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Abstract 

The problem of comparing v test treatments simultaneously with a control treatment when k, 
v/> 3 is considered. Following the work of Majumdar (1992), we use exact design theory to 
derive Bayes A-optimal block designs and optimal F-minimax designs for a more general prior 
assumption for the one-way elimination of heterogeneity model. Examples of robust optimal 
designs, highly efficient designs, and the comparisons of the approximate optimal designs that 
are derived by our methods and by some other existing rounding-off schemes when using 
Owen's procedure are also provided. 
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1. Introduction 

Comparing test treatments with a control treatment (or standard treatment) is 
a commonly encountered problem in many industrial, agricultural, and biological 
experiments. Examples of such treatments are different manufacturing processes, 
different fertilizers, or different prescriptions. Experimenters may wish to compare a set 
of test treatments, say v test treatments, indexed by 1, 2, . . . ,  v, with a control treatment, 
indexed by 0, and decide whether the currently used one (control treatment) should be 

replaced by one of the new ones. In order to reduce the variability from known nuisance 
sources, block designs become one of the most frequently used designs in practice. 

Let zl denote the effect of treatment i, i = 0, 1, . . . ,  v, and ri - Zo be the ith test 
treatment-control  contrast  that we are interested in. These contrasts are to be 
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estimated by their best linear unbiased estimators (BLUE) "~i--~o. The opti- 
mality criterion we employ here is the A-optimality, wherein the optimal design 
is obtained by minimizing the trace of the covariance matrix of "~i - go over all 
designs. There are many well-known results concerning the A-optimality of certain 
block designs. A general exposition and a brief review can be found in Hedayat et al. 
(1988). 

Since the technology of storaging data is progressing dramatically, one can reason- 
ably assume that the experimenters have gained some knowledge of some of the 
treatments from past experiences. Designs utilizing prior information might affect 
number of replications of the v + 1 treatments in the experiment. Our interest in this 
paper is to investigate the effect on designs when a substantial amount of knowledge 
about the control treatment is introduced into the model. Owen (1970) was the first to 
address this problem. Following his work, Giovagnoli and Verdinelli (1983, 1985) 
continued to focus on the field of Bayes optimal designs, and have extended the priors 
to be three-stage hierarchical. 

However, all of the above-mentioned papers are in the setup of approximate design 
theory, i.e. the ni~, the number of times treatment i occurs in block j, are presupposed 
to be real numbers. The benefit of this is that powerful theorems applicable to a large 
class of prior distributions can be derived. Nevertheless, it is usually necessary to use 
some 'round off' strategies in order to implement the designs. Not only do we need to 
determine which rounding strategy is best, there may be no rounding strategy that 
leads to an exact design that is optimal. 

Based on practical situation, we consider the problem in the exact design theory 
setup, i.e. the nit must be integers. Majumdar (1988) and Stufken (1991) are in this 
spirit. Majumdar (1992) investigated Bayes A-optimal block designs and optimal 
F-minimax block designs for a large class of prior distributions when k ~< v. In this 
paper, we extend Majumdar's (1992) consideration to a more general situation, and 
focus on finding optimal designs for all k, v/> 3. The results are applicable to cases 
when k > v as well as k ~< v. Moreover, Owen's (1970) results are confirmed by our 
procedure when the nij obtained by his method are integers. An illustrative example is 
provided. 

Robustness of Bayes experimental designs is very desirable. We investigate the 
robustness of Bayes optimal designs for a slightly more general class of prior distri- 
butions than Majumdar (1992). It is not surprising to learn that Bayes optimal designs 
are very robust against departures from the given prior distribution. In the latter 
part of this paper, we also observe that Balanced Treatment Block designs are quite 
robust. 

Assumptions, definitions, and notation are presented in Section 2. Section 3 con- 
tains the identification of Bayes A-optimal and optimal F-minimax designs. Robust- 
ness and other properties of these designs are given in Section 4. Examples of robust 
optimal designs, highly efficient designs, and the comparisons of the approximate 
optimal designs derived by our methods with those derived by some other existing 
schemes are given in Section 4 as well. 
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2. Preliminaries 

Let D(v + 1, b, k) denote  the set of all possible block designs with v + 1 treatments 

ar ranged in b blocks of size k each, k, v ~> 3. For  a design d E D(v + 1, b, k), the model  

we use is the usual additive linear model  wi thout  interactions, 

y = XldO -~- X 2 ~  -~- ~,, 

where Y is the vector of observations which are arranged block by block, 

0 = ( ( v i - T o ) )  is the v×  1 vector of  the v test t reatment-control  contrasts. 

= ((# + To + flj)) is the b × 1 vector which indicate the performances of the control  

t reatment  in b blocks, zi is the effect of  t reatment  i, i = 0 . . . . .  v, flj is the effect of block 

j, j = 1 . . . . .  b and e is the vector of r andom error. Then Xla = ((6hi)), h = 1 . . . .  , bk, 
and i = 1 . . . . .  v, where 6hi = 1 if the hth observat ion receives t reatment  i, and 0 other- 

wise. And X2 = Ib ® lk, where lk is a k × 1 vector of l 's  and Ih is the b × b identity 

matrix. 
Suppose the distribution of errors and the prior distributions are multivariate 

normal :  

VlO,¢ ~ N ( X l d O  + X2~, ~'), 

Then the poster ior  distribution of 0 is 

Oly, T , B  ~ N(#d, Cal l ) ,  

where 

Cd = X'ld(S + X z B X ' z ) - I X l d  + T 1, 

and 

Cdlaa = X'ld(Z + X z B X ' z ) - I ( y  - -  Xzp~) -{- T -lla o. 

Under  squared error  loss L(0, 0) = (0 - 0) '(0 - 0), the Bayes est imator ~J of 0 is the 

posterior  mean lad, and the posterior  expected loss is the trace of C~ l( t r (Cd l)). 

A Bayes A-opt imal  design d* is then defined as one that satisfies 

tr(Ca-. 1) = min t r (Cd l ) .  
d~D(v+ 1,b,k) 

Next we confine the prior  covariance matrices Z, T and B to the following: 

S = { I b ®  ((1 -- 71)Ik + (7, -- 72)Jk) + 72Jhk} ~r2, (2.1) 

T = ( ( / ) 1  - -  02)Iv + 02Jv)o "2, B = ((a -- ap)Ib + apJb)tr 2, (2.2) 

where J ,  is an n x n  matrix of l's, and - 1 < 71,72, P < 1, a > 0, and vl > [v2[. 
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Let Nd = ((na/i) denote the v × b test t reatment  vs block incidence matrix. Then by 
M a j u m d a r  (1992) and under  regularity conditions, 

a(1 - p) + 71 - ]22 4: 0, 

1 - 71 + k(71  - ]22) + k a ( 1  - p )  ¢ O, 

1 - -  ]21 ~-  k ( 7 1  - -  ]22) -{- ka(1 - p) + b k ( 7 2  + ap) ¢ O, 

Cd can be written as follows: 

( 7 2 ( 1  - -  ]21)Cd = diag(rdl, . . . ,  ra~) -- (k + p ) -  1NdN,a 

- qrdr'a + a2(1 - 71)T -1 , (2.3) 

where 

p = (1 - yl)(a(1 - p) + (]21 - ]22)) 1, 

q = (1 - ]21)(]22 + ap)(1 -- 71 + k(]21 - ]22) + ka(1 - p)) 1 

×( l  - ]21 + k(71 - 72) + ka(1 - p) + bk(72 + ap))  1, 

b 
rdl = ~ ndij, the replication of  t reatment  i, V i, 

j = l  

r d = (rdl . . . .  , rdv)'. 

In this paper, we focus on finding opt imal  designs whose prior  covariances are as in 

(2.1) and (2.2), and whose posterior  covariance Cd  1 is determined by (2.3). At the end 

of this section, two needed definitions from Jacroux and M a j u m d a r  (1989) are stated. 

Definition 1. A design d is a Balanced Trea tment  Block design (BTBD) if 

2 d 0 1  . . . . .  •dOv • I~0, 

' ~ d12  . . . . .  2 d v - 1 , v  = /~1 ,  

where 2aic = Y~= 1 ndijndi'~, for i # i', i, i' = 0 . . . . .  v. 
A special g roup  of  BTBDs  whose optimali ty property,  when their is no prior 

information available, has been studied by many  researchers is defined in the 

following. 

D e f i n i t i o n  2. A B T B D ( v , b , k ; t , s )  is a BTBD in D(v + 1 ,b ,k)  with the addit ional 

properties that  

/'/dO1 : " ' "  : l'ldOs ~ t -~- 1, n d O , s + l  --~ " ' "  ---- l'ldO b ~ t ,  

I ndij -- ndi'y[ ~< 1, for (i,j) ~ (i',j '), i,i ' ---- 1 . . . . .  v, and j , j '  = l, . . . , b .  
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3. Opt imal  designs 

Theorem 1. Suppose (2.1) and (2.2) hold, and 1 > 71 >>- ~2, 72 q- ap >1 O, and I) 2 ~ O. Let  
r h = ( l - - 7 1 ) ( v l - - v 2 )  -1 , r / 2 = ( 1 - - 7 1 ) ( v l  + ( v - - 1 ) 0 2 )  -1 , U = b y - z ,  V = b y  2 -  
2yz + z ,  h ( y , z ) = - b v [ U / b v ]  2 + ( 2 U - b v ) [ U / b v ] + U ,  where y and z are two 

nonnegative integers, and 

v ( v  - 1)2(k + p) 
g ( y , z )  = 

(v - 1)(k + p)U - vh(y,z)  + V + v ( v -  1)(k + P)ql 

v(k + p) 
+ 

(k + p)U - q(k + p)U 2 - V + v(k + p)r/2 ' 

d = {(y,z): y = [(k + p + 1)/(2(bq(k + p) + 1))] + 1 . . . . .  k; z -- 0,1 . . . . .  b}, 

where [ . ]  is the greatest integer function. Then 
(i) if (k + p + 1)/(2(bq(k + p) + 1)) < k, and g(y* ,z*)  = min{g(y , z ) :  ( y , z ) e  A}, 

then a B T B D ( v , b , k ; k  - y*,z*},  if it exists, is Bayes A-optimal in D(v + 1,b,k). 
(ii) if (k + p + 1)/(2(bq(k + p) + 1)) >>, k, then a BTBD(v,b,k;O,O),  if it exists, is 

Bayes A-optimal in D(v + 1, b, k). 

Proof.  The p roof  of this theorem is long and we use some of the techniques in 

M a j u m d a r  (1992), hence is put  in the Appendix.  

Remark.  W h e n  k ~< v, then [U/bv] = 0, Theo rem 1 reduces to Theorem 3.1 of 
M a j u m d a r  (1992). 

As to the op t imal  F -min imax  designs, suppose  the range of priors is 

F = {T ,B:  Vmlvt72 ~ T ~ OMIvff 2, amlb 62 ~ B <~ aMlbtr2}, (3.1) 

w h e r e '  ~<' means  nonnegat ive  definite ordering of matrices.  Fo r  a design d, the risk of  
the F -min imax  rule is given by tr(Cd-I(F)) ,  where 

Cd(F) = X'ld('.~ + 0 2 a M X 2 X ' 2 ) - l  X l d  + O-2oMllv. 

An opt imal  F -min imax  design (Majumdar ,  1992) d* is defined by minimizing the risk, 
i.e. 

tr(Ca-.l(V)) = min t r ( C d l ( F ) ) .  
daD(v+ 1,b,k) 

T o  find op t imal  F -min imax  designs, am and vm can be taken to be zeroes wi thout  loss 
of  generality. Under  (2.1), (3.1), and 1 > 71 >~ 72 >~ 0, opt imal  F -min imax  designs can 
be ob ta ined  by apply ing  T h e o r e m  1 with p = v2 = 0, a = aM, Vt = VM. 

For  simplicity of  the subsequent  discussion of design robustness,  we consider  priors 

with vl --* m. This m a y  arise when v test t rea tments  are new and unanalyzed so that  
the pr ior  in format ion  on the per formances  of the new t rea tments  relative to the 
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control  t rea tment  is vague. Additionally,  the errors  are assumed to be uncorrela ted 
between blocks and posit ively correlated within blocks, i.e. 0 ~< 71 < 1, T2 - - - -  0. This is 
more  general than M a j u m d a r  (1992) where the errors  are uncorre la ted  between as well 
as within blocks. Under  this specialization and with a slightly different notat ion,  

Corol la ry  1 is derived. 

Corollary 1. Suppose Z = a2Ib ® ((1 - 7 i l k  + 71Jk). Let  

go(y ,z ;n )  = (v(v - l)2(k + n-1))( (v  - 1)(k + n - 1 ) U  - vh(y ,z)  + V)  -1 

+ (v(k + ~ b)((k + 7r-1)U - V )  1, 

and 

Ao(n) = {(y,z): y = [(k + n -1 + 1)/2] + 1, . . . , k ;  z = 0 . . . .  ,b}, 

where n = (a + 71)/(1 - 71)- Let  d* ~ D(v + 1, b, k) denote a Bayes A-optimal design for  

T = o11~62, o1 --~ ~ ,  B = alba 2, and optimal F-minimax design according to the prior 

covariance class {T ,B :  T = v l l va  2, vl ~ ~ ,  Ob <<, B <~ alba2}, where Ob is a b x b  

matrix o f  zeroes. Then 

(i) / f n  > 1/(k 1),and * *" -- go(y~,z~ ,n) = min{go(y , z ;n ) :  (y ,z)  e Ao(n)}, then we can 

take d* as a B T B D ( v , b , k ; k  ~* * -- ) ~, z~), /f it exists. 

(ii) if n <<. 1/(k - 1), then we can take d* as a BTBD(v,b,k;O,O),  if it exists. 

Next,  let us examine the behavior  of  go(y , z ;n)  by the following l emma from 

Jac roux  and M a j u m d a r  (1989) with a slight modificat ion.  

L e m m a  2. Given values o f  v, b, k and n. Suppose n > 1/(k - 1) and y ~ { [(k + n -  1 + 1)/2] 

+ 1 . . . . .  k} .  

(i) For every value o f  y, there exists a Zo ~ [0, b] which is a function of  y, such that 

go(y ,z ;n)  is (a) decreasing in z for  z ~ [0,Zo] and increasing in z for  z ~ (zo,b],  or (b) 
increasing in z for  z ~ [0, b] when Zo = O, or (c) decreasing in z for  z ~ [0, b] when Zo = b; 

(ii) (a) go(y ,b  - 1;n) ~< go(y ,b;n)  implies go(Y - 1,0; n) <<. go(Y - 1, 1;n) for y 
{[-(k + n 1 + 1)/2] + 2 . . . . .  k}. (b) go(y, 1;n) <~ go(y,O;n) implies go(Y + 1,b;n)  ~< 

go(y + l , b - 1 ; n )  for y e { [ ( k  + n - 1 + 1 ) / 2 ]  + 1  . . . .  , k - l } .  

L e m m a  2 guarantees  the existence of y* and z* for each n, and go(y ,z ;n)  is 
(y~,z~)  or (y~,z~ + minimized either by a unique pair  ,* * * * * * (k~,z~)  or  by two pairs 1). 

Since r~o = b(k - y) + z, we define the 'op t imal '  replication of the control  t rea tment  

for each n as r~(n), where 

r~(~) 

~b(k y*) + z* if go(y,z;n) is uniquely minimized at * * - -  y n , Z n  , 
I 
[b (k  y * ) + z * + l  if * *. ,, / , * z *  1 ; n ) = m i n  go(y~,z~,n) = ~ o ~ ,  ~ + go(y,z;n).  

y, Z~Ao 
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Table 1 

1/8.5 1 1/5.5 + 8 l/2.5 17 
1/8 3 l/5 11 1/2 19 
1/7.5 + 4 1/4.5 + 12 1/1.5 + 20 
1/7 5 1/4 + 12 1/1 21 
1/6.5 + 8 1/3.5 15 1/0.5 + 24 
1/6 + 8 1/3 16 

Note: ' + '  denotes that a BTBD(4,4,18;t,s) with r*(rt) replications of the control 
exists. 

For  S, T, B as sated in Corol lary  1, using Owen's  (1970) procedure one can obtain 

that  for 7z ~> x / v / k  the best n,~ij = (k + g 1)/(v + x/v),  naoj = k - vnaij, i = 1 . . . . .  v, 

j = 1 . . . . .  b. For  cases when these nd~j and ndo~ are integers, Owen's  result is indeed 

confirmed by the above Corol lary  1. The following is an example. 

Example 3.1. For  v = 4, b = 4, k = 18, there is only one value of n >~ x / ~ / k  such 

that  the ndij and naoi obtained by Owen's  procedure are integers, i.e. when n = ~, the 

best ndij is 4, and ndoj is 2, hence rdo = 8, ra~ = 16, i = 1, ... ,4. We examine 17 different 

values of n, and the corresponding r~(n) values obtained by Corol lary  1 are listed in 

Table 1. 

One  can see that  when n = 1/6, r~(1/6) = 8 which is the same as Owen 's  result. 

4. Robustness and approximation 

In Example 3.1, one can see that for many different values of ~ the optimal rdo values 
1 1 1 are the same. For  example, when n - -  6_5, ~, and ~Tg, the optimal rdo values are all 8. 

1 r*(n) = 8, then BTBD(4 ,4 ,18 ;2 ,0)  is Thus, if one can show that when ~ ~< n ~< 373, 
robust  opt imal  for all n between ~.5 and 3~.15. 

This section is proceeded under  the situation of  Corol lary  1 where a and 71 are 

considered th rough  n = (a + 71)/(1 - 71). 

Theorem 3. Suppose  n l  < 7[2 are two nonnegat ive  real numbers.  Then  r'~(nl) <<. r*(TT2). 

Proof. See the Appendix.  

For  ~ = (k + ~ 1) 1, let q o ( y , z ; ~ )  = q ( y , z ; ~ ) ,  where q ( y , z ; ~ )  oc 9o(Y,Z + 1;Tz) - 

go (Y, z; 7z) is as defined in the Appendix. One  can see that if q o (Y, z; ~ )  ~< 0, there exists 

exactly one x such that  qo(Y, z; re) = 0, i.e. both  r*(Tz) and r*(~) + 1 minimize 9o. For  

the other  ~'s, there is only one r~(~) minimize 9o. Since Theorem 3 is equivalent to 

either one of the following two statements, i.e. if qo(Y, z; ~2) > 0, then qo(Y, z; ~1) > O, 
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or if q o ( Y, z; n i ) < 0, then qo ( Y, z; n2) < 0, hence the following statements can be written. 

g o ( y , z ; n l )  <~ g o ( y , z  + 1;ha) implies g o ( y , z ; n )  < g o ( y , z  + 1;n) 

for all n < hi ,  (4.1) 

g o ( y , z ; n 2 )  >~ g o ( y , z  + 1;n2) implies g o ( y , z ; n )  > g o ( y , z  + 1;n) 

for all n > n2. (4.2) 

Therefore,  if nl < n2, and r*(n l )  = r*(n2) = r*, then by (4.1), (4.2) and Theo rem 3, 
r~(n) = r~ for all n ~ [-nl, n2]. 

Let  r * ( ~ )  = b(k - y * )  + z*  denote  the value of r*(n) when n ~ ~ .  Define ne be 
such that  * * q o ( y ~ , z ~  - 1;he) = 0. Then for n ~ [n~, ~) ,  r*(n)  = r*(n~) = r~ (~ ) ,  and 
for n ~  [0, n~), r*(n)  < r ~ ( ~ ) .  

Let hi, i = 1 . . . . .  r~(ne) - 1 be such that  qo(37",~*; hi) = 0, r~(fri) = i. (The existence 
of ~i's can be verified by M a j u m d a r  (1992), Coro l la ry  4.3.) Define ~o = 0, n r~ , )  = n~. 
It  can easily be seen that  ~ o < ~ <  " - < ~ , ; ~ . , ) = n e .  Let  S ~ = [ ~ , ~ + 1 ) ,  
i = 0 . . . . .  r*(n~) - 1, and S , ~ )  = [ne, ~) .  

Theorem 4. Given vlaues o f  v, b, and k, there exis t  intervals So, S~ . . . . .  Sr~o) such that 

~i=o ...... ~, , )S i  = [0, ~) ,  and a B T B D ( v , b , k ; t , s )  with bt + s = i, i f  exists, is BaTes 
A-opt imal  and optimal F-min imax  for  each n ~ S~, i = O, 1 . . . . .  r~(n~). 

Proof.  The  p roof  is a direct consequence of all the above.  

Therefore,  for the inverval  S~ where BTBD(v,  b, k; t,s) with bt + s = i exists, it is 

robust  op t imal  over  all n e S~. As to the remaining intervals, it is unavoidable  to look 
for an approx ima te ly  op t imal  designs whose tr(C~- 1) are close enough to go (Y~,* z.,*" n). 

Designs that  are derived by the following two methods  might  be highly efficient. 

Method 1. Construct  a design which is or is 'closest' to a BTBD with rno close to i for each 

n ~ Si such that (bk - rdo)/V is an integer. That  is, let {be the smallest i, and i 'be the largest 
i such that i" < i < i-and (bk - i ) /v ,  (bk - "{)/v both are integers. Construct  designs which 
are or are 'closest' to BTBDs with rdo = i-and 7. Choose the one with the smaller t r(C~ 1). 

Method 2. Construct  a design which is 'closest' to a B T B D  with rao = i for each n ~ S~. 

In the appl icat ion of Owen ' s  procedure,  there are m a n y  systematic  schemes to 
round  off the  nd~i and na0j and to get exact app rox ima te  op t imal  designs. The following 
two app rox ima t ion  schemes are considered. 

Scheme 1. Round  off nd~j to the nearest  or  second nearest  integer such that  
~ =  ~ nai~ <~ k, Vj ,  and construct  a BTBD.  

Scheme 2. Round  off nao~ to the nearest  integer, and construct  a design with 
Innij - nai'~'l ~< 1, for (i,j) # (i ' , j ' ) ,  i,i ' = 1 . . . .  ,v, and j , j '  = 1 . . . . .  b, which is or is 
closest to a BTBD.  
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From the many examples that we have examined, we find out that when the values 
of v, b, and k are close, Methods 1 and 2 usually do better than Schemes 1 and 2. For 
the cases when b is large compared to v and k, Method 1 usually outperforms the 
others, and when k is large compared to b and v, Method 1 and Scheme 2 do better. 
Two illustrative examples are given in the following. 

Example 4.1. For v = 4, b = 5, and k = 6. We use the above two methods and two 
schemes to approximate the optimal designs for those Si whose BTBD(v, b, k; t, s)'s do not 
exist. Let Ni denote the incidence matrix of the v + 1 treatments of the approximately 
optimal designs that are constructed by the above methods and schemes with rao = i. 

li°°°° l i °°°° 
1 2 2 2 1 2 2 2 

N o =  2 2 1 1 , N I =  2 2 1 1 , 
1 1 2 1 1 1 2 1 

2 1 1 2 2 1 1 2 

[i 1°°°] l 1 °°1 1 1 2 2 1 1 1 2 2 1 

N 2 =  1 1 1 2 2 , N 3 =  1 1 1 2 2 , 
1 2 1 2 1 2 1 1 2 

2 1 1 1 2 1 1 1 1 

[ i  1 1 1 01  i 1 1 1 l 1 1 1 1 2 2 2 1 1 1 1 

N 4 =  1 1 2 1 2 , N s =  1 2 1 1 1 
2 1 1 1 1 1 2 1 1 

1 1 1 1 1 1 1 2 2 

1 1 1 1 1 1 1 1 1 1 

N T =  1 1 2 1 1 , N s =  1 1 1 1 1 , 
1 1 1 2 1 1 1 1 2 1 

1 1 1 1 2 1 1 1 1 2 

2 2 2 2 1 
1 1 1 1 1 

N9~ 1 1 1 1 1 
1 1 1 1 1 

1 1 1 1 2 

In Table 2 of efficiencies for different points of ~ for the above two methods and 
schemes are given, where efficiency is measured by (1 - 71)- l t r (Cd 1)/rain go. 
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Table 2 

n r'~(n) mingo Method 1 Method 2 Scheme 1 Scheme 2 

0.395 1 0 . 8 5 9 8 5 3  0 .997798(2 )  0.998087(1) 0.880513(10) 0.997338(0) 
0.415 2 0 . 8 7 3 9 9 2  0 .999465(2 )  0.999465(2)  0.890537(10) 0.995091(0) 
0.440 3 0.889347 0 .999705(2)  0.997686(3) 0.900847(10) 0.989830(0) 
0.475 4 0 . 9 0 7 3 2 5  0 .996271(2 )  0.997059(4) 0.912002(10) 0.994865(5) 
0.515 5 0.924347 0 .989368(2)  0.997600(5) 0.921623(10) 0.997600(5) 
0.885 + 6 1 . 0 2 9 3 9 3  1 .000000(6)  1.000000(6) 0.975177(10) 0.997863(5) 
0.985 7 1 . 0 4 7 9 2 1  0 .999891(6)  0.997442(7) 0.983668(10) 0.994988(5) 
1.120 8 1 . 0 6 6 7 2 6  0 .996760(6 )  0.996684(8)  0.990881(10) 0.988526(5) 
1.320 9 1 . 0 8 6 3 6 6  0.996565(10)  0.997572(9) 0.996565(10) 0.977019(5) 
1.655 10 1 . 1 0 7 1 9 3  1.000000(10)  1.000000(10) 1.000000(10) 1.000000(10) 

+ 10 

Note: (i) ' + '  denotes that a BTBD(4, 5, 6; t, s) with r*(Tt) replications of the control exists. 
(ii) The integers in the parentheses are the rdo values derived by the corresponding methods or schemes 

to construct the approximate optimal designs. 
(iii) Bold-faced values denote the highest efficiency among the four. 
(iv) n -~ oo indicates the situation where there is no prior information. 

Table 3 

n r*(n) ming0 Method 1 Method 2 Scheme 1 Scheme 2 

0.535 1 0 .326769  0.999871(0) 0.999627(1)  0.969256(12) 0.999871(0) 
0.545 2 0.329109 0.999636(3) 0.999632(2)  0.973154(12) 0.999283(0) 
0.555 + 3 0 .331313  1.000000(3) 1.000000(3) 0.976668(12) 0.998295(0) 
0.570 4 0 .334361 0.999812(3) 0.999614(4) 0.981210(12) 0.996080(0) 
0.580 5 0.336269 0.999477(6) 0.999617(5)  0.983899(12) 0.994267(0) 
0.595 + 6 0 .338916  1.000000(6) 1.000000(6) 0.987345(12) 0.990971(0) 
0.615 7 0 .342109 0.999822(6) 0.999600(7)  0.991043(12) 0.985726(0) 
0.630 8 0 .344316  0.999373(9) 0.999608(8)  0.993336(12) 0.981363(0) 
0.650 + 9 0.346994 1.000000(9) 1.000000(9) 0.995721(12) 0.974951(0) 
0.675 10 0 .349983 0.999931(9) 0.999589(10) 0.997825(12) 0.997825(12) 
0.700 11 0 .352657  0.999195(12) 0.999592(11) 0.999195(12) 0.999195(12) 
0.735 + 12 0 .355908  1.000000(12) 1.000000(12) 1.000000(12) 1.000000(12) 
6.395 13 0 .466192  0.999998(12) 0.998238(13) 0.999998(12) 0.999998(12) 
8.935 14 0 .474108 0.998467(12) 0.998278(14) 0.998467(12) 0.998467(12) 

15.730 + 15 0 .482605  1.000000(15) 1.000000(15) 0.994945(12) 0.994945(12) 
92.985 16 0.491172 0.999999(15) 0.997997(16) 0.988804(12) 0.988804(12) 

16 

E x a m p l e  4.2. F o r  v = 3, b = 12, a n d  k = 4. W e  use the  above  two m e t h o d s  a n d  two 

schemes  to a p p r o x i m a t e  the  o p t i m a l  des igns  for those  Si whose  BTBD(v ,  b, k; t, s)'s do  

n o t  exists. Since the i nc idence  mat r i ces  Ni are c o n s t r u c t e d  the s ame  way  as in  the  

a b o v e  example ,  hence  are  omi t t ed .  Efficiencies are g iven in T a b l e  3. 
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Remark. In the above two examples, the best nazi's of the corresponding intervals of 

are all real numbers, the optimality property thus cannot be proved by Owen's 

method, but can be proved so by our Corollary 1. 

5. Conclusion 

Even though the efficiencies in the columns titled Method 1 and Method 2 in the 
above two tables are higher in most cases, but these two methods do not lead to much 
of an improvement over Scheme 2. Due to the relative simplicity of Scheme 2, and 
from the practitioners' point of view, i.e. without running a computer program to 
search for the best r*(~), we thus suggest to use Scheme 2 to approximate the optimal 

designs. 

Appendix 

Proof of Theorem 1. By permuting and averaging over the v test treatments in Ca- 1, 

one can obtain 

0.-2(1 - 71)-ltr(C~ -1) >~ v(v - 1)2(k + p)(~b + v(v - 1)(k + P)~/1) 1 

+ v(k + p)(O + v(k + p)~2) -1, 

where 

L ~b = (v -- 1)(k + p)Ud -- V 2 n2ij + Vd -- vq(k  + p) r2i + q(k  + p ) U ~ ,  
j = l  i = 1  i - I  

t) = (k  + p) U d -  Vd- -q (k  + p)U 2, Ud= 2 rai, Vd= ndij • 
i = 1  j = l  i = 1  

Now since 

min ~ rd 2, = U ~ / v ,  (A.1) 

and the minimum value occurs when rdi = Ud/V, i = 1 . . . . .  V. And 

rain Z ~ n~is = - bvm 2 + (2Ue - bv)m + Ca, (A.2) 
j - -1  i = 1  

where m = [Ue /bv] ,  and the minimum value occurs when the ne~s are as equal as 
possible, i.e. naij = m or m + 1. Then by (A.1), (A.2) and the fact that p/> 0 and q ~> 0 
(since 1 > ~:1 ~> 72, 72 -~- ap >>. 0), one can obtain 

0"-2( 1 -- 3'1) l t r (Cd 1) >~ O(Ua, Va), 
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where 

,q(Ua, Vd) = V(V -- 1)2(k + p)(q~ + v(v -- l)(k + p)ql)  -1 

+ v(k + p)(~, + v(k + p)~2) -1 , 

q~ = (v -- 1)(k + p)Ud -- V(-- bvm 2 + (2Ue - bv)m + lid) + lid. 

Let us further  examine  the relat ionship between Va and ~(Ua, lid) for fixed value of 
Ud by taking the derivat ive of ~ with respect to Vd. One then has 

(O/OVe)O(Ud, Vd) = v(k  + p){(q~ + v(v - 1)(k + p)r/l)(0 + v(k  + p)r/2)} -1 

x {(~ + v(v - 1)(k + p)ql) 2 - ((v - 1)0 + v(v - l)(k + p)q2) z 

> 0 ,  

since ~ > (v - 1)0, and ql ~> r/2 (since v2 i> 0). 
Therefore,  for fixed value of Ud, O(Ud, Vd) achieves its m i n i m u m  value when lid lS 

small or  when I ~ = i  naij -- ~ = 1  ndij'l ~ 1, V j  C j ' .  Let y = [Ud/b]  + 1, z = by - Ud. 

We then have 

O(u~, v~) >>..q(y, z). 

Note  that  a -  2(1 - ~ ) -  i t r (Cd a) = g(y ,  z) if d is a BTBD(v,  b, k; k - y, z). 

The  rest of  the p roof  is devoted to the examina t ion  of the behav iour  of  g in terms of 
y and z, respectively. Let 

w l ( y , z )  = (v - 1)(k + p ) U  - v h ( y , z )  + V,  

w 2 ( y , z )  = (k + p ) U  - q (k  + p ) U  2 - V.  

Through  some s t ra ight forward but  tedious calculation, we derive the following: 

(a) w l ( y , z )  is decreasing in z for fixed value of y, and is increasing in y for fixed 

value of z, 
(b) (~/OZ)wz(y,z)  ~ 0 if and only if y ~< y, ,  where 

y,, = (½(k + p + 1) + qz (k  + p) ) (bq(k  + p) + l) -~.  

And for fixed value of z, 

(?2/ t~y2)w2(y,z)  = - 2qb2(k + p) - 2b < O, 

hence w 2 ( y , z )  in concave in y and is maximized  when y = y . . . .  where 

Ymax = ½(k + p)(bq(k  + p) + 1)-1 + z / b .  

Combin ing  (a), (b), and the fact that  O(Y, b) = O(Y - l, 0), it is sufficed to examine the 
value of (y,z) in A to find the m i n i m u m  value ofg .  The  p roof  of T h e o r e m  1 has now 
been completed.  
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Proof  of Theorem 3. The proof of this theorem basically follows the proof of Theorem 
4.2 of Majumdar (1992), but the procedure is much involved since m = [U/bv] # O. 

From Lemma 2 and the fact that go(y,b;n) = go(Y - 1,0;n), proving the theorem is 
equivalent to prove the following statement. 

If go(y,z;n2) < go(y,z + 1;rc2) , then go(y,z;na) < go(y,z + 1;ha), (A.3) 

for yE  {[(k + 1)/2] + 1 . . . . .  k}, and z~  {0,1, . . . , b -  1}. 
Let U1 = b y - ( z +  1), V1 = b y  2 - 2 y ( z + l ) + z +  1, and ~ = ( k + n  -1) 1, then 

one can show that 

1 1 U U1 (v - 1) U1 (A.4) 
O < 2 y ~  < k <~ V < ~  < v h ( y , z  + l ) -  Vl' 

U/V < ((v - 1)U)/(vh(y,z) - V). (a.5) 

Further define 

~ v -  l - ~ v ( 2 m - 1 ) + e ( 2 y - 1 ) ,  if [ U 1 / b v ] = m - 1 ,  
A1 

v 1 - e v ( 2 m + l ) + ~ ( 2 y  1), if [U1/bv] = m ,  

A z =  U I - ~ V 1 ,  A s = U - e V ,  Ba = ~ ( 2 y - 1 ) - l ,  

B2 = (v - 1)U1 -- ~(vh(y,z + 1) - V1), 133 = (v - 1)U - ~(vh(y,z) - V). 

Then 

v a(go(y,z + 1;n) - go(y,z;n)) = (A2A3BzB3)-I((v - 1)2A1AzA3 - BxBzB3) 

= (AzA3B2B3)-lq(y,z;~),  say. 

It is easy to see that A2, A3, Bz, and B3 are positive for all ~ ~ [0, 1/k]. Hence the sign 
of v- 1 (go(Y, z + 1; n) - go(Y, z; n)) is the same as that of q(y, z; ~). 

Next we investigate the behavior of q(y, z;c0 in (A.4). Through some calculation one 
can obtain the following. 

q(y,z;~) > 0 for 0 ~< c~ ~< 1/(2y - 1), (A.6) 

q(y,z;o 0 < 0 for U/V <<, ~ <<, U~/V1. (A.7) 

To study the behavior of q(y, z; ~) in the remaining intervals, separate discussion is 
necessary. 

Case I: I f  [U1/bv] = m - 1. 
Then q(y,z;((v - 1)U~)/(vh(y,z + 1) - V,)) > 0. Since q(y,z;~) is cubic in ~, by 

(A.6), (A.7), and the previous statement, we conclude that q(y, z; ~) has at least one root 
in (U/V,  oo), and exactly one root in [0, U/V].  Statement (A.3) is thus proved, hence 
the theorem. 
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Case II: I f  [Ut/bv]  = m. 

The p roof  of  Case II is more  involved. The following two inequalities are claimed in 
aid of  our  discussion: 

U2/bv < h(y ,z )  < (U2/bv)  + (by~4), (A.8) 

U2/b  <~ V < (U2/b)  + (b/4). (A.9) 

For  [U1/bv] = m ,  the r u b y < U <  U + I = Ul < ( m  + 1)by, and A1 = v -  1 + 
e ( 2 y -  1 - 2my - v). 

(a) Suppose 2y - 1 - 2my - v >. O. It is obvious that q(y,z;((v - 1)Ui) / (vh(y ,z  + 1) 

- V1)) > 0. Then by the same statement as in Case I, the theorem is proved. 

(b) Suppose 2 y -  1 - 2my - v < 0. Let q(y,z;c  0 = q l ( y , z ; c ~ ) -  q2(y,z;~), where 

ql (y , z ;~)  = (v - 1)2AIA2A3, and q2(y,z;cO = B1BeB3. ql(y,z;cO is cubic in ~, and 

has three roots U/V,  U1/V1, and (v - 1)~(2my + v - 2y + 1), respectively. Th rough  

some computa t ion ,  one can show that  U / V  < U1/V1 < (v - 1)~(2my + v - 2y + 1), 

and q l ( y , z ; e )  > 0, for 0 ~< ~ < U/V,  and U1/V1 < ~ < ( v -  1)~(2my + v - 2y + l); 

ql(y ,z;c~)<O, for U / V < c ~ <  U1/V1. Hence ql (y , z ;c  0 is nonincreasing in ~ in 

[o ,u / v ] .  
q2(Y, z; o~) is also a cubic function in a, we denote  its three roots by xt = 1/(2y -- 1), 

x2 = (v -- 1)U1/((vh(y ,z  + 1) - V1), x3 = (v -- 1)U/(vh(y,z)  - V). One can show that 

q2(y,z;  U~/V1) > 0, and q2(y,z;oO < 0, for 0 < ~ < xl .  By (A.8) and (A.9), we can also 

obtain x3 > 1 > U1/V1, x2 > 1 > U~/V~. Define 

q2(y,z;O~max) = max q2(y,z;o O. 
x 1 ~<ce ~<x2 (or X3} 

By taking the derivative of q2(y,z;  ~) with respect to ~, one derives 

f 
- ~ ( x t  + x 2  + x 3  - ( x ~  - x , ( x 3  - x l )  - x 3 ( x 2  - x ~ )  - x,x2) ~/2 

if x2 ~> x3, 

0~ma x ~-- I ( X  1 --1- X 2 + X 3 - -  (X 2 - -  X I ( X  2 - -  X1) - -  X2(X 3 - -  X2) - -  X1X3) 1/2 

if x2 < x3 

And it can easily be shown that  O~ma x > m(Y- 1)/Y > 1/k, regardless of  whether 

x2/> x3 or  x2 < x3. Thus q2(y,z;~) is nondecreasing in ~ for ~ E [0, 1/k]. Hence 

q(y, z; ~) = q~(y, z;~) - q2(Y, z; ~) is n onincreasing in a in [0, l /k] ,  and the theorem is 

proved. N o w  statement (A.3) is completely verified and Theorem 3 is thus proved. 
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