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In this paper, we apply sequential one-sided confidence interval estimation procedures with β-
protection to adaptive mastery testing. The procedures of fixed-width and fixed proportional accuracy
confidence interval estimation can be viewed as extensions of one-sided confidence interval procedures. It
can be shown that the adaptive mastery testing procedure based on a one-sided confidence interval with β-
protection is more efficient in terms of test length than a testing procedure based on a two-sided/fixed-width
confidence interval. Some simulation studies applying the one-sided confidence interval procedure and its
extensions mentioned above to adaptive mastery testing are conducted. For the purpose of comparison,
we also have a numerical study of adaptive mastery testing based on Wald’s sequential probability ratio
test. The comparison of their performances is based on the correct classification probability, averages of
test length, as well as the width of the “indifference regions.” From these empirical results, we found that
applying the one-sided confidence interval procedure to adaptive mastery testing is very promising.

Key words: adaptive mastery testing, confidence interval, β-protection, fixed-width confidence interval,
fixed proportional accuracy, SPRT, indifference region.

1. Introduction

Mastery testing technology can be applied to many applications that require decisions about
whether a person is above or below a criterion score. To conduct mastery testing, a threshold must
be set in advance. Once this prescribed cutoff levelis chosen, the test-takers will be classified
into one of two categories—pass or fail, according to their responses to the test items. In this
paper, we consider applying sequential interval estimation methods to adaptive mastery testing
(AMT) (Kingsbury & Weiss, 1983), a type of variable-length mastery testing. Another kind of
variable-length mastery testing commonly discussed in the literature is sequential mastery testing
(SMT), which uses sequential Bayesian decision theory or Wald’s sequential probability ratio
test, and does not concern item selection (Epstein & Knerr, 1977; Glas & Vos, 1998).

The major differences between AMT and SMT are their item selection rules. This can be
seen, for example, in the applications of Wald’s (1947) Sequential Probability Ratio Test (SPRT)
to mastery testing (Kingsbury & Weiss, 1983; Reckase, 1983). Wald’s (1947) SPRT was originally
built for a statistical hypotheses testing problem where both null and alternative hypotheses are
simple. If we apply SPRT to mastery testing with a random item selection rule, then it can
be viewed as an SMT. However, if the item selection is tailored to the test-taker’s estimated
proficiency level, then it is a type of AMT (Ferguson, 1969; Lord, 1971; Kingsbury & Weiss,
1983; Reckase, 1983; Spray & Reckase, 1996; Chang, 2003).

Some researchers have already proposed applying two-sided confidence interval estimation
procedures to mastery testing (Kingsbury & Weiss, 1983). In this case, the classification proba-
bility is related to the coverage probability of the confidence interval. In addition to the coverage
probability of the confidence interval, the width of the confidence interval is also an important
criterion, which can serve as a precision measure of the two-sided confidence intervals. If our
goal is to estimate test-takers’ proficiency levels as in computerized adaptive testing (CAT), then
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the width of the confidence interval can also serve as a precision measure here. Therefore, two-
sided confidence interval estimation is an appropriate statistical tool for this purpose (Chang &
Ying, 2003). However, if our purpose is to classify test-takers into one of two categories (pass or
fail/mastery or nonmastery), then intuitively the one-sided confidence interval estimation proce-
dure should be used instead. For more detailed discussion of mastery testing and CAT, we refer
readers to Lord (1980) and Wainer (2000).

If the one-sided confidence interval is used, then the length of the interval is no longer an
appropriate measure of precision because the length of any one-sided confidence interval is always
infinite. To overcome this difficulty, Wijsman (1981, 1982) introduces the idea of β-protection,
a measure of precision of one-sided confidence intervals, which measures the probability of
a confidence interval covering the “wrong” parameters. Based on this idea, Wijsman (1981,
1982) proposes a sequential procedure for constructing a one-sided confidence interval with
the prescribed coverage probability and β-protection, which allows us to specify the coverage
probability and the probability of covering “wrong parameters,” simultaneously. When applying a
one-sided confidence interval to mastery testing, this property allows test administrators to specify
the upper bounds of the misclassification probabilities of false pass and false fail, separately. Some
nontrivial modifications are needed to adapt it to AMT.

When applying SPRT to mastery testing, a region around the cutoff level must be specified
for which it does not matter whether a pass or a fail decision is made. This region is usually called
the “indifference region” (Reckase, 1983; Spray, 1993). The closer a test-taker’s proficiency level
is to the cutoff level, the more items will be required to make a correct decision. Similarly, when
interval estimation procedures are applied to mastery testing in practice, an “indifference region”
must be enforced in order to prevent the item pool from being exhausted.

Thus, comparison of the performances of classification procedures will be based on test-
length, probability of correct classification, as well as width of indifference regions. In this
paper, we prove that AMT based on the one-sided confidence interval estimation procedure is
more efficient than those based on the fixed-width confidence interval procedure in terms of test
length, under the condition that the prescribed classification probabilities and the width of the
indifference regions are all the same. In fact, it can be shown that the average test length of the
one-sided confidence interval procedure is only one-fourth that of the fixed-width confidence
interval procedure. These results are confirmed by simulation studies.

Since the logistic model is one of the most popular statistical models used in the Item
Response Theory (IRT) of educational testing, this paper will focus on AMT using the logistic
model-based IRT model. Moreover, from either a theoretical or a technical point of view, when
the items are randomly selected from an item bank, SMT can be treated as a special case of AMT.
Thus, the results in this paper can be applied to SMT as well.

The rest of this paper is organized in the following way. In the next two sections, we first
review the sequential interval estimation procedure and then AMT using the logistic model-
based IRT model. We then describe the procedures for applying one-sided confidence intervals to
AMT and introduce some of the large sample results. Procedures for using two-sided confidence
intervals and fixed proportional accuracy confidence intervals are also presented in this section.
Simulation studies and discussions are summarized in section 3. Concluding remarks and technical
details are given in sections 4 and 5, respectively.

2. Sequential Estimate of Confidence Intervals

The two most popular criteria to measure the quality of confidence intervals are: (1) coverage
probability and (2) precision. The precision of a confidence interval is as important as its coverage
probability. This is illustrated by the fact that the interval (−∞,∞) is a trivial confidence interval.
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It will always have 100% coverage probability for any real parameter, but it is of no use in providing
information on any parameter of interest.

Moreover, measures of precision may vary with different types of confidence sets.
For example, it is not appropriate to use lengths of one-sided confidence intervals as their
measure of precision, since they are infinite. Below, we will use an example to introduce
the sequential interval estimation procedure and to explain why it is
needed.

Before we go into the details of sequential interval analysis, it should be noted that the
sample size here is equivalent to the test length of CAT/AMT, when we apply these confidence
interval estimation procedures to CAT/AMT. Thus, the procedure with the smallest sample size
is equivalent to the procedure with the smallest number of test items.

2.1. Fixed-Width Confidence Intervals

Suppose we want to construct a two-sided confidence interval for a parameter of interest.
In CAT, for example, this might be the ability level of a test-taker. It is clear that under the
same coverage probability, the shorter the length of the confidence interval, the more precise the
measure of the ability level of the test-taker. Thus, for a given (fixed) sample size (number of
test items) and the prescribed coverage probability, the two-sided confidence interval with the
shortest length will be the best. The length of confidence intervals is certainly an appropriate
measure of precision in this case.

On the other hand, if coverage probability and precision are fixed first, then the procedure
that requires the smallest sample size (number of test items) to construct a confidence interval
with the prescribed coverage probability and precision will be the most efficient one.

The following example explains the need for the sequential procedure for constructing a
fixed width confidence interval with predefined coverage probability.

Example 1. Suppose that x1, x2, . . . are independent and identically distributed (i.i.d.) random
variables with mean µ and variance σ 2 < ∞. It is known that the sample mean x̄n = ∑n

1 xi/n

is a strong consistent estimate of µ and is asymptotic normal; i.e., as n → ∞, x̄n → µ a.s.
and

√
n(x̄n − µ) →L N (0, σ 2). Let CIn = [x̄n ± zα/2/(σ

√
n)] be a confidence interval for µ. It

follows from the asymptotic normality of x̄n, that the coverage probability of CIn equals (1 − α),
asymptotically. (The notation zt ∈ R, for t ∈ (0, 1), denotes the (1 − t) quantile of the standard
normal distribution; i.e., �(zt ) = 1 − t , where � denotes the cumulative distribution function of
the standard normal distribution.)

If we require further that the width of CIn is no greater than 2d; i.e., the inequality,
σzα/2/

√
n ≤ d, must hold or, equivalently, the sample size must satisfy n ≥ (σzα/2/d)2. This

implies that the smallest sample size required such that the confidence interval CIn has the
required coverage probability 1 − α and length (precision) no greater than 2d is[

σ 2
(zα/2

d

)2
]

+ 1 ,

where notation [r] denotes the largest integer less than r , for r ∈ R. If the variance σ 2 is
unknown, then there is no fixed sample size procedure which can be used to construct this kind
of confidence interval. Thus, a sequential procedure must be used in order to construct a fixed
width confidence interval with the prescribed accuracy. By replacing the unknown σ 2 with its
estimate, the stopping rule can be defined as the smallest integer such that the above inequality
holds. The formal definition of the stopping rule is given later. For details, please see Siegmund
(1985).
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2.2. Confidence Set with β-Protection

As mentioned before, for a one-sided confidence interval, length is no longer an appropriate
measure of precision. Instead of measuring the width of a confidence interval, the idea of “β-
protection” proposed by Wijsman (1981, 1982) is to measure the probability of a one-sided
confidence interval covering the “wrong” parameters.

We will first explain this idea of “β-protection” using the previous example of i.i.d. random
variables. The general definition is given below.

Example 2. We keep the same notation of the previous example. Assume that µ is the only
unknown parameter of the distribution. Let Sn = [Ln(x1, x2, . . . , xn),∞) be a “left-closed,
right-open” one-sided confidence interval of µ with coverage probability

P (µ ∈ Sn) ≈ 1 − α , (1)

where α ∈ (0, 1). Suppose ψ(µ) is a positive real-valued function of µ. (For example, we might
simply set ψ(µ) = d, a positive constant.) For a given β ∈ (0, 1), if in addition to (??), the
one-sided confidence interval Sn satisfies the following extra condition:

P (µ − ψ(µ) ∈ Sn) ≤ β (2)

for all µ, then it is called a 1 − α confidence interval of µ with β-protection at µ − ψ . Equation (2)
simply means that the probability of the confidence interval Sn covering the “wrong” parameter,
which is µ − ψ in the example, is less than β.

Suppose that θ0 is the unknown parameter to be estimated. Let α and β ∈ (0, 1) be two
predefined constants and let φ(θ0) be a real-valued function of θ0. Then the confidence interval
with β-protection is defined as below.

Definition 1. A confidence interval Sn is called an 1 − α confidence interval of θ0 with β-
protection at φ(θ0), if:

(D1)P (θ0 ∈ Sn) ≥ 1 − α;

and

(D2)P (φ(θ0) ∈ Sn) ≤ β.

For more detailed discussions and extensions of the β-protection confidence interval, we
refer the reader to Wijsman (1981, 1982, 1986) and Juhlin (1985).

3. Adaptive Mastery Testing

The logistic model is one of the most popular statistical models used for the IRT-based
standardized tests. The item characteristic curve (ICC) of a three-parameter logistic (3-PL)
model (Birnbaum, 1968) is defined as

P (θ ) = P (Y = 1 | θ ; a, b, c) = c + 1 − c

1 + e−Da(θ−b)
, (3)

where a, b, and c are item parameters and D is a constant. Equation (3) models the probability
of a correct answer by a test-taker with latent ability θ to a given item with parameters a, b, and
c. Here Y = 1(0) denotes whether the item is answered correctly (or incorrectly), and a, b, and c

are the item parameters of discrimination, difficulty, and guessing, respectively. The special case
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of c = 0 (no guessing) is called the two-parameter logistic (2-PL) model. If, in addition to c = 0,
the discrimination parameters for all the items in the bank are the same, then it is called the Rasch
model (Rasch, 1960).

Let the vector (a, b, c) denote an item selected from an item pool B with item parameters
a, b and c. Suppose that we are in the (n − 1)-th step of an adaptive test, then there have been
n − 1 items, (ai, bi, ci), i = 1, . . . , n − 1, administered to the examinee. Let Y1, . . . , Yn−1, i =
1, . . . , n − 1, be the corresponding responses of the examinee, and let Fn−1 denote the σ -field
generated by (ai, bi, ci) and Yi , i = 1, . . . , n − 1. Thus, the selection of the n-th item of the
adaptive test will be based on knowledge in Fn−1. Suppose that θ0 is the true (but unknown) value
of the examinee’s latent ability level. Therefore, in the n-th step of the test, the estimate θ̃n of θ0

can be obtained based on the observation of (ai, bi, ci) and Yi , i = 1, · · · , n. Hence, in adaptive
testing, the property of the estimate θ̃n of θ0 depends on the estimating method as well as on the
item selection scheme.

Suppose that all the items follow the general 3-PL model, of which the 2-PL model and the
Rasch model are special cases. Then the likelihood function after n items have been administered
is

L(θ ) =
n∏

i=1

P
Yi

i (θ )QYi

i (θ ). (4)

Here Pi is the ICC for the i-th item as defined in (3), and Qi = 1 − Pi . Therefore, the likelihood
estimating function can be written as

n∑
i=1

wi(θ ) [Yi − ci − (1 − ci)G(ai(θ − bi))] , (5)

where wi(θ ) = ∂ log[Pi(θ )/Qi(θ )]/∂θ and G(t) = et/(1 + et ). Then the maximum likelihood
estimate θ̂n is a maximizer of (4) or a root of (5).

Assume that the maximization or root finding is over a compact interval containing true
parameter θ0 as an interior point. Let θ̂n denote the maximum likelihood estimate of θ0 and let
In(θ ) denote the Fisher information

In(θ ) =
n∑

i=1

	∂Pi(θ )

∂θ

2/
Pi(θ )Qi(θ ). (6)

Then Chang and Ying (2003, Theorem 3.1) show that the maximum likelihood estimate θ̂n is
strongly consistent and asymptotically normal under the following regularity conditions:

(C1) The number of items in the bank cannot be exhausted, i.e., the size of the item bank is
infinite.

(C2) The parameters of all selected items satisfy the following constraints:

sup
n

|bn| < ∞, 0 < inf
n

an < sup
n

an < ∞ and sup
n

cn < 1� a.s.

(C3) There exists a nonrandom sequence vn such that In(θ0)/vn → 1 a.s.

To be more specific, they show that if (C1) and (C2) hold, then as n → ∞, θ̂n → θ0 a.s. and if,
in addition, (C3) holds, then

√
In(θ̂n)(θ̂n − θ0) →L N (0, 1).

The results of Chang and Ying (2003) can be extended to cover more general cases. In
fact, the weight wi(θ ) in equation (5) may be replaced by any Fi−1 measurable weight and the
resulting estimating function is still valid. This can easily be seen as E[Yi − Pi(θ0) |Fi−1] = 0.
This implies that for different item selection rules, the weight wi(θ ) may vary accordingly, but
the estimating equation (5) is still a valid estimating function for estimating θ0.
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Suppose that θ̃n is a unique solution to the estimation equation (7) below for some Fi−1-
measurable weight wi , which may depend on the item selection method; that is, θ̃n satisfies

n∑
i=1

wi(θ̃n)[Yi − Pi(θ̃n)] = 0 . (7)

Let

δ2
n(θ ) =

n∑
1

wi(θ )
∂Pi(θ )

∂θ
, (8)

recalling that Pi(θ ) = 1 − Qi(θ ) = ci + (1 − ci)G(ai(θ − bi)). Similar to the case of maximum
likelihood estimate, if δn(θ0) satisfies Condition (C3′) below:

(C3′) There exists a nonrandom sequence v′
n such that δ2

n(θ0)/v′
n → 1 a.s. as n → ∞.

Then it can also be shown that

Theorem 1. Suppose θ̃n is a unique solution to the estimating equation (5) with wi ∈ Fi−1 for all
i. Then under Conditions (C1) and (C2), θ̃n is strongly consistent; i.e., θ̃n → θ0 a.s. as n → ∞.
If, in addition to Conditions (C1) and (C2), Condition (C3′) is satisfied, then it is asymptotically
normal that δn(θ̃n)(θ̃n − θ ) →L N (0, 1).

Based on these asymptotic properties of θ̃n, we are able to construct one-sided confidence intervals
for θ with β-protection. (The proof is provided in the final section.)

3.1. Application of One-Sided Confidence Intervals to Mastery Testing

Let θ̃n be an estimate of θ0 as defined above and let Sl
n = [Ln(θ̃n), ∞) be a 1 − α one-

sided (left-closed and right-open) confidence interval for θ0 with β-protection at θ0 − ψ(θ0),
where α, β ∈ (0, 1) are two prechosen constants and ψ is a positive real-valued function. Then,
according to Definition 1, the confidence set Sn must satisfy the following two inequalities:
P (θ0 ∈ Sl

n) ≥ 1 − α and P (θ0 − ψ(θ0) ∈ Sl
n) ≤ β. It follows from the asymptotic that normality

of θ̃n, that if

δn(θ̃n)(θ̃n − Ln) ≥ zα , (9)

then

P (θ0 ≥ Ln) = P
(
δn(θ̃n)(θ̃n − θ0) ≤ δn(θ̃n)(θ̃n − Ln)

) ≥ 1 − α . (10)

Inequality (9) holds if, and only if,

Ln ≤ θ̃n − zα

δn(θ̃n)
. (11)

Thus, inequality (11) is a sufficient condition such that (D1) holds.
On the other hand, in order to satisfy (D2) of Definition 1, we must have

β ≥ P (θ − ψ ≥ Ln) = P
(
δn(θ̃n)(θ̃n − θ ) ≤ δn(θ̃n)(θ̃n − Ln − ψ)

)
. (12)

Again, based on the asymptotic normality of θ̃n, and using arguments similar to those above, it
can be shown that equation (12) holds, if

Ln ≥ θ̃n − ψ(θ̃n) + zβ

δn(θ̃n)
. (13)

Here zβ is as defined earlier.
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Thus, it follows from (11) and (13), we have the following inequality:

θ̃n − ψ + zβ

δn(θ̃n)
≤ θ̃n − zα

δn(θ̃n)
. (14)

This implies that

δn(θ̃n) ≥
(

zα + zβ

ψ

)
. (15)

This suggests that we can set

Ln = θ̂n − zα/δn(θ̃n) ,

and if, in addition, inequality (15) is satisfied, then conditions (D1) and (D2) will hold. Hence,
the procedure with the smallest n such that (15) holds, which implies (D1) and (D2) are satisfied,
will be the most efficient one in terms of sample size (test length).

If the true θ0 was known, it follows from (15) that the optimal sample size for constructing
a 1 − α one-sided confidence interval for θ0 with β-protection at θ − ψ is

nθ0 = smallest integer greater than n0 such that δ2
n(θ0) ≥

(
zα + zβ

ψ(θ )

)2

= inf

{
n ≥ n0 : δ2

n(θ ) ≥
(

zα + zβ

ψ(θ )

)2
}

. (16)

In other words, nθ0 is the minimum sample size required such that the confidence set Sl
n satisfies

Definition 1.
In practice, the true θ0 is usually unknown, so there is no fixed sample size procedure that

can be used for constructing this type of confidence set. By replacing the unknown θ0 with its
estimate θ̃n in (??), we can define a stopping rule

Tβ(ψ) = first integer n ≥ n0 such that inequality (15) holds

= inf

{
n ≥ n0 : δ2

n(θ̃n) ≥
(

zα + zβ

ψ(θ̃n)

)2
}

, (17)

where n0 > 0 is a prefixed constant (initial sample size). That is, based on (15), we can define a
stopping rule for constructing a one-sided confidence interval of θ0 with β-protection at ψ , sequen-
tially. (Note that in CAT/AMT, n0 is the number of test items used as an initial test set or testlet.)

As we have seen in (8), δ̃n = δn(θ̃n) is usually an increasing function of the sample size n.
(Its rate of increase depends on the item selection schemes used in the tests.) So, if n is large
enough such that inequality (15) holds, both Conditions (D1) and (D2) will be satisfied. Based on
this property, it can be shown that P (Tβ(ψ) < ∞) = 1; i.e., the sequential procedure will stop,
eventually. Then we have the following theorem.

Theorem 2. Assume that Conditions (C1), (C2), and (C3′) are satisfied.Suppose that θ̃n satisfies
the assumption in Theorem 1. Let Ln = θ̃n − zα/δn(θ̃n) and let Sl

n = [Ln,∞) be a left-closed,
right-open interval, then:

(i) P (T < ∞) = 1; limψ→0 P (θ0 ∈ ST ) = 1 − α, and limψ→0 P (θ0 − ψ(θ0) ∈ ST ) = β;

(ii) limψ→0 E
[

Tψ

nθ0

]
= 1.

Statement (i) means that the sequential procedure will stop with probability 1 and the
confidence set will satisfy the prescribed condition of coverage probabilities (D1) and (D2),
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asymptotically. Statement (ii) means that the ratio of the stopping time to the optimal fixed
sample size nθ0 converges to 1 as ψ goes to 0. In other words, the test procedure will eventually
stop and it will have correct classification probabilities, as required, when it stops. It is also
asymptotically efficient, since the ratio of average test length to optimal test length goes to 1.
(Note that statement (ii) above is called “asymptotic efficiency” in Chow and Robbins (1965).)

As mentioned before, if Conditions (C1)–(C3) (or C3′) are satisfied, then any estimate θ̃n,
which is obtained as a root of the estimating equation (7) with some Fi−1-measurable weights
wi’s, will have similar asymptotic properties. Since we are not concerned with item selection rules
here, for simplicity throughout the remainder of this paper, we will assume that the maximum
likelihood estimate is used to estimate θ0, and item selection is based on the maximum Fisher’s
information principal, as in Chang and Ying (2003).

3.2. Decision Rule and Indifference Region

3.2.1. Single one-sided confidence interval procedure. Suppose θ0 is the true (but unknown)
proficiency level of a test-taker, and let θc denote the predefined cutoff level. Let Sl

n = [Ln, ∞)
be the 1 − α one-sided confidence interval of θ with β-protection at θ − ψ for ψ > 0. Then, we
can apply this β-protected confidence interval of θ0 to AMT in the following way (we will call it
the “single one-sided confidence interval procedure” in this paper): When the sampling stops,{

Pass the test-taker if LT ≥ θc,

Fail the test-taker if LT < θc

(18)

As will be shown later, the required classification accuracy could not be maintained, when
the true θ is actually within [θc, θc + ψ]. Indeed, the interval [θc, θc + ψ] is an “indifference
region” of this procedure.

Definition 2. (Indifference Region, Spray (1993)). 
0 ⊂ 
 is called an “α-indifference region”
for an α ∈ (0, 1) if and only if for all θ ∈ 
0, the probability of misclassification is less than α,
and for θ ∈ 
0 the probability of misclassification is greater than α.

Thus, if we apply the single one-sided (left-close, right-open) confidence interval procedure
with coverage probability 1 − α and β-protection probability β to AMT, then the false pass and
the false fail probabilities are α and β, respectively.The indifference region is [θc, θc + ψ], where
ψ is a positive constant as defined above.

Due to the asymmetric misclassification probabilities of the procedure, we have a modified
definition of the indifference region to note the asymmetry.

Definition 3. 
0 ⊂ 
 is called an “αβ-indifference region” for 0 < α, β < 1 if and only if for all
θ ∈ 
0, the probability of misclassification is less than max{α, β}, and for θ ∈ 
0 the probability
of misclassification is greater than min{α, β}.

Now, using Theorem 2, we can show

Corollary 1. Under the assumption of Theorem 2, if decision rule (18) is applied to AMT; then:

(i) for all θ0 ∈ [θc, θc + ψ] the misclassification probability for θ0 > θc + ψ (false fail) is
less than β and the misclassification probability for θ0 < θc (false pass) is less than α;
and

(ii) for θ0 ∈ [θc, θc + ψ] the misclassification probabilities are greater than min{α, β}.
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If the true latent trait level θ0 ∈ [θc, θc + ψ], then Corollary 1(ii) states that the correct
classification probabilities might not satisfy the required solution (see also equations (27) and
(28)). That is, the interval [θc, θc + ψ] is an “indifference region” for this procedure. Note that
the misclassification probabilities of the false pass and the false fail in this case are not necessarily
the same. That’s why we call it an αβ-indifference region to denote its asymmetry. This is a nice
property and similar to that achieved by SPRT to mastery testing.

Obviously, we can also apply one “right-open, left-closed” one-sided interval (such as
(−∞, Rn]) to AMT. The results are similar, but the indifference region becomes [θc − ψ, θc].

As has been shown, application of the one-sided confidence interval to AMT will give
asymmetrical misclassification probabilities (i.e., α = β) and asymmetrical indifference re-
gions (asymmetric around the cutoff level θc). These properties provide the test administra-
tor with options to set up the adaptive mastery test according to their interests or testing
purposes.

3.2.2. Double one-sided confidence intervals with β-protection. If symmetry of the indif-
ference region is required, then it can be achieved by applying two one-sided confidence intervals
together to AMT; that is, applying “left-closed, right-open” and “left-open, right-closed” confi-
dence intervals at the same time to the mastery test. This is called a “double one-sided confidence
intervals procedure” in this paper. The fixed-width confidence interval procedure can be viewed
as a special case.

Suppose that α, β ∈ (0, 1) are two given constants and that ψ ′ is a positive real-valued
function of θ . Define Rn = θ̂n + zβ/δn(θ̂n) and let Sr

n = (−∞, Rn] be a right-closed, left-open
interval. Then it follows, from similar arguments as before, that we can define a stopping rule

T ′ = T ′
ψ ′ = inf

{
n ≥ n0 : In(θ̂n) ≥

(
zα + zβ

ψ ′

)2
}

, (19)

such that when the sampling stops the interval Sr
T ′ is a 1 − β one-sided confidence interval for θ0

with α-protection at θ0 + ψ ′. (Here we switch the roles of α and β.)
Note that the stopping time T ′ is symmetric for zα and zβ ; that is, the stopping rules

for constructing the left-close, right-open confidence interval (T ) and the right-close, left-
open confidence interval (T ′) are the same. Therefore, if we let Ln = θ̂n − zα/δn(θ̂n) and let
Sl

n = [Ln, ∞), then Sl
T ′ is also a 1 − α confidence interval with β-protection at θ0 − ψ ′. Hence,

by using the same stopping rule T ′, we can construct two (different direction) one-sided con-
fidence intervals, Sl

n and Sr
n, at the same time. Therefore, when the sampling stops, we will

have

P
(
θ ∈ Sr

T ′
) ≥ 1 − β, P

(
θ + ψ ′ ∈ Sr

T ′
) ≤ α, P

(
θ ∈ Sl

T ′
) ≥ 1 − α,

and P
(
θ − ψ ′ ∈ Sl

T ′
) ≤ β. (20)

Now, we can apply the double one-sided confidence intervals procedure to mastery testing
in the following way: 


Pass the test-taker if LT ′ ≥ θc,

Fail the test-taker if RT ′ < θc,

No decision if LT ′ < θc ≤ RT ′ .

(21)

Remark 1. If LT ′ < θc ≤ RT ′ , then it is very likely that the true θ0 actually belongs within the
indifference region. Therefore, no decision should be made in this case, since the misclassification
probabilities may be greater than required.
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Again, if we assume θ0 is known, then the smallest sample size for constructing confidence
intervals satisfying the four inequalities in (20) is

n′ = n′
θ0

= inf

{
n ≥ n0 : In(θ ) ≥

(
zα + zβ

ψ ′(θ )

)2
}

.

By Theorems 1 and 2, we know that P (T ′ < ∞) = 1, limψ ′→0 E[T ′/n′] = 1, and we have the
following corollary:

Corollary 2. Under the assumptions of Theorems 1 and 2, if the double one-sided confidence
intervals procedure is applied to AMT with confidence sets Sr

n, S
l
n (as defined above) and decision

rule (21), then for all θ ∈ [θc − ψ ′, θc + ψ ′], the misclassification probabilities of the false pass
and the false fail are less than α and β, respectively; the classification probabilities of correct
pass and correct fail are greater than 1 − β and 1 − α, respectively.

It can be shown that the indifference region for the double one-sided confidence intervals
procedure is [θc − ψ ′, θc + ψ ′], which is symmetric around the predecided threshold θc. Now the
width of the indifference region is 2ψ ′. Hence, if we require these two procedures (the single and
double one-sided confidence intervals procedures) to have the same width of indifference regions,
then we must set ψ ′ = ψ/2. According to the definitions of stopping times (see equations (17)
and (19)), this will imply that T ′

ψ ′ = 4Tψ almost surely.
Note that the fixed-width confidence interval can be constructed using this double one-sided

confidence intervals procedure. If we set α = β, then all classification probabilities are the same.
Based on previous discussions, we can conclude that given the same classification probabilities
and the same width of indifference region, the sample size (test items) required for the double
one-sided confidence intervals procedure (i.e., the fixed-width confidence interval procedure) is
four times the sample size of the single one-sided confidence interval procedure. Therefore, if
we are not concerned with the asymmetry of the indifference region, and the false pass and false
fail probabilities are equal, the procedure using a single one-sided confidence interval is more
efficient than the one using a fixed-width confidence interval.

Remark 2. In the double one-sided procedure, if we choose ψ(θ ) to be a constant and β = α,
then the interval [LT , RT ] is a 1 − 2α fixed-width (with length 2ψ ′) confidence interval for θ0

(Ghosh & Sen, 1991; Ghosh, Mukhopadhyay, & Sen, 1997). That is, the fixed-width confidence
interval can be treated as a special case of the double one-sided confidence procedure.

Similarly, the fixed proportional accuracy confidence interval (see Woodroofe, 1982;
Siegmund, 1985; Chang & Martinsek, 1992) can be constructed using this double one-sided
confidence intervals procedure by using a different choice for ψ . Below, we will discuss some
possible choices for ψ . Since the true ability level θ is unknown in practice, ψ = ψ(θ ) will
usually be unknown. In this case, we can replace the unknown θ in the stopping rule with its
estimate. Note that if ψ(θ ) is not a constant, then the “length” of the indifference region is no
longer fixed, and the expected test length will vary for different latent ability levels.

Choice of ψ . There are several possible choices for function ψ . For example, we can:

(1) simply let ψ be a positive constant; i.e., ψ = d for d > 0 as before; or
(2) let ψ(θ ) = k|θ − θc| for some constant k ∈ (0, 1), where θ denotes the true ability level

of interest.

If we choose ψ(θ ) = k|θ − θc|, then the indifference region varies according to the value
of the true latent ability θ . In actual fact, the interval [θc ± ψ] will degenerate to the singleton



YUAN-CHIN IVAN CHANG 695

{θc} as |θ − θc| goes to 0. By the definition of the stopping rule (see (17) or (19)), the smaller the
ψ , the larger the test length (T ); or, equivalently, the larger |θ0 − θc| is, the fewer the test items
that will be needed. This property allows us to use fewer items to classify test-takers with ability
levels that are far from the cutoff level. Therefore, choosing a varying ψ will be more efficient
than using the procedure with a constant ψ in average for the same ability level θ .

Remark 3. In theory, when the indifference region is degenerated to {θc}, we should be able
to classify all test-takers correctly, except for those with ability level θc. However, when ψ =
k|θ0 − θc| goes to 0, the required number of test items goes to infinity. Although, in theory, we
do not require an indifference region in this case, in practice, we may still need to set up an
indifference region for the procedure with nonconstant ψ . Otherwise, truncation rules will be
needed.

4. Simulation

The ability levels θ = ±2,±1,±0.6,±0.3, and 0 are included in the numerical studies. In
all the simulation studies in this paper, the items are generated based on the 3-PL model with
a ∈ (0.5, 3), b ∈ (−3.5, 3.5), and c ∈ (0, 0.1), where the constant D = 1. Items are selected
based on the maximum Fisher information principle of selecting items with parameter b matching
the most recent estimate of the examinee’s unknown proficiency level θ , while a and c are
randomly (uniformly) generated from the above ranges (see Chang & Ying, 1999).

All three methods mentioned in the previous sections are studied, including single one-sided
and double one-sided procedures with constant ψ , as well as the single one-sided procedure
with varying ψ . We conduct 1000 runs for each combination of different choice of θ ’s and ψ’s
with an initial sample size n0 = 15. In all the studies, we set α = β = 0.05; so zα = zβ and
�(zα) = �(zβ) = 0.05. The cutoff level θc is equal to 0 for all the simulation studies.

For comparison purposes, we also have a small scale numerical study for SPRT using
the same adaptive item selection method. The SPRT is set up for testing H0 : θ = 0 versus
H1 : θ = 0.5; so the indifference region of the SPRT is [0, 0.5]. For more complete numerical
studies applying SPRT to the (adaptive) mastery test, please see Reckase (1983), Spray and
Reckase (1996), and Kingsbury and Weiss (1983).

Remark 4. Note that as mentioned in Reckase (1983), the original SPRT was created for the
statistical testing problem of (simple versus simple) hypotheses under an assumption that the
observations are independent. For a theoretical discussion of SPRT under more general situations,
we refer the reader to Tartakovsky (1998) and Chang (2003).

Before we get into numerical details, we can gain a general idea of the properties of
estimation and the distribution of test length from Figures 1 and 2. Figure 1 shows the Q–Q plot
and histogram of the estimate of true ability level θ = 0.6 with n0 = 15 and ψ = 0.5. This again
confirms the asymptotical normality of the sequential estimate of the true θ . These graphs are
standard, so we omit the plots of other ability levels. Figure 2 contains histograms of test lengths
for θ = ±0.6 and ±1 with the same n0 and ψ as above. For procedures with constant ψ , the test
length averages should be very close, since they use the same stopping rule.

However, the width of the indifference region of the double one-sided procedures is twice
that of the other two types of procedures. The effect of the indifference region can be seen in
Tables 1 to 3 by comparing the classification probabilities among different ability levels. For
example, the double one-sided procedure cannot have the required classification probabilities
for θ = ±0.3, while the left-closed, right-open procedure can have the required classification
probability at θ = −0.3.
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FIGURE 1.
Distribution of test length and estimate of ability = 0.6 with initial sample Size 15.

We now summarize the numerical results for each procedure below:

Study 1: Constant ψ . Tables 1 to 3 summarize the simulation results for ψ = 0.3, 0.5,
and 0.7, Respectively. The column headings for these three tables, from left to right, are:
(1) ability level (θ ), (2) coverage frequency of the fixed-width confidence interval with width 2ψ

(Fixed C.F.); (3) coverage frequency of the left-closed, right-open, one-sided confidence interval
(Left C.F.), and its corresponding Frequency of; (4) Pass; and (5) Fail; (6) coverage frequency
of the right-closed, left-open, one-sided confidence interval (Right C.F.); and its correspond-
ing frequency of; (7) Pass; and (8) Fail; frequency of; (9) Pass; and (10) Fail of the double
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FIGURE 2.
Test length of procedures with initial sample size 15.



YUAN-CHIN IVAN CHANG 697

TABLE 1.
Initial sample size n0 = 15 and ψ = 0.3

Ability Fixed Left Right Double Test Length
θ C.F. C.F. Pass Fail C.F. Pass Fail Pass Fail Ave./SD

2 0.987 0.957 1 0 0.979 1 0 1 0 82.42/5.47
1 0.980 0.959 1 0 0.962 1 0 1 0 81.79/5.43
0.6 0.978 0.958 0.999 0.001 0.964 1 0 0.999 0 81.70/5.36
0.3 0.977 0.964 0.709 0.291 0.973 1 0 0.709 0 81.81/5.34
0 0.989 0.963 0.037 0.963 0.983 0.983 0.017 0.037 0.017 82.06/5.33

−0.3 0.984 0.964 0.002 0.998 0.963 0.292 0.708 0.002 0.708 81.78/5.39
−0.6 0.984 0.960 0.002 0.998 0.969 0.003 0.997 0.002 0.997 81.89/5.41
−1 0.989 0.969 0.007 0.993 0.976 0.007 0.993 0.007 0.993 81.57/5.50
−2 0.962 0.943 0.022 0.978 0.973 0.022 0.978 0.022 0.978 82.08/5.32

one-sided confidence intervals procedure and (11) average test length and its standard deviation
(Test Length). The columns titled “C.F.” denote the coverage frequencies of the corresponding
confidence intervals. The tables show that all the coverage probabilities are close to the target
probability of 95%.

The effect of the indifference region can be clearly seen from Tables 1 to 3. For example,
in Table 1 with ψ = 0.3, the one-sided confidence interval procedures (the left-close, right-open
and the right-close, left-open) fail at either θ = 0.3 or θ = −0.3 (but not both), while the double
one-sided procedure fails at both θ = 0.3 and −0.3.

By comparing the results with different ψ’s, we found that when ψ was getting larger, only
θ ’s that are far away from the cutoff level can be classified correctly with the required classification
probabilities. On the other hand, the choice of ψ does not affect the coverage frequencies of any
interval. The required coverage frequency can still be maintained for all θ ’s in the studies.

Note that the average test length and its standard deviation are very close among different
ability levels, as expected for the constant ψ . The sum of the frequency of pass and fail in the
double one-sided procedure is not necessarily equal to one. This is the case when the estimate of
θ, θ̂T , falls into the region [LT ,RT ], indicating that the true θ might belong within the indifference
region and no decision will be made in this case.

Since the results of the case with initial sample size n0 = 10 are very similar to n0 = 15, we
provide only the summarization of a simple case, where ψ = 0.3, in Table 4. Comparing Table 4

TABLE 2.
Initial sample size n0 = 15 and ψ = 0.5

Ability Fixed Left Right Double Test Length
θ C.F. C.F. Pass Fail C.F. Pass Fail Pass Fail Ave./SD

2 0.993 0.967 1 0 0.971 1 0 1 0 46.58/4.02
1 0.994 0.967 1 0 0.972 1 0 1 0 46.60/3.97
0.6 0.991 0.971 0.941 0.059 0.968 1 0 0.941 0 46.40/3.95
0.3 0.994 0.968 0.432 0.568 0.972 1 0 0.432 0 46.57/3.92
0 0.991 0.963 0.037 0.963 0.973 0.973 0.027 0.037 0.027 46.52/4.07

−0.3 0.992 0.966 0.002 0.998 0.958 0.587 0.413 0.002 0.413 46.54/3.91
−0.6 0.991 0.969 0.003 0.997 0.971 0.074 0.926 0.003 0.936 46.71/3.96
−1 0.988 0.961 0.007 0.993 0.974 0.007 0.993 0.007 0.993 46.61/4.00
−2 0.943 0.915 0.047 0.953 0.980 0.047 0.953 0.047 0.953 46.97/4.24
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TABLE 3.
Initial sample size n0 = 15 and ψ = 0.7

Ability Fixed Left Right Double Test Length
θ C.F. C.F. Pass Fail C.F. Pass Fail Pass Fail Ave./SD

2 0.998 0.954 1 0 0.973 1 0 1 0 35.18/3.45
1 0.994 0.953 0.997 0.003 0.969 1 0 0.997 0 35.10/3.25
0.8 0.997 0.952 0.962 0.038 0.966 1 0 0.962 0 35.04/3.35
0.6 0.998 0.960 0.829 0.171 0.964 1 0 0.829 0 34.88/3.29
0 0.996 0.953 0.047 0.953 0.964 0.964 0.036 0.047 0.036 35.00/3.26

−0.6 0.992 0.952 0.007 0.993 0.965 0.188 0.812 0.007 0.812 35.19/3.37
−0.8 0.989 0.951 0.009 0.991 0.963 0.053 0.947 0.009 0.947 35.07/3.35
−1 0.993 0.961 0.005 0.995 0.974 0.010 0.990 0.005 0.990 35.00/3.22
−2 0.995 0.917 0.041 0.959 0.970 0.041 0.959 0.041 0.959 35.09/3.22

with Table 1, we can see that performance in the case of n0 = 10 is very similar to that in the
case of n0 = 15. However, it can be seen in Table 4 that the average test length is a little bit
smaller than in the case of n0 = 15, but variance (standard deviation) becomes slightly larger. A
reasonable explanation of this phenomenon is that the estimate of θ obtained from a procedure
with a smaller number of initial test items might not be as stable as the one obtained from a
procedure starting with more initial test items.

Study 2: Varying ψ There are many possible choices for ψ . In this simulation study, we
set n0 = 15 and let ψ(θ ) = |θ − θc|; i.e., let the “β-protected parameter” vary according to the
distance between true θ and the cutoff level θc. In theory, we should have no indifference region
for the case of varying ψ ; that is, this kind of procedure should be able to classify all values of θ

in the range, except for the singleton, θ = θc.
By the definition of the stopping rule, it is clear that the sample size will be larger when the

true θ is close to θc. In other words, the closer θ is to the threshold, the more test items will be
needed in order to make a correct classification. If the value of |θ − θc| goes to zero, then the
expected stopping rule will go to infinity; i.e., the item pool may be exhausted by those θ ’s very
close to the cutoff level θc. Therefore, an indifference region should be enforced here to prevent
the item pool from being exhausted. Otherwise, some truncation rule will be needed. (Note that,
in practical applications, the true proficiency level θ is unknown, as is ψ(θ ). Thus, an estimate of
ψ , say ψ̂n = ψ(θ̂n), will be used instead.)

In Table 5, we summarize the results of ψ(θ ) = |θ − θc| for θ = −1, −0.8, −0.6, . . . , 1. The
classification probabilities of all different proficiency levels in this study achieve the predescribed
requirements. That is, there is no indifference region when the varying ψ = |θ0 − θc| is used. We

TABLE 4.
Initial sample size n0 = 10 and ψ = 0.3

Ability Fixed Left Right Double Test Length
θ C.F. C.F. Pass Fail C.F. Pass Fail Pass Fail Ave./SD

2 0.982 0.954 1 0 0.964 1 0 1 0 78.83/5.69
1 0.979 0.959 1 0 0.970 1 0 1 0 78.65/5.9
0 0.976 0.967 0.033 0.967 0.972 0.972 0.028 0.033 0.028 78.62/5.35

−1 0.986 0.963 0 1 0.965 0 1 0 1 78.44/5.23
−2 0.978 0.967 0 1 0.954 0 1 0 1 78.65/5.88
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TABLE 5.
Initial sample size n0 = 15 and ψ = |θ − θc|

Ability Left Right Double Test Length
θ C.F. Pass Fail C.F. Pass Fail Pass Fail Ave./SD

1 0.952 1 0 0.972 1 0 1 0 28.44/5.08
0.8 0.950 1 0 0.983 1 0 1 0 32.29/6.89
0.6 0.948 1 0 0.982 1 0 1 0 40.85/11.57
0.4 0.952 1 0 0.991 1 0 1 0 57.75/22.77
0.2 0.927 1 0 0.989 1 0 1 0 135.00/87.01

−0.2 0.983 0.003 0.997 0.966 0.003 0.997 0.003 0.997 138.74/86.41
−0.4 0.980 0.002 0.998 0.950 0.003 0.998 0.002 0.998 59.85/24.58
−0.6 0.979 0.002 0.998 0.953 0.002 0.998 0.002 0.998 40.51/11.69
−0.8 0.978 0.001 0.999 0.957 0.002 0.998 0.002 0.998 33.20/7.40
−1 0.973 0.006 0.994 0.965 0.007 0.993 0.007 0.993 28.63/5.43

also found that under the same prescribed misclassification probabilities (α and β), the average
test lengths for θ = 1, 0.8, 0.6,−0.6,−0.8,−1 are shorter than those in the case where ψ is a
constant.

Heuristically, if the true θ is farther away from the cutoff level, then it should be easier to
classify correctly than those θ ’s in the near neighborhood of θc. That’s why the procedures with
varying ψ are able to classify test-takers with proficiency levels far from the threshold more
efficiently than the procedures with constant ψ’s. As expected, the smaller the value of |θ0 − θc|,
the larger the average test length. This result agrees with the definition of the stopping rule.

For comparison purposes, we include a simulation study of AMT using SPRT; i.e., the items
are selected adaptively to the estimate of the test-taker’s ability, as previous simulation studies.
Here, the set up of SPRT is for testing the null hypothesis H0 : θ = 0 versus the alternative
hypothesis H1 : θ = 0.5; so the indifference region is [0, 0.5]. Again, the initial test length n0

is 15.
Table 6 summarizes the simulation results of SPRT with the same adaptive item selection

method as mentioned, and the column headings, from left to right, are: (1) ability; (2) average test
length; (3) standard deviation (SD) of test length; and (4) classification probabilities (frequency
of pass and fail).

Average test lengths increase as the true θ moves closer to the boundary of the indifference
region. However, they are smaller than those of the estimation-oriented procedures proposed
in this paper. For θ ∈ [0, 0.5], the classification probabilities are better than required. When
θ ∈ [0, 0.5] (i.e., θ = 0.2, 0.4 in Table 6), as expected SPRT can no longer provide satisfactory
results. Note that the variation of test length for these two θ ’s is greater than for the procedure
with varying ψ . (Actually, the average test length in the case of θ ∈ [0, 0.5] may in theory go
to infinity.) By looking at Tables 6 and 5, the classification probabilities and average test lengths
of the procedure with varying ψ are very comparable to those of SPRT. This suggests that the
procedure with varying ψ may be a good alternative for AMT.

Effect of truncation. The average test lengths in the simulations above seem reasonable, but
it can be seen in Figure 2 that some of the test lengths could be unreasonably large for real testing
situations. To be more useful in practical testing, it may be necessary to set an upper limit for
the test length; i.e., to stop a test if the test length reaches a prefixed upper bound (a constant).
This kind of truncation rule is useful in a practical sense, so we conduct simulation studies to find
out how the results are affected by truncation. For simplicity, here we only consider the case of
ψ = 0.5.
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TABLE 6.
Sequential Probability Ratio Test (SPRT); Initial sample size n0 =
15; Indifference Region = [θc, θc + 0.5]

Test Length
Ability Reject H0 Reject H1

θ Average SD Pass Fail

1 24.06 4.96 1 0
0.8 26.97 6.78 0.999 0.001
0.6 33.51 11.92 0.992 0.008
0.4 47.53 26.58 0.885 0.115
0.2 80.67 106.55 0.331 0.689

−0.2 28.01 9.08 0.010 0.990
−0.4 23.56 5.76 0.002 0.999
−0.6 20.78 4.10 0 1
−0.8 19.30 3.52 0 1
−1 18.16 2.81 0 1

We begin by considering the property of the estimate of θ . Figure 3 shows Q–Q plots of
the quantiles of the estimates of the truncated procedures (when the true θ = 1). The “x-axis”
is quantiles of the standard normal distribution. It shows that for both n0 = 10, 15 and upper
limits equal to 40 and 50, the distribution of estimates are still very close to the standard normal
distribution.

Figure 4 shows histograms of test lengths when upper limits are enforced. The plots in the
first row of Figure 4 are the cases of n0 = 10, and the second row are the cases of n0 = 15.
From left to right, the upper bounds are 40, 50, and 60. Figure 4 shows that when the upper
limit increases from 40 to 60, the effects of truncation fade away. When the upper limit is 60,
the effect of truncation is very limited. This can also be seen in the variances of test lengths in

FIGURE 3.
Q–Q plots of the estimates of truncated procedures ψ = 0.5.
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FIGURE 4.
Histograms of test lengths of truncated procedures ψ = 0.5, n0 = 10, 15.

Tables 7 to 11. By comparing Table 9 with Table 2, we find that when the upper limit is 60, the
variances of test lengths are very close to those of procedures with no upper limits. Moreover,
their classification probabilities are also very close.

In Tables 7 to 11, we summarize the results of the procedures with upper limits enforced.
The columns are arranged in an order similar to those as before, except for the last two columns.
The last two columns of these tables record the number of tests where the test length reaches
the upper bounds and the minimum test length used within 1000 simulations for each different
θ . In these tables, we find that the classification probabilities are slightly smaller than before. In
general, however, satisfactory results are produced; especially, when the true latent ability levels
are far away from the indifference region.

From these tables, we also find that the minimum numbers of test items are all greater than
the initial test length (i.e., 10 and 15). This result suggests that the estimate of θ0 based on the
initial test length with n0 = 10 or 15 may not be a good estimate, but it might be “good enough”
to provide the information for the adaptive item selection scheme.

Varying ψ with truncation. Tables 12 to 14 summarize the results of using varying ψ =
|θ − θc| with initial test length n0 = 15 and upper limits 40, 50, and 60, respectively. All columns
are in similar order, except that the column for coverage frequency of the fixed-width confidence
interval is omitted. Note that in the last column of these tables, 15∗ means that there are some
cases that use only the initial test items; that is, no extra items are required to make a decision.
The number in parentheses denotes how many times this kind of situation happens during 1000
runs. There are only a few cases that do not require any extra items.
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Most of the time, test lengths will reach the upper limits, except for θ with values far from θc.
When we set the upper limit to 60, the performances of the cases where θ = −1,−0.8,−0.6, 0.6,

0.8, 1 are very close to those of the procedures without upper limits. As a result of truncation,
variances of test length are smaller than before.

5. Conclusion

In this paper, we apply the method of sequential one-sided confidence interval estimation
with β-protection to AMT. From the theoretical arguments, it is clear that applying the fixed-width
confidence interval procedure to AMT will require four times the test items (test length) than
applying the single one-sided confidence interval procedure, when the widths of the indifference
regions and the classification probabilities are equal.

The numerical results also show that applying one-sided confidence interval procedures
to AMT is very promising. The asymmetric properties (i.e., the indifference region, and the
classification probabilities) allow the test administrator to choose different false-pass and false-
fail probabilities, or indifference regions, according to the practical testing situation. The double
one-sided confidence intervals procedure or the fixed width confidence procedure will have a
wider indifference region. Therefore, this procedure is recommended only when symmetry of the
indifference region and classification probabilities are required.

There is another advantage of using the one-sided confidence interval procedure in AMT.
That is, we can apply the item selection rules designed for CAT directly to AMT, since the
proposed procedures in this paper are based on “estimation-oriented” construction (Wijsman,
1982).

Although we are not concerned with the item selection rule here, the assumption of the
estimating equation of θ in this paper is very general, which allows us to apply other item
selection rules to the proposed procedures. It is possible to make these procedures even more
efficient with a carefully designed item selection method. For example, a carefully designed
initial test set (i.e., the initial testlet with n0 items), created according to the ability distri-
bution of the test-takers, will provide a good starting point for the adaptive item selection
rule and might make the procedure more efficient. This possibility will be studied in the
future.

In theory, it is possible to choose ψ to be a monotonic function of |θ − θc|. In this case,
the “indifference region” might be degenerated to a singleton θc. Letting ψ be a function of the
distance of the true proficiency level to the threshold will require fewer items for classifying
the test-takers with proficiency levels far from the threshold. This idea seems a very promising
procedure to be applied to AMT. On the other hand, test length increases as the absolute value
of the difference of θ − θc decreases. Thus, in practical testing situations, an indifference region
or a truncation rule still needs to be set. Here we only have a simulation study for a simple ψ ,
so the role varying ψ is not very clear at the moment. Further study is needed to clarify this
point.

Appendix

In adaptive testing, items chosen for a test-taker is based on the estimate of his/her proficiency
level. So, they are no longer independent. Hence, in order to apply a β-protection confidence
interval estimation procedure to AMT, we have to extend Wijsman’s (1981) results to the case of
dependent observations.

Proofs of the strong consistency and asymptotic normality of θ̃n are similar to that of Chang
and Ying’s (2003) Theorem 3.1, and only the highlights of the proof of Theorem 1 will be given
here.
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Proof of Theorem 1. Let θ0 denote the true proficiency level, and let εi = Yi − Pi(θ0). Suppose
θ̃n is the unique solution to the estimating function (5); i.e., it satisfies

n∑
1

wi(θ̃n)[Yi − Pi(θ̃n)] = 0, (22)

where wi ∈ Fi−1, i = 1, 2, . . . . Under Conditions (C1) and (C2) and by Theorem 2 of Chow
(1965), and similar arguments of Chang and Ying (2003), thus implies the strong consistency of
θ̃n, i.e., θ̃n → θ0 almost surely a.s. as n → ∞.

Now, let’s turn to the asymptotic normality of θ̃n. By the mean-value theorem, it can be
shown that

n∑
1

wi(θ0)[Yi − Pi(θ0)] = δ2
n(θ∗)(θ̃n − θ0), (23)

where δ2
n(θ∗) = ∑n

1 wi(θ∗)P ′
i (θ∗), P ′ = ∂P/∂θ is the first derivative of P , and θ∗ lies between

θ0 and θ̃n. (Note that if wi = ∂ log(Pi(θ )/Qi(θ ))/∂θ for all i, then δ2
n(θ∗) = In(θ∗).)

Let δ̃n = δn(θ̃n). It follows from equation (23) that

δ̃n(θ̃n − θ0) = δ̃nv
′1/2
n

δ2
n(θ̃∗)

δ2
n(θ̃∗)(θ̃n − θ0). (24)

By Condition (C3’), δ2
n(θ0)/v′

n → 1 almost surely as n → ∞. Then, by a martingale central limit
theorem (see Pollard (1984)), it can be shown that δ̃n(θ̃n − θ0) →L N (0, 1). This completes the
proof of the asymptotic normality of θ̃n. �

Proof of Theorem 2. To prove that limψ→0 P (θ0 ∈ STψ
) = 1 − α, it is sufficient to prove that

δ̃Tψ
(θ̃Tψ

− θ0) →L N (0, 1). (25)

Now, by Theorem 3.1 and Lemma 1 of Chow and Robbins (1965), we know that P (Tψ < ∞) = 1
and Tψ/nθ0 → 1 almost surely as ψ → 0. Then, by Anscombe’s (1952) Theorem, equation (25)
holds, if {δ̃n(θ̃n − θ0) : n ≥ n0} is u.c.i.p. For further discussion about uniformly continuous in
probability (u.c.i.p.), please see Woodroofe (1982).

It follows from the strong consistency of θ̃n that

δ̃n(θ̃n − θ0) = [1 + o(1)]

[
v′−1/2

n

n∑
i

wi(θ0)εi

]
a.s. (26)

Let Sn = ∑n
1 wiεi and S∗

n = v
′1/2
n

∑n
1 wiεi . Then, by using the similar arguments of Woodroofe

(1982), and applying the Hàjek–Rènyi inequality (see Chow and Teicher, 1988, p. 247), we con-
clude that {δ̃n(θ̃n − θ0) : n ≥ 1} is u.c.i.p. This implies that δ̃Tψ

(θ̃Tψ
− θ0) →L N (0, 1). Hence,

Theorem 2 (ii) holds.
To show that limψ→0 E[Tψ/nθ ] = 1, it is sufficient to show that {ψ2Tψ : ψ ∈ (0, 1)} is uni-

formly integrable. This actually follows from the last-time arguments of Theorem 3.3 of Chang
and Ying (2003) (see also Chang, (1999, 2001), and so it is omitted here. �

Proof of Corollary 1. Let θ be the true proficiency level. Suppose θ ≥ θc, then, by the decision
rule above, the probability of false fail becomes

P (Fail | θ ≥ θc) = P (LT < θc | θ ≥ θc) ≤ P (LT < θ − ψ) ≤ β, (27)

provided that θ − ψ > θc. By (D2), it follows that the probability of correct pass is

P (Pass | θ ≥ θc) = P (LT ≥ θc | θ ≥ θc) = 1 − P (LT < θc | θ ≥ θc) ≥ 1 − β, (28)

provided that θ − ψ > θc.
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If θ < θc, then by (D1) and similar arguments above, the probability of correct fail and false
pass are P (Fail | θ < θc) = P (LT < θc | θ < θc) = 1 − P (LT ≥ θc | θ < θc) ≥ 1 − α; and
P (Pass | θ < θc) = P (LT ≥ θc | θ < θc) ≤ P (θ < LT ) ≤ α, respectively. Equations (27) and
(28) hold under the condition that θ − ψ > θc, which implies that [θc, θc + ψ] is an indifference
region of the procedure.

The proof of Corollary 2 follows from arguments similar to those found in Theorem 2 and
Corollary 1. Only a sketch of the proof of the misclassification probability is given here.

Proof of Corollary 2. Again, let θ be the true proficiency level. Then the misclassification
probabilities are

P (Fail the test-taker | θ ≥ θc) = P {RT ′ < θc | θ > θc}
≤ PRT ′ < θ | θ > θc} < β(False Fail), (29)

and

P (Pass the test-taker | θ < θc) = P {LT ′ > θc | θ < θc}
≤ P {LT ′ > θ | θ < θc} < α(False Pass). (30)

For θ ∈ [θc − ψ ′, θc + ψ ′], the probabilities of making the right decision are

P (Pass the test-taker | θ > θc + ψ ′) = P (LT ′ ≥ θc | θ ≥ θc)

= 1 − P (LT ′ < θc | θ ≥ θc) ≥ 1 − P (LT ′ > θ − ψ ′ | θ ≥ θc) ≥ 1 − β, (31)

and

P (Fail the test-taker | θ < θc − ψ ′) = P (RT ′ < θc | θ < θc)

= 1 − P (RT ′ ≥ θc | θ < θc) ≥ 1 − P {RT ′ > θ + ψ ′ | θ < θ0} ≥ 1 − α. (32)

Remark 5. In the decision rule of the single one-sided procedure, by checking whether θ̃ ∈
[θc, θc + ψ ′] or not, we can have some idea of the reliability of the decision. Similarly, the “No
Decision” part of the decision rule of the double one-sided procedure is used to indicate that the
true θ might fall into the indifference region. Note that

RT − LT = zα + zβ

δn

≈ ψ ′.

Hence, if the true θ is in [θc ± ψ ′], then it is very likely that LT ≤ θc ≤ RT , and there is no way
to guarantee that the probability of classification will be as expected in this situation.
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