designating group
memberships. Moreover, the designation procedure is tailored to the long-standing
recognition that most students are of average achievement level, and very few stu-
dents have extremely high or extremely low achievement levels. Consequently, this
study focuses on a three-group classification problem in which the sizes of the groups
are grossly different. Therefore, within the indicator system just mentioned, we were
interested in comparing a student’s profile vector with three reference groups, where
profile vector refers to the student’s scores on a set of five science-education indica-
tors (as described subsequently). Since the five indicators constitute an integrated
composition within an educational indicator system, we treated them as a necessary
set of discriminant variables, bypassing discussion of the variable selection problem.

As shown subsequently, the measurement levels associated with the five indica-
tors are ordinal, resulting in the data vectors deviating from a multivariate normal
distribution. Thus, we used Fisher’s parametric as well as nonparametric discrim-
inant rules for our placement problem, where nonparametric discriminant rules
refer to procedures based on kernel-based density estimation ideas (Hand, 1982;
Silverman, 1986). Titterington’s work (Titterington et al., 1981) reveals that, when
applied to a two-group medical diagnosis problem, the nonparametric kernel-based
procedure does not perform well in terms of classification error rates. The specific
characteristics of the class and data structures of our classification setting, how-
ever, might render perspectives different from those of Titterington.

For example, in the medical context of discriminant analysis, a patient’s disease
to some extent has a biological or physical root. The class structure of the training
data set can achieve a relatively clear-cut division provided that diagnosis by clini-
cians or automatic examinations is correct. In contrast, students’ school performance,
as indicated by GPA records, largely reflects psychological or mental abilities. To
obtain a mutually exclusive class structure, one must compromise some indifference
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zones. In addition, as mentioned earlier, in the school setting only extremely slow and
exceptionally able learners are considered for placement in remedial- or advanced-
curriculum programs, respectively, and the bulk of students of average ability remain
in the regular program. Therefore, the training data set of this study was designed to
reflect such a class structure.

Characteristics of Data Structure

This study analyzed the data collected from a large-scale project commissioned
by the National Science Council of the Republic of China for developing educational
indicators to monitor and upgrade Taiwan’s elementary and secondary science cur-
ricula (Cheng et al., 1994). The five indicators of science education, developed for
assessing sixth-grade students, are the nature science test, four questionnaire scales
on students’ interest in and attitudes toward science, teachers’ dedication, parents’
educational levels, and hours spent on homework. Sixth graders from 30 classrooms
were distributed throughout five public schools in Taipei City and Taipei County.
Information on each sample school included students’ scores on the five indicators
and their GPAs. The distribution of GPAs was used to designate students’ group
membership according to the respective school norms.

The designation procedure was designed to obtain three relatively exclusive groups
by separating students in the bottom 5% and top 5% of the GPA distribution from
those in the remaining 90%. This procedure is frequently used in the selection of low-
and high-ability students. In addition, students with GPAs in the indifference zones—
between the 90% and 95% quantiles and between the 5% and 10% quantiles—were
excluded from the study. This was done because no agreement could be reached on
how to identify students falling in these zones (Glass, 1978). Following this proce-
dure, the remaining students within each school were identified as the three reference
groups in compliance with placement into the remedial-, regular-, or advanced-
curriculum programs. Hence, the students whose group memberships were estab-
lished were treated as a training data set with known membership status.

Table 1 provides a description of the classification and discriminating variables,
including group categories and scale values. Table 2 presents training set sample
sizes for the five schools, including cell frequencies broken down by groups.
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TABLE 1
Description of Classification and Discriminating Variables

Group category
Variable type Description or scale value

Classification GPA Grade point average 1, 2, 3
Discriminating NST Nature science test 0–32

ATT Interest /attitude toward science 0–5
TTE Teachers’ teaching endeavor 0–10
HHS Hours of homework study 0–12
FME Parents’ education levels 1–6
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As can be seen in Tables 1 and 2, the data structure of this study was character-
ized by ordinal data vectors and gross differences in group sizes. These two char-
acteristics to some extent violate the normal assumptions underlying Fisher’s DA.
Therefore, the aim of this study was to apply the kernel-based nonparametric dis-
criminant analysis to the educational placement data. The nonparametric approach
neither lays ground on stringent distributional assumptions nor sets any parametric
form of separating surface for groups. Practically, the nonparametric method allows
a flexible separating surface driven by the training data.

The following section contrasts methods of density estimation involved in the
parametric and nonparametric classification procedures. The theoretical aspects
subsumed under both procedures have been well developed; therefore, this study,
focusing on selecting methods for data analysis, addressed them in a more heuris-
tic manner. Readers interested in detailed derivations may refer to the services
listed.

In addition, the following description emphasizes the introduction of kernel-
based density estimators, since the fields of education and applied psychology have
yet to make much use of them. Moreover, for the sake of ease of use, we introduce
three estimators based on data-driven bandwidth selection approaches, namely,
methods of least squares and likelihood cross-validation and the generalized kth-
nearest-neighbor method. Here we adopt classical methods of bandwidth selection
rather than more recently developed counterparts (see the lists of Jones, Marron,
& Sheather, 1996; Sain, Baggerly, & Scott, 1994; and Park & Turlach, 1992),
because the asymptotic behaviors of those approaches might be only minimally in
effect for such relatively small samples. (For example, we observed that the biased
cross-validation score functions for the three groups in each school data set were
strictly decreasing. Consequently, the minimizing hg could not be located for the
three groups.)
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TABLE 2
Training Sample Sizes of the Five Schools and Cell Frequencies Distributed in the
Respective Three Groups

Group 1: Group 2: Group 3:

remedial regular advanced   
(bottom 5%) (middle 10%–90%) (top 5%)

School (n1) (n2) (n3) N

1 6 84 9 99
2 9 101 10 120
3 12 166 22 200
4 14 202 14 230
5 22 309 26 357
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Comparison Framework

Brief Comparison of Density Estimation Methods

Corresponding to the terminology of discriminant analysis, classification of
students into one of the three instructional groups was based on the largest value
associated with the posterior probabilities. The posterior probability, denoted by

p (g x), takes the form where g is a subscript to dis-

tinguish the groups, x is a p-element profile vector containing the discriminant vari-
able scores of a student, and fg(x) is the group-conditional density function at x.
Thus, computation of p (g x) relies on the methods used to estimate the group-
conditional density at point x, fg(x).

Fisher’s discriminant approach (Fisher, 1936; Rao, 1973) applies the linear or
quadratic classification rule to compute an estimate f̂ g(x) of fg(x) from the train-
ing data set. Both criteria are based on the Mahalanobis generalized squared dis-
tance, denoted by d 2

g = (x − x̄g )T C−1 (x − x̄g), where x̄g is the sample mean vector
in group g and C refers to a pooled sample covariance matrix or within-group
covariance matrices. Under a multivariate normal theory, the exact expression of
the estimate f̂ g(x) is

The nonparametric version of Fisher’s DA used in this study refers to applica-
tion of the kernel-based density estimator (Hand, 1981, 1982; Silverman, 1986) to
estimate fg(x). Here we drop g for a discussion in the general setting. The multi-
variate kernel-based density estimator is defined as

where Xi is a p-dimensional observed data vector, K(z) is a p-dimensional kernel
function, and h is the bandwidth (or smoothing parameter or window width). The
density estimate f̂ (x) yielded by this definition is composed of the smoothed ver-
sion of the true density plus random error (Rosenblatt, 1956; Whittle, 1958), where
the smoothed version of the true density is the expected value of density estimate,
Ef̂ (x). Because the bias, Ef̂ (x) − f (x), directly depends on the smoothing param-
eter h, the crucial work in the estimation process is to choose an appropriate h to
minimize the approximate mean integrated square error, denoted by MISE[ f̂ (x)]
= E ∫ [ f̂ (x)] − f (x)]2, which consists of the squared bias and variance components
associated with the use of Equation 2 to estimate true density f (x).

To avoid a choice of h that is too large or too small, methods of least squares
cross validation (LSCV) and likelihood cross validation (LKCV) use only the data
themselves to choose the smoothing parameter via different algorithms. The LSCV
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method locates the best h by minimizing a score function in the sense of minimiz-
ing estimated MISE, where the score function is an estimate of ∫ f̂ 2(x) − 2 ∫ f̂ (x) f(x)
(Bowman, 1984; Rudemo, 1982; Stone, 1984). The LKCV method, in contrast,
arrives at the best choice of h that minimizes the Kullback-Leibler information
distance between a density estimate and its true density, which is defined as
∫ f (x)log[ f (x)/ f̂ (x)] (Duin, 1976; Habbema, Hermans, & van der Broek, 1974).
The appealing aspect of these two methods is that the bandwidth yielded is asymp-
totically optimal in a certain sense (see Stone, 1982, 1984). For f having continu-
ous second derivatives and satisfying ∫ [∇2f (x)]2 < ∞, the optimal bandwidth for
an Order 2 kernel estimate is of magnitude O(n−1( p+4)), where p is the dimension of
the variable x. With a bandwidth of this order of magnitude, the MISE can
achieve the rate of convergence O(n−4/( p+4)).

The generalized kth-nearest-neighbor (GKNN) estimator is defined by

where k, an integer, is the smoothing parameter playing the same role as h to gov-
ern the smoothing quantity rk(x), which is the Euclidean distance from x to the kth
nearest data point. The GKNN method, as contrasted to Equation 2, possesses a self-
adjusting property in that the distance rk(x) varies with data points, resulting in plac-
ing a flatter kernel on data points in regions of low density and a narrower kernel on
those in regions of high density. In addition, literature results have shown that, under
some conditions on the functional form of k, the GKNN estimator is asymptotically
unbiased and consistent (Devroye & Wanger, 1977; Moore & Yackel, 1977).

To summarize, this study employed the estimators of Equations 1, 2, and 3
to compute the group-conditional density estimate f̂ g(x) for the calculation of
posterior probability estimates p̂ (g x) evaluated at point x. Through compar-
isons of the relative magnitudes of the three posterior probabilities, a student was
assigned as a member of a group g if the largest value of p̂ (g x) was associated
with that group.

Generally speaking, the Fisher classification procedure based on Equation 1 is
capable of arriving at an optimal decision surface for two normal groups, in the
sense of minimizing the number of misclassifications. Moreover, the approach was
found robust with respect to its tolerance of some amount of deviation from the nor-
mal distribution assumption (Lachenbruch, 1975). However, for three nonnormal
groups of grossly different sizes, the extent to which Fisher’s approach converges to
the desired optimal decision surface is unknown. In this case, the borderline cases
might be prone to misclassification.

To ensure a given degree of accuracy in five-dimensional density estimates by
the kernel-based estimators (Equation 2 or 3), a moderate sample size is required.
Although the sample sizes shown in Table 2 might not be sufficient to ensure a given
degree of accuracy in density estimates, this study aimed to compare performances
in terms of classification accuracy rather than in terms of accuracy in density esti-
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mates. As mentioned earlier, the classification procedure is intended to assign a stu-
dent to the group to which he or she has the highest probability of belonging.

According to the formula what is required is to select

the group with the highest density estimate from the trio f̂ 1(x), f̂ 2(x), and f̂ 3(x)
rather than to study how close these three density estimates are to their respective
true densities. In other words, so long as the effect of the small sample size does
not jeopardize the probability of selecting the highest density estimate among the
three groups, the decision to assign students to the associated groups is legitimate.

With the use of kernel-based estimators (Equations 2 and 3) to estimate densi-
ties, the choice of the kernel K(z) could be made subjectively. The kernels associ-
ated with Equations 2 and 3 were chosen as the normal and uniform functions,
respectively. This choice was made to allow an easier calculation in terms of locat-
ing the window width h or k. Moreover, this different choice between the uniform
and normal kernels is legitimate, since the efficiencies of the two kernel functions
are almost the same on the basis of the MISE (Epanechnikov, 1969).

As to the choice of h, the computational score functions under the LSCV and
LKCV methods were used to obtain a triplet of hg for the three-group discriminant
problem of this study. That is, the values of the bandwidth were adjusted to within-
group data structures, but the same single hg was used in the five dimensions for
each group. For the choice of k, the asymptotic value of k minimizing the MISE
was proportional to ng

4/( p+4) (Mack & Rosenblatt, 1979), where the constant of pro-
portionality depends on the unknown density function of the target group. Since
this theoretical value of k is intractable, we used the selection criterion that k yields
the lowest classification error rate based on the training data set (Hand, 1982).
Within this analogy, the GKNN method is also a data-driven bandwidth selection
approach, since the location of a best triplet of kg is based on the error rate function
calculated from the empirical data set.

Criteria for Performance Evaluation

Evaluation work under the discriminant analysis is based on the misclassification
rate, obtained by applying the classification rules derived from the training sample
to a test data set or to leaving-one-out cross-validation samples (Lachenbruch &
Mickey, 1968). This study treated the samples of the individual schools as shown in
Table 2 as the training samples. Since the sample sizes were small, we adopted the
leaving-one-out cross-validation procedure via the training sample to calculate dif-
ferent measures of classification error rate (as described subsequently). These per-
formance measures were carried over for each of the five school data sets. In addition,
500 bootstrap samples from the original sample data of the fifth school—which had
the largest sample (n = 357)—were used to obtain the variances of these error-rate
estimates, including the bootstrap means and the 95% confidence intervals.

Here we would like to point out that, in the school setting, the major concern is
identifying students suitable for remedial- and advanced-curriculum programs.
Therefore, evaluation work based on the error rates of Groups 1 and 3 will be more

ˆ ˆ ˆ ,p g f fg gg
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important than that based on the Group 2 error rate or the overall error rate. As a
result, the performance of the Fisher and kernel-based methods was evaluated via
this particular aspect, as well as through an average of individual group error rates.

Here we also mention that evaluation work via the assignment formula p̂(g x) =

does not take any loss function into consideration. This is to carry 

out an educational policy in which more students with higher-than-average ability
may be accepted into advanced-curriculum programs. Another reason is to enhance
educational accountability, in that more students with lower-than-average ability
may have increased opportunities to take part in remedial-curriculum programs.

Preliminary Analyses and Computional Formulas

Preliminary Data Analyses

The Fisher classification decision was made for a specific student by comparing
the distance between the student’s position and each of the three group mean vec-
tors to locate the group to which the student most likely belonged. Since the mean
vector (the centroid in the five-dimensional space) was used to summarize the posi-
tion of a group, Table 3 lists the values of the means and standard deviations of the
five variables for each of the three groups.

Can be seen in the top part of Table 3, Group 3 (the advanced-curriculum group)
has the highest mean scores, while Group 1 (the remedial-curriculum group) has the
lowest mean scores and Group 2 (the regular group) falls in the middle. Although the
centroids of the groups are distinctive, an overlap of individual students is expected
given the large differences in the standard deviations among the three groups (see
Table 3, bottom), particularly those associated with variable NST. A visualization of
the students’ group positions in the pairwise scatterplots of the five variables pro-
vided evidence that the three groups’ students were not well separated, since there
was a great deal of overlap. Given such an overlapping data structure, we were inter-
ested in examining the extent to which the Fisher and nonparametric discriminant
rules could accomplish a better separation of the students in these groups.

To decide whether to use pooled covariance or within-group covariance matri-
ces in density estimates, we conducted a likelihood ratio test (Morrison, 1976) of
the homogeneity of the three within-group covariance matrices for each of the five
school data sets. The chi-square values associated with the three larger data sets
(3, 4, and 5) were all significant at the .10 level, whereas the chi-square values of
the two smaller data sets (1 and 2) were not significant.

Because the likelihood ratio test is not robust to nonnormality (Anderson, 1984;
Perlman, 1980), we looked further into the similarity in entries on the group covari-
ance matrices. We relied on a comparison made with heuristic information rather
than the individual entries in each cell of the matrices of the large shape. This
heuristic information included the natural log of the determinant of the individual
within-group and pooled covariance matrices, as well as the generalized squared
distances between group mean vectors calculated via the two types of covariance
matrices, all of which are listed in Table 4.

ˆ ˆ ,f fg gg
x x( ) ( )
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As shown in Table 4, the magnitudes of the determinants of the three within-
group covariance matrices (see the column labeled ln Cg ) were quite different
among the three groups. Moreover, the log values of the determinants of the pooled
covariance matrices (see the column labeled by ln C ) were much closer to those
of Group 2 than to those of Groups 1 and 3. In addition, a lack of similarity in the
entry pattern was found by comparing the values of generalized distances between
group mean vectors associated with the within–group and pooled covariance matri-
ces (see Table 4).

The analyses just described indicated that the underlying covariance structures
among the three groups were, to some extent, not identical. Since a classification
equation could be distorted by invalid use of the pooled covariance matrix, we
employed the within-group covariance matrices (Cg) for the distance measure
involved in the density estimation for all of the five data sets.

Computational Procedures for Group-Conditional Density Estimates

Given that the distance measure is based on the within-group covariance matrix,
Cg, the computational formula for Fisher’s parametric group-conditional density
estimator is of the form

where

The computational formula corresponding to the normal kernel-based density
estimator of Equation 2 takes the following form:

where

and

As mentioned earlier, this study pinpointed the LSCV and LKCV methods to be
associated with the kernel–based estimator of Equation 2 as the procedure for
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choosing window width h. The computational score functions corresponding to the
LSCV and LKCV algorithms are presented in Equations 6 and 7, respectively:

where

In other words, we first employed Equations 6 and 7 to obtain hg and then
used them as the best values to calculate the group-conditional density estimates
via Equation 5. Hereafter, for the sake of simplicity, let LSCV and LKCV respec-
tively stand as the abbreviations for the kernel-based estimator of Equation 5
using the LSCV and LKCV bandwidth selectors, respectively.

The computational formula corresponding to the GKNN estimator of Equation 3
takes the form

where

Equation 8 represents a uniform kernel-based density estimator in the calculation
of group-conditional densities via a choice of the group smoothing parameter kg.

The preceding computational formulas were used for the five school data sets,
as well as for the 500 bootstrap samples of the School 5 data set. The bootstrap
sample held the stratified characteristic of the School 5 data set. That is, each of
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the 500 bootstrap samples was of size 357, with subgroup sizes (ng) equal to 22,
309, and 26 for the first, second, and third groups, respectively. In other words, we
conducted a simple random sampling from X1, . . . , Xng with replacement for each
of the three subgroup samples, since X1, . . . , Xng are iid random variables from the
associated subgroup populations (Efron, 1982).

As mentioned earlier, the five school data sets were the training data sets from
which the corresponding discriminant rules were derived and classification error
rates were calculated on the bases of the cross-validation procedure. The param-
eters estimated according to Fisher’s quadratic discriminant rules were x–g and Cg

in Equation 4, whereas the parameters estimated according to nonparametric dis-
criminant rules were hg and Cg in Equation 5 and kg and Cg in Equation 8. The
smoothing parameters hg were obtained via the computational score functions of
Equations 6 and 7 for the respective individual school data sets broken down by
the three groups. As for the three integers of kg, they were obtained by assessing
different sets of values and choosing the set that minimized the cross-validated esti-
mate of the total error rate.

Note that the Fisher and nonparametric discriminant rules were also applied to
evaluate the 500 bootstrap samples of the School 5 data set. Therefore, the param-
eter estimates (x–g, Cg, hg, kg) obtained from the School 5 data set remained constant
when used to analyze each of the 500 bootstrap samples.

Table 5 lists the resulting values of hg and kg corresponding to the respective
bandwidth selection algorithms for the three subgroups within each of the five
school data sets. As can be seen in Table 5, as expected, the best sets of hg and kg

varied with the five school data sets, which differed in terms of sample size. One
feature that the GKNN, LSCV, and LKCV methods have in common is that they
assign a much smaller value of h or k for Group 2 than for Group 1 or 3. This is
also in compliance with theoretical expectations, since the ideal value of h or k
decreases as group size increases.

To summarize, the major difference in density estimation between the Fisher
and kernel-based procedures resides in the carrying out of different distance mea-
sures, whereas the main difference among the LSCV, LKCV, and GKNN methods
is in the choice of different values of bandwidth. Therefore, we investigated the
effect of varying the distance measure and window width on the density estimates,
as well as the resulting effect on the posterior probability estimates.

We used the following classification error rate measures to evaluate performance
goodness among the four methods: (a) a group-specific error rate (êg); (b) an overall
error rate (ê), which was an average of the group-specific error rate; and (c) a tau index,
which was an error reduction rate relative to a prediction made by pure random assign-

ment. The latter is expressed as tau = where

nc is the total number of students correctly classified and N is the sum of the three sub-
group sizes. The value of tau also indicates whether an improvement is accomplished
by the classification based on the discriminating variables (Klecka, 1984).

n n N nc gg gg
−( ) −( )= =∑ ∑3 3

1

3

1

3
,
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Results

Findings for the Five School Data Sets

Table 6 lists the resulting error rate estimates based on the classification matri-
ces via the leaving–one-out cross-validation procedure for each of the five school
data sets.

As shown in Table 6, by comparing the overall error rate (ê), the performance of
Fisher’s approach is inferior to that of its nonparametric counterparts. Fisher’s
approach resulted in the highest overall error rate estimate for each of the five school
data sets. In terms of the group error rate (êg), Fisher’s approach also yielded the
largest average values of ê1 and ê3 (remedial- and advanced-curriculum groups),
regardless of the school data set. However, that approach did perform as well as the
LSCV and LKCV methods on the value of ê2 (regular-curriculum group); only
slight discrepancies in magnitudes were found over the five data sets.

Comparisons of the performance of the three kernel-based procedures (Table 6)
clearly revealed that the GKNN method produced the substantially lowest value of
ê2 for each school data set. For example, the five values of ê2 associated with the
GKNN method were all below .10, whereas those obtained with the LSCV method
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TABLE 5
Values of the Smoothing Parameters via Data-Driven Bandwidth Selection Methods for the
Three Groups of Individual School Data Sets

Data-driven bandwidth selectors: kernel method with

least squares likelihood generalized 
cross validation cross validation kth-nearest neighbor

Data set Group (LSCR-h) (LKCR-h) (GKNN-k)

School 1 1. Remedial 1.64 1.41 3
2. Regular 0.58 0.74 1
3. Advanced 0.84 1.12 4

School 2 1. Remedial 1.33 1.20 6
2. Regular 0.56 0.68 1
3. Advanced 1.13 1.10 8

School 3 1. Remedial 0.98 0.96 7
2. Regular 0.63 0.61 1
3. Advanced 1.09 1.00 17

School 4 1. Remedial 0.75 0.89 8
2. Regular 0.24 0.60 1
3. Advanced 0.84 0.99 10

School 5 1. Remedial 0.93 0.92 9
2. Regular 0.32 0.55 1
3. Advanced 0.91 0.85 9
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ranged from .30 to .50 and those produced by the LKCV method ranged from .30
to .43. Comparing the mean values of ê1 and ê3, however, revealed that the GKNN
method was not superior to the LSCV and LKCV methods, given that the GKNN
method, on average, produced higher mean values of ê1 and ê3 than those yielded
by the other two methods.

The LSCV and LKCV methods yielded similar results, with negligible differ-
ences for the data sets involving larger sample sizes (Schools 3, 4, and 5). This was
true regardless of whether the comparison was made in terms of overall or group-
specific error rates. For example, the absolute differences in values of ê for the five
data sets were .07, .14, .02, .04, and .00, respectively, while the respective absolute
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TABLE 6
Measures of Error Rates and Tau Indexes Obtained From the Fisher and Kernel-Based
Procedures for the Five School Data Sets

Hit rate =
Data set Method ê ê2 ê3 ê (ê1 + ê3)/2 1 − ê Tau

School 1 Fisher 1.00 .38 .78 .72 .89 .28 .32
(N = 99) LSCV .50 .43 .67 .53 .58 .47 .32

LKCV .50 .43 .44 .46 .47 .54 .35
GKNN .83 .06 .67 .52 .75 .48 .76

School 2 Fisher .56 .44 .70 .56 .63 .44 .30
(N = 120) LSCV .67 .34 .50 .50 .58 .50 .44

LKCV .44 .34 .30 .36 .37 .64 .49
GKNN .33 .07 .40 .27 .37 .73 .83

School 3 Fisher .42 .34 .32 .36 .37 .64 .49
(N = 200) LSCV .17 .30 .36 .28 .27 .72 .55

LKCV .17 .30 .32 .26 .24 .74 .56
GKNN .08 .05 .32 .15 .20 .85 .88

School 4 Fisher .43 .24 .29 .32 .36 .68 .62
(N = 230) LSCV .07 .50 .14 .24 .11 .76 .32

LKCV .14 .31 .14 .20 .14 .80 .57
GKNN .00 .03 .64 .22 .32 .78 .90

School 5 Fisher .41 .47 .42 .44 .42 .57 .31
(N = 357) LSCV .23 .50 .35 .36 .29 .64 .30

LKCV .27 .41 .38 .36 .33 .64 .40
GKNN .14 .09 .62 .28 .38 .72 .80

Note. LSCV stands for kernel method with least squares cross validation, LKCV for likelihood cross

validation, and GKNN for generalized kth-nearest neighbor. Tau = ( ) ( )= =∑ ∑n n N nc gg gg
– / – /3 3

1

3

1

3
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discrepancies in values of (ê1 + ê3)/2 were .11, .21, .03, .03, and .04. These figures
showed that the LSCV and LKCV methods arrived at a more compatible perfor-
mance for larger data sets than for smaller data sets.

Because the tau index refers to a proportional reduction in error rate relative to
that expected with random assignment, we examined the values of tau obtained
under the four methods. As shown in Table 6, the average magnitudes of tau over
the five data sets within each of the four methods were .41, .39, .47, and .83, respec-
tively. These figures indicated that classification based on the five indicators
resulted, on average, in 41%, 39%, 47%, and 83% fewer errors than the expected
accurate percentage produced by random assignment. In terms of the tau measure,
the GKNN method outperformed the other three methods. This superiority, how-
ever, was associated mainly with its overwhelming accuracy in classifying second-
group students.

Bootstrap Samples of the School 5 Data

To understand the effect of sampling variation on the resulting error rates, we
conducted an identical set of analyses on the 500 bootstrap samples from the School
5 data set. That is, for each of the 500 samples, we obtained the associated classifi-
cation results using the cross-validation procedure under the Fisher and kernel-
based discriminant rules. Then we used the resulting 500 classification matrices to
calculate bootstrap means, standard errors, and 95% intervals of error rates, all of
which are summarized in Table 7 and Figure 1.

As shown in the top part of Table 7, Fisher’s approach relative to the other three
kernel-based counterparts yielded the largest bootstrap means of all error-rate mea-
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TABLE 7
Bootstrap Means and Standard Errors of Error Rates Based on 500 Bootstrap Samples of the
School 5 Data Set

Kernel method with

least squares likelihood generalized 
cross cross kth-nearest   

validation validation neighbor   
Fisher (LSCV) (LKCV) (GKNN)

Bootstrap ê*
1 .27 .15 .19 .14

means of ê*
2 .41 .21 .25 .03

error rates ê*
3 .32 .22 .18 .41

ê* .33 .19 .21 .19
(ê*

1 + ê*
3 )/2 .29 .18 .19 .27

Bootstrap ê*
1 .09 .08 .09 .07

standard ê*
2 .05 .02 .04 .01

errors of ê*
3 .09 .09 .07 .11

error rates ê* .05 .04 .04 .04
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sures, with one exception. Among the four methods, the GKNN method yielded
the lowest bootstrap mean of ê*

2 (.03) and the highest bootstrap mean of ê*
3 (.41),

whereas the LSCV and LKCV methods both produced bootstrap means of ê*
1 and

ê*
3 that were much smaller than those yielded by the GKNN and Fisher methods.

The bottom part of Table 7 lists the bootstrap standard errors of error-rate mea-
sures. Comparison of the standard errors of error-rate measures showed that, except
for the standard error of ê*

3, Fisher’s approach produced slightly higher standard
errors than the three kernel-based methods. Again, there were only slim variations
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LSCV: Least Squares Cross Validation 
LKCV: Likelihood Cross Validation 
GKNN: Generalized kth-Nearest Neighbor
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FIGURE 1. 95% confidence intervals of error rates based on 500 bootstrap samples of
the School 5 data set. The depiction is repeated for each of the four error rates based on
the Fisher and kernel methods with least squares cross validation (LSCV), likelihood
cross validation (LKCV), and generalized kth-nearest neighbor (GKNN).
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in standard errors of error rates between the LSCV and LKCV methods. Also, the
GKNN method produced the lowest standard error of ê*

2 (.01) and the highest stan-
dard error of ê*

3 (.11).
Figure 1 displays the interval estimates of the four error-rates measures. The

interval estimates of ê*
g and ê* were compared by computing relative ratios using

the performance of Fisher’s approach as a baseline. These comparisons were made
for both upper- and lower-interval estimates. Results showed that, with one excep-
tion, the relative ratios of the upper and lower limits of the three kernel-based meth-
ods were well below 1.00 with respect to Fisher’s approach, regardless of whether
the comparison involved group-specific or overall error rates. The exception,
again, was in the comparison of interval estimates of ê*

3 between the GKNN and
Fisher methods. The relative ratios of the upper and lower limits were both above
1.00: 1.26 for the GKNN method and 1.21 for Fisher’s method.

In terms of means and interval estimates of the overall error rates (ê*), the per-
formance differences among the three kernel-based methods can be considered
negligible. Moreover, in terms of group-specific error rates (ê*

g ), the GKNN method
performed better than the LSCV and LKCV methods, but only with respect to its
accuracy in classifying second-group students. Its associated ê*

2 statistics were
found to be substantially lower than those yielded by the LSCV and LKCV meth-
ods. However, the reverse results were found for the comparison made on the sta-
tistics of ê*

3. With respect to the performance of ê*
1, only slight discrepancies in the

means or interval estimates were found among the three methods. Among the three
kernel-based procedures, the LSCV and LKCV methods demonstrated compat-
ible performances on the entire set of bootstrap statistics. Both methods produced
similar patterns of interval estimates as well as similar mean values on group-
specific or overall error rates.

Discussion and Suggestions

This study investigated the effectiveness of Fisher’s parametric discriminant
rule relative to its nonparametric discriminant counterparts with respect to placing
students into three instructional-curriculum coherence programs based on infor-
mation carried by five science-education indicators measuring both cognitive and
noncognitive attributes. The nonparametric discriminant counterparts examined in
our study referred to kernel-based density estimation procedures using the LSCV,
LKCV, and GKNN algorithms for bandwidth selection. We let LSCV, LKCV,
and GKNN stand as abbreviations for the respective methods under kernel-based
procedures. Results from the five school data sets and 500 bootstrap samples dis-
played the same patterns regarding relative performance goodness among the four
methods. These findings can be summarized as follows.

Given that the benchmark for comparison is performance in terms of proportion
of students correctly classified, Fisher’s approach performed worse than its three
kernel-based counterparts in that it resulted in greater overall error rates. Performance
goodness among the three kernel-based procedures also varied with the differ-
ent benchmarks adopted for comparison. For example, the GKNN procedure out-
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performed its LSCV and LKCV counterparts with respect to its overwhelming accu-
racy in classifying students belonging to the regular-instructional program. The
LSCV and LKCV procedures, however, both made fewer decision errors in classi-
fying students belonging to the remedial and advanced instructional programs.

Although the GKNN method resulted in the highest overall hit rate among the
four methods, this superiority was mainly due to the substantial reduction in mis-
classification of students in regular-instructional programs. Moreover, this superi-
ority was an anticipated result, since the choice of kg was set to minimize overall
misclassification rate, producing an inflated hit rate. On the other hand, the major
concern in the school setting is to pinpoint students who belong in remedial- or
advanced-curriculum programs. We found that the advantage of the LSCV and
LKCV procedures is in providing a higher hit rate associated with students in these
two groups. Therefore, we regard both the LSCV and LKCV procedures as desir-
able competitors to Fisher’s parametric discriminant rule.

The LSCV and LKCV procedures demonstrated compatible performances in
terms of the entire set of evaluation measures used in this study. Moreover, both
procedures arrived at a more compatible performance for larger data sets than for
smaller data sets. Thus, the two methods seem equally effective in this three-group
educational placement problem.

As evidenced by the higher overall hit rate and tau values accomplished by the
LSCV and LKCV kernel-based procedures, Fisher’s parametric discriminant rule
should no longer be considered robust in dealing with a data structure that deviates
from a multivariate normal distribution. The underlying principle of both the LSCV
and LKCV kernel-based procedures can alleviate the need to meet such a rigid
requirement. Therefore, the LSCV and LKCV kernel-based procedures are both
useful and suitable for tackling the placement problem within an educational indi-
cator system. In addition, the LSCV and LKCV procedures can both be easily
implemented, since the associated h bandwidth selection is characterized by a fully
automated data-driven process that does not need human assistance or intervention.

Note that the LSCV and LKCV procedures failed to accomplish a complete
separation of Group 1 and Group 3 students, resulting in one or two students being
placed erroneously in the opposite direction. This occurrence, however, might be
the result of the use of a relatively small data set, since the kernel-based proce-
dure is prone to produce large variations for density estimates evaluated at the tail
points in highly dimensional settings. Thus, these low error counts still fall within
acceptable ranges. This occurrence also indicates that further implementation
or study should rely on a much larger sample to take the greatest advantage of the
two procedures.

We now turn to the discriminant power contained in the five science indicators.
With the three-group problem, the meaningful total hit rate must be far beyond a
base rate of 33%. This study found that the hit rate given by the LSCV or LKCV
method was over 33% in all five data sets, whereas Fisher’s was over 33% in only
four of the five data sets, and it was never as far over as the LSCV and LKCV meth-
ods. In terms of standardized measure of improvement, all three methods disclosed
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the high values of the tau index. These high values give sufficient evidence that the
classification based on the five science indicators achieved a meaningful improve-
ment in prediction accuracy.

Although this study bypassed the problem of variable selection, we did find that,
in terms of the classification function coefficients obtained via the use of the pooled
covariance matrix, the NST measure (nature science test) appeared to be much
more discriminating than the other four indicators (ATT, TTE, HHS, and FME).
Because the numbers of items involved in these four science indicators are quite
small, there remains much room for increasing the scale length of the four mea-
sures for the sake of building an effective educational indicator system.

This study shows the usefulness of the nonparametric kernel-based density esti-
mation procedure with respect to its discriminant role in educational placement.
Here we would like to mention as a caveat that the strength found is associated with
the case wherein the underlying data structure is legitimately characterized by un-
equal group covariance matrices. Provided that the assumption of equal group
covariance matrices holds, this study showed that in terms of total hit rate the non-
parametric kernel-based density estimators, LSCV and LKCV, were unable to out-
perform the Fisher linear classification procedure.

Finally, we would also like to point out that the use of GPA records to establish
group memberships for the training set by no means constitutes the best approach
to defining students’ achievement levels. A better alternative would incorporate
experienced teachers’ longitudinal observations of students. However, the estab-
lishment of a clear-cut group status for the training set demands a lengthy verifica-
tion process as well. For this concern, we further underscore that the kernel-based
procedure might be helpful in identifying numbers of clusters without reference to
a training set. Future research could explore the goodness of the cluster role of the
kernel-based procedure in relation to the designation of group membership.
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