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OPTIMAL PROCESS CONTROL FOR MULTIPLE DEPENDENT
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SUMMARY
A renewal theory approach is proposed to derive the cost model for multiple dependent subprocesses. The optimal
individual Y control chart and multiple cause-selecting control chart are thus constructed to monitor the overall
product quality and specific product quality contributed by the multiple dependent subprocesses. They can be used
to maintain the process with minimum cost and effectively distinguish which component of the subprocesses is
out of control. The optimal design parameters of the proposed control charts can be determined by minimizing
the cost model using a simple grid search method. An example is given to illustrate the application of the optimal
individual Y control chart and multiple cause-selecting control chart.1998 John Wiley & Sons, Ltd.
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INTRODUCTION

Control charts are important tools of statistical quality
control. These charts are used to decide whether a process
has achieved a state of statistical control and to maintain
current control of a process. Today, most products are
produced by several different process steps. In multiple-
step processes a Shewhart control chart is often used
at each individual step. If the steps of the process are
independent, then using a Shewhart control chart at each
individual step is a meaningful procedure. However, in
many processes the steps are not independent and thus the
control charts are difficult to interpret. One way to solve
this problem is to use a multivariate control chart such as
a HotellingT 2 chart. The disadvantages of usingT 2 con-
trol charts are that one must assume that the process qual-
ity characteristics are multivariate normal random vari-
ables and, once an out-of-control signal is given, it is of-
ten difficult to determine which component of the process
is out of control. An alternative to this approach was pro-
posed by Zhang [1]. He calls his charts ‘cause-selecting
control charts’. The cause-selecting control chart is con-
structed for a variable only after the observations have
been adjusted for the effect of some other random vari-
ables. Zhang’s cause-selecting control charts use the con-
cepts of overall quality and specific quality. Zhang defines
overall quality as that quality due to the current sub-
process and any previous subprocesses. Specific quality
is that quality which is due only to the current subpro-
cess. The cause-selecting charts are designed to further
distinguish between controllable assignable causes and
uncontrollable assignable causes. Controllable assignable
causes are those assignable causes that affect the current
subprocess but no previous subprocesses. Uncontrollable
assignable causes are those assignable causes affecting
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previous processes that cannot be controlled at the current
process level. The advantage of this approach is that
once an out-of-control signal is given, it is often easy to
determine which component of the subprocesses is out of
control. Wade and Woodall [2] review the basic principles
of the cause-selecting chart in the simple case of a two-
step process and give an example to illustrate its use. They
also examine the relationship between the cause-selecting
chart and the multivariateT 2 chart. In their opinion the
cause-selecting control chart has some advantages over
theT 2 chart.

To use any control chart, three design parameters must
be specified: the sample size, the sampling interval and
the number of standard deviations above or below the
centreline of the control chart. The choice of these design
parameters influences the costs of sampling and testing,
costs of searching and repairing and costs due to the pro-
duction of non-conforming items. Therefore it is logical
to consider the design of control charts from an economic
viewpoint.

Duncan [3] first proposed an economic model for the
optimal economic design of an̄X control chart. He rec-
ommended the use of a concept which he called economic
design to obtain the optimal design. The pioneering work
of Duncan was later extended by others to includeX̄ and
R charts employed jointly [4–6]. Rahim et al. [7] dis-
cussed the use of joint̄X andS2 charts according to eco-
nomic considerations when sample sizes are moderately
large. Collani and Sheil [8] proposed the economic design
of an S chart when the assignable cause can only influ-
ence the process variance. Yang and Yang [9] first pre-
sented the economic design of a simple cause-selecting
control chart for a system with a single assignable cause
which is assumed to occur in either the current sub-
process or the previous subprocess. However, the multi-
ple assignable-cause cost model for multiple dependent
subprocesses has not been addressed. In this paper we
consider a system with multiple dependent subprocesses,
i.e. the current subprocess and the multiple previous sub-
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processes, and each subprocess may be influenced by a
single assignable cause. The optimal individualY control
chart proposed to monitor the overall product quality and
the multiple cause-selecting control chart proposed to
monitor the specific product quality are derived by min-
imizing a multiple assignable-cause cost model which
is obtained by extending the renewal theory approach.
Finally, an example is given to illustrate the design pro-
cedure and application of the optimal multiple cause-
selecting control chart and individualY control chart.

ECONOMIC DESIGN OF MULTIPLE
CAUSE-SELECTING CONTROL CHART

Let X1, X2, . . . , Xk represent the incoming quality mea-
surements of interest for the precedingk steps of the
process and letY (overall quality or outgoing quality)
represent the quality measurement of interest for thek +
1 (final) step. Suppose that a sample with size one is
taken at the end of the final process everyh hours and
observations (X1i , X2i , . . . , Xki ,Yi ) are measured on the
same item of production. To control the overall prod-
uct quality contributed by the current subprocess and all
the preceding processes, we have to use the individual
Y control chart on the variable. If the outgoing quality
to be controlled,Y , depends onk incoming qualities
X1, X2, . . . , Xk , then this is the cause-selecting case of
multiple causes where we need to use the multiple cause-
selecting control chart to control the specific quality re-
sulting from the current subprocess itself .

The difference between the simple cause-selecting
control chart and the multiple cause-selecting control
chart is that the function between the outgoing quality
to be controlled and the incoming qualities in the
latter case is multiple, not simple. To determine the
relationship between the object to be controlled and
the multiple incoming qualities, we often use multiple
linear regression. The multiple cause-selecting chart
is then based on values of the outgoing qualityY that
have been adjusted for the values of incoming qualities
X1, X2, . . . , Xk . The multiple cause-selecting control
chart will be used in conjunction with the individual
Y control chart to control the overall product quality
and specific product quality simultaneously and may
effectively distinguish which component of the multiple
dependent processes is out of control. An example
is given to illustrate the design procedure of the two
control charts, and their application on the steps of a
manufacturing process is also presented.

Multiple cause-selecting control chart

The procedure for constructing the individualY con-
trol chart and multiple cause-selecting control chart is
illustrated as follows.

Suppose that there arek incoming qualities
X1, X2, . . . , Xk ; by experiment we have them sets
of observed data

(Yi ; X1i , X2i , . . . , Xki ), i = 1,2, . . . ,m

The individualY chart on theY variable is constructed
to monitor the overall product quality. TheYi values are
assumed independent andYi ∼ N(µ,σ 2) when all the
subprocesses are in control. The centreline (CL), upper
control limit (UCL) and lower control limit (LCL) of
the individualY chart are set atµ, µ + k1σ and µ −
k1σ respectively, wherek1 is the number of standard
deviations above or below the centreline of the individual
Y chart,µ is the mean of the random variableYi , andσ 2

is the variance of the random variableYi . Suppose that
the overall qualityY is a function ofk incoming qualities
X1, X2, . . . , Xk and theYi values are independent, and the
specific qualityYi |(X1, X2, . . . , Xk) ∼ N(µi ,σ

∗2) when
the process is in control, whereµi = f (X1i , X2i , . . . , Xki )

andσ ∗2 is a constant. Hereµi is the mean of the ran-
dom variableYi |(X1, X2, . . . , Xk) and σ ∗2 is the vari-
ance of the random variableYi |(X1, X2, . . . , Xk). Next we
have to establish a relationship betweenX1, X2, . . . , Xk

andY , either empirically or theoretically. If the function
f (x1i ,x2i , . . . ,xki ) was known, the transformationZi =
(Yi −µi )/σ

∗ would be used to standardize theYi values.
The multiple cause-selecting chart is a Shewhart type of
control chart for the cause-selecting valuesZi , the values
of Yi adjusted for the effects ofX1i , X2i , . . . , Xki . Thus
the Zis are independentN(0,1) random variables. The
centreline, upper control limit and lower control limit for
the multiple cause-selecting control chart are set at 0,k2,
and−k2 respectively, wherek2 is the number of standard
deviations above or below the centreline of the multiple
cause-selecting chart. Alternatively, cause-selecting val-
ues could also be defined asYi −µi ∼ N(0,σ ∗2). Thus
the centreline, upper control limit and lower control limit
for the multiple cause-selecting control chart are set at 0,
k2σ

∗ and−k2σ
∗ respectively.

In practice, the true relationship between
X1, X2, . . . , Xk andY is never known. Hence the mean
of Y |(X1, X2, . . . , Xk), E(Y |X1, X2, . . . , Xk), and the
variance of Y |(X1, X2, . . . , Xk), V(Y |X1, X2, . . . , Xk),
have to be estimated from an initial sample ofm
observations. The estimate forµi will be Ŷi , whereŶi is
the fitted value of E(Yi |(X1, X2, . . . , Xk)). The estimate
for σ ∗ will be

√
MSE, where

√
MSE is the square root

of the mean square error. (For the model fitting methods
and diagnosis see e.g. References [10] and [11]). Thus
the upper and lower control limits of the optimal multiple
cause-selecting chart are set atk2

√
MSE and−k2

√
MSE

respectively for residualsei , where ei = Yi − Ŷi .
Zhang [1] estimatedσ ∗ using the average range of
the residuals,MR, whereMR =∑m−1

i=1 MRi/(m −1) and
MRi = |ei+1 − ei |. In this case UCL= k2MR, CL = 0
and LCL= −k2MR.

Derivation of cost model

A current process is out of control when it is influ-
enced by a controllable assignable cause, sayAk+1. We
also assume that there arek uncontrollable assignable
causes, sayA1, A2, A3, . . . , Ak , which can only affect the
preceding operations 1,2, . . . ,k respectively. A preceding
operationj is out of control when it is influenced by an
uncontrollable assignable cause, sayA j , j = 1,2, . . . ,k.
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Assignable causesA1, A2, A3, . . . , Ak , and Ak+1 would
be allowed to occur in the first step, the second step,. . .

and the current step of the process simultaneously.
The distributions of the overall qualityY and specific

quality Y |(X1, X2, . . . , Xk) would be changed once
any assignable causes occurred in the process steps.
Before describing the possible distributions ofY and
Y |(X1, X2, . . . , Xk), we define some notation as follows:

W the set of all assignable causesA1, A2, A3, . . . , Ak ,

Ak+1, W = {A1, A2, A3, . . . , Ak, Ak+1}
W1 the set of all uncontrollable assignanble causes

A1, A2, A3, . . . , Ak , W1 = {A1, A2, A3, . . . , Ak}
S a subset ofW

S1 a non-empty subset ofW1

S2 the set of assignable causeAk+1, S2 = {Ak+1}
S12 the union ofS1 andS2, S12 = S1 ∪ S2

The general distribution of the overall quality,Y , can
be expressed asN(µS,σ 2), but

(a) whenS = ∅,µS = µ

(b) whenS = S1,µS = µ+ δS1σ (2k −1 cases)
(c) whenS = S2,µS = µ+ δS2σ

(d) whenS = S12,µS = µ+ δS12σ (2k −1 cases)

The most general distribution of the specific quality
Y |(X1, X2, . . . , Xk) can be expressed asN(µ∗

S,σ ∗2), but

(a) whenS = ∅,µ∗
S = µi

(b) whenS = S1,µ
∗
S = µi + δ∗

S1σ
∗ (2k −1 cases)

(c) whenS = S2,µ
∗
S = µi + δ∗

S2σ
∗

(d) whenS = S12,µ
∗
S = µi + δ∗

S12σ
∗ (2k −1 cases).

Other assumptions and the nature of the operation
condition are summarized as follows.

1. The timeTAi until the occurrence of assignable cause
Ai is assumed exponentially distributed with param-
eterλi , i = 1,2, . . . ,k + 1. TA1,TA2, . . . ,TA(k+1) are
mutually independent.

2. The time of taking a sample, inspection and charting
is negligible.

3. The search and repair time is a constantTsrSwhen the
process is influenced by the assignable causes in set
S. The search and repair time is a constantTf when
there is at least one false alarm for the two charts.

4. The search and repair cost is a constantCsrS when the
process is influenced by the assignable causes in set
S. The search and repair cost is a constantCf when
there is at least one false alarm for the two charts.

5. A quality cycle is defined as the time between the
start of successive in-control periods. Then the pro-
cess is expressed as a series of independent and
identical cycles. That is, the process is a renewal
process. The accumulated cost per cycle is called
the cycle cost. The cycle costs are independent and
identically distributed. Such a process is known as a
renewal reward process [12].

6. The cost of sampling and testing is a constantb,
whereb > 0.

7. The process is discontinuous. That is, the process
ceases during the search state.

The cost model is thus derived using the renewal the-

ory approach. Some notation used is defined as follows:

E(T ) the expected cycle time
E(C) the expected cycle cost
α the probability that at least one of the multiple

cause-selecting control chart and individualY
control chart has a false alarm.

βS1 the probability that there is no true alarm
for the individualY chart and no false alarm
for the multiple cause-selecting chart (a com-
bination of uncontrollable assignable causes
A1, A2, A3, . . . , Ak ) (i.e. S1) occurs in the
system) (the number of such cases is 2k −1)

βS2 the probability that there are no true alarms
for the individualY chart and multiple cause-
selecting chart given that the previous process
steps are in control but the current process is
out of control

βS12 the probability that there are no alarms for both
charts given that some previous process steps
and the current process are out of control (the
number of such cases is 2k −1)

TsrS1 the time of search and repair of the assignable
causes in setS1

TsrS2 the time of search and repair of the assignable
cause in setS2

TsrS12 the time of search and repair of the assignable
causes in setS12

C0 the quality cost per hour while production is in
control

C j the quality cost per hour while the process is
only disturbed by anyj assignable causes of
all assignable causes,j = 1,2, . . . ,k +1

CsrS1 the cost of search and repair of the assignable
causes in setS1

CsrS2 the cost of search and repair of the assignable
cause in setS2

CsrS12 the cost of search and repair of the assignable
causes in setS12

τ(a′,b′) the expected arrival time of thea′th ar-
rived assignable cause given that all the
assignable causes in setb′ occur in the
first sampling and testing time interval, i.e.
τ(a′,b′) = E(T(a′)|T(m) < h), where T(m) =
max(TA j , A j ∈ b′) andT(a′) is the arrival time
of thea′th arrived assignable cause.

In order to obtain an expression for the expected cycle
time E(T ), we decomposed the cycle into the following
three components: (1) the in-control period; (2) the time
to obtain a true alarm given that the process is out of
control; (3) the time to find and repair all the assignable
causes and start the process anew. To use the renewal
theory approach, we have to study the possible states at
the end of the first sampling and testing. There are 2k+2

possible states. Depending on the state of the system,
one can compute the expected residual cycle length and
expected residual cost. These values, together with the
associated probabilities, lead us to formulate the renewal
equation. The analysis developed below depends on the
possible states at the end of the first sampling and testing.
These states are defined as follows (Table1).
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Table 1. Definition of each state

Previous Current At least one alarm
process process for cause-selecting
steps in in chart and individual

State control? control? Y chart?

1 Yes Yes No
2 Yes Yes Yes
3 to 2k +1 No Yes No
2k +2 to 2k+1 No Yes Yes
2k+1 +1 Yes No No
2k+1 +2 Yes No Yes
2k+1 +3 to 3.2k +1 No No No
3.2k +2 to 2k+2 No No Yes

(a) State 1: the previous process steps and the current
process are all in control and there are no false
alarms for the individualY chart and multiple
cause-selecting chart.

(b) State 2: the previous process steps and the current
process are all in control, but there is at least one
false alarm for the charts.

(c) State 3 to state 2k + 1: some previous process steps
are out of control because of the occurrence of the
uncontrollable assignable causes in setS1 and the
current process is in control, but there are no alarms
for the charts. The number of such states is 2k −1.

(d) State 2k + 2 to state 2k+1: some previous process
steps are out of control because of the occurrence
of the uncontrollable assignable causes in setS1 and
the current process is in control, and there are at least
one alarm for the charts. The number of such states
is 2k −1

(e) State 2k+1 + 1: the previous process steps are in
control and the current process is out of control be-
cause of the occurrence of the controllable assignable
cause, but there are no alarms for the charts.

(f) State 2k+1 + 2: the previous process steps are in
control but the current process is out of control be-
cause of the occurrence of the controllable assignable
cause, and there is at least one alarm for the charts.

(g) State 2k+1+3 to state 3.2k+1: some previous process
steps are out of control because of the occurrence of
the uncontrollable assignable causes in setS1 and
the current process is out of control because of the
occurrence of the controllable assignable cause, but
there are no true alarms for the charts. The number
of such states is 2k −1.

(h) State 3.2k + 2 to state 2k+2: some previous process
steps are out of control because of the occurrence
of the uncontrollable assignable causes in setS1 and
the current process is out of control because of the
occurrence of the controllable assignable cause, and
there is at least one true alarm for the charts. The
number of such states is 2k −1.

The probability for each state is calculated as follows.

P1 = P(TA1 > h,TA2 > h, . . . ,TA(k+1) > h)(1−α)

=
k+1∏
j=1

P(TA j > h)(1−α)

= exp

(
−

k+1∑
j=1

λ j h

)
× (1−α)

P2 = P(TA1 > h,TA2 > h, . . . ,TA(k+1) > h)α

=
k+1∏
j=1

P(TA j > h)α = exp

(
−

k+1∑
j=1

λ j h

)
α

For statei = 3, . . . ,2k+1,

Pi = P(TS1 < h,TW1−S1 > h,TA(k+1) > h)βS1

=
∏
j∈S1

[1−exp(−λ j h)]

×exp

(
−

∑
j∈(W1−S1)∪S2

λ j h

)
βS1

where(TS1 < h) means that the arrival times of all the
assignable causes in setS1 are all smaller thanh, i.e.
(TA j < h, A j ∈ S1), and (TW1−S1 > h) means that the
arrival times of all the assignable causes which are inW1

but not in S1 are all greater thanh, i.e. (TA j > h, A j ∈
(W1 − S1)). For statei = 2k +2, . . . ,2k+1,

Pi = P(TS1 < h,TW1−S1 > h,TA(k+1) > h)(1−βS1)

=
∏
j∈S1

[1−exp(−λ j h)]exp

(
−

∑
j∈(W1−S1)∪S2

λ j h

)

×(1−βS1)

P(2k+1 +1)

= P(TA1 > h,TA2 > h, . . . ,TAk > h,TA(k+1) < h)βS2

= exp

(
−

k∑
j=1

λ j h

)
[1−exp(−λk+1h)]βS2

P(2k+1 +2)

= P(TA1 > h,TA2 > h, . . . ,TAk > h,TA(k+1) < h)

×(1−βS2)

= exp

(
−

k∑
j=1

λ j h

)
[1−exp(−λk+1h)](1−βS2)

For statei = 2k+1 +3, . . . ,3.2k +1,

Pi = P(TS1 < h,TW2−S1 > h,TA(k+1) < h)βS12

=
∏

j∈S12

[1−exp(−λ j h)]exp

(
−

∑
j∈(W1−S1)

λ j h

)

×βS12

For statei = 3.2k +2, . . . ,2k+2,

Pi = P(TS1 < h,TW1−S1 > h,TA(k+1) < h)(1−βS12)

=
∏

j∈S12

[1−exp(−λ j h)]exp

(
−

∑
j∈(W1−S1)

λ j h

)

×(1−βS12)

Table2 displays the possible states of the system, the
expected residual cycle times and the associated proba-
bilities. Consequently,

E(T ) = h + P1E(T )+ P2(E(T )+ Tf)+
2k+2∑
i=3

Pi Ri .
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Table 2. Probability and expected residual cycle time for each state

State Probability Expected residual cycle time

1 P1 = exp

(
−

k+1∑
j=1

λ j h

)
(1−α) R1 = E(T )

2 P2 = exp

(
−

k+1∑
j=1

λ j h

)
α R2 = Tf +E(T )

3 to 2k +1 Pi =
∏
j∈S1

[1−exp(−λ j h)]exp

(
−

∑
j∈(W1−S1)∪S2

λ j h

)
βS1 Ri = h/(1−βS1)+ TsrS1

2k +2 to 2k+1 Pi =
∏
j∈S1

[1−exp(−λ j h)]exp

(
−

∑
j∈(W1−S1)∪S2

λ j h

)
(1−βS1) Ri = TsrS1

2k+1 +1 Pi = exp

(
−

k∑
j=1

λ j h

)
[1−exp(−λk+1h)]βS2 Ri = h/(1−βS2)+ TsrS2

2k+1 +2 Pi = exp

(
−

k∑
j=1

λ j h

)
[1−exp(−λk+1h)](1−βS2) Ri = TsrS2

2k+1 +3 to 3.2k +1 Pi =
∏

j∈S12

[1−exp(−λ j h)]exp

(
−

∑
j∈(W1−S1)

λ j h

)
(βS12) Ri = h/(1−βS12)+ TsrS12

3.2k +2 to 2k+2 Pi =
∏

j∈S12

[1−exp(−λ j h)]exp

(
−

∑
j∈(W1−S1)

λ j h

)
(1−βS12) Ri = TsrS12

Simplifying this, we get

E(T ) = h + P2Tf

1− P1− P2
+
∑2k+2

i=3 Pi Ri

1− P1− P2
(1)

In order to obtain an expression for the expected cy-
cle cost (E(C)), we decomposed the cycle cost into the
following two components: (1) the cost incurred in the
first sampling and testing; (2) the expected residual cost,
which is the cost incurred from the time that the pro-
cess is influenced by any one assignable cause until all
occurred assignable causes are repaired. We present the
possible states of the system, the costs incurred in the first
sampling and testing and the expected residual costs in
Table3. Consequently,

E(C) = P1[(b + C0h)+E(C)]

+P2[(b + C0h)+E(C)+ Cf] +
2k+2∑
i=3

Pi R′
i

Simplifying this, we get

E(C) = (P1 + P2)(b + C0h)+ P2Cf

1− P1− P2
+
∑2k+2

i=3 Pi R′
i

1− P1− P2
(2)

Applying the property of the renewal reward
process [12], the objective function (the expected
cost per unit time) E(V∞) is derived by taking the ratio of
the expected cycle cost E(C) and the expected cycle time
E(T ) : E(V∞) = E(C)/E(T ). The objective function is a
function of the design parametersh, k1 andk2. Hence the
optimal design parameters of the proposed control charts
can be determined by minimizing the objective function.

Application of Optimal Multiple Cause-Selecting Control
Chart and Individual Y Control Chart

We illustrate the application of the optimal multiple
cause-selecting control chart and individualY control
chart in this subsection. Suppose that the approximate
optimal valuesh∗, k∗

1 andk∗
2 have been obtained using

an optimization technique. That is, the upper and lower
control limits of the optimal individualY chart are set
at µ + k∗

1σ andµ − k∗
1σ (if µ andσ are unknown, we

useȲ (sample mean) andS (sample standard deviation)
to estimate them) respectively for the plotted statistic
Yi . The upper and lower control limits of the optimal
multiple cause-selecting chart are set atk∗

2 and−k∗
2 re-

spectively for the plotted statisticZi , or set atk∗
2

√
MSE

and−k∗
2

√
MSE respectively for residualsei . To monitor

the process states, everyh∗ hours a sample with size one
(X1i , X2i , X3i , . . . ,Yi ) is taken and tested. There are three
possible test results for the multiple process steps. These
outcomes and the associated various actions are given
in Table 4. Combination 1 means that all the previous
and current process steps are in control, so the process
continues and the next sample is taken afterh∗ hours.
Combination 2 means that some previous process steps
are out of control but the current process is in control,
hence the process has to be stopped and the preceding
process steps need to be check and repaired. Combina-
tion 3 may mean that the previous process steps are in
control but the current process is out of control, hence the
process has to be stopped and the current process needs to
be check and repaired; or some previous process steps and
the current process are out of control, hence the process
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Table 3. Cost for each state

State Cost in first sampling and testing+ [expected residual cost]

1 R′
1 = b +C0h + [E(C)]

2 R′
2 = b +C0h + [Cf +E(C)]

3 to 2k +1 R′
i = b +C0τ(1,S1) +

m∑
j=2

C j−1(τ( j,S1) − τ( j−1,S1))+Cm(h − τ(m,S1))+ [hCm/(1−βS1)+CsrS1]

2k +2 to 2k+1 R′
i = b +C0τ(1,S1) +

m∑
j=2

C j−1(τ( j,S1) − τ( j−1,S1))+Cm(h − τ(m,S1))+ [CsrS1]

2k+1 +1 R′
i = b +C0τ(1,S2) +C1(h − τ(1,S2))+ [hC1/(1−βS2)+CsrS2]

2k+1 +2 R′
i = b +C0τ(1,S2) +C1(h − τ(1,S2))+ [CsrS2]

2k+1 +3 to 3.2k +1 R′
i = b+C0τ(1,S12)+

m+1∑
j=2

C j−1(τ( j,S12) − τ( j−1,S12))+Cm+1(h − τ(m+1,S12))+[hCm+1/(1−βS12)+CsrS12]

3.2k +2 to 2k+2 R′
i = b +C0τ(1,S12) +

m+1∑
j=2

C j−1(τ( j,S12) − τ( j−1,S12))+Cm+1(h − τ(m+1,S12))+ [CsrS12]

Note:m is the number of assignable causes inS1 andm +1 is the number of assignable causes inS12.

Table 4. Decision rules

Individual Cause-selecting Action
Y chart chart process

Combination signal? signal? stops?

1 No No No
2 Yes No Yes

search and
repairS1

3 Yes Yes Yes
search and
repairAk+1
or
search and
repairS1
and Ak+1

has to be stopped and the previous process steps and the
current process need to be checked and repaired.

The multiple cause-selecting chart is used in
conjunction with the individualY chart for the multiple
dependent process steps. We find that they can distinguish
the uncontrollable assignable causes and controllable
assignable cause effectively.

AN EXAMPLE

A two-dependent-step process is performed to illustrate
the approach proposed. LetX represent the incoming
quality measurements of interest for the preceding step
of the process and letY (overall quality) represent the
quality measurement of interest for the current (final)
step. Suppose that a sample with size one is taken at the
end of the final process everyh hours and observations
(Xi ,Yi ) are measured on the same item of production.
A process is out of control when it is influenced by
assignable causes. We assume that there are an uncon-
trollable assignable cause and a controllable assignable
cause, sayA1 and A2. A1 can only affect the previous
process and cannot be controlled at the current process.

Table 5. Data and residual values for example

No. Xi Yi Ŷi ei = Yi − Ŷi

1 85 99 91.772 7.22803
2 82 93 91.552 1.44847
3 75 99 95.289 3.71065
4 74 97 95.625 1.37534
5 76 90 94.811 −4.81102
6 74 96 95.625 0.37534
7 73 93 95.77 −2.77026
8 93 109 110.029 −1.02874
9 70 88 94.602 −6.60206

10 82 89 91.552 −2.55153
11 80 93 92.401 0.59898
12 77 94 94.236 −0.23634
13 82 86 91.552 −5.55153
14 76 91 94.811 −3.81102
15 74 100 95.625 4.37534
16 71 98 95.306 2.69436
17 70 101 94.602 6.39794
18 64 80 80.842 −0.84194

A2 can only affect the current process but no previous
subprocess. We adopt 18 sets of observed data from Ref-
erence [13], p. 835 (see Table5).

The variables measured wereX = fibre length
(10−2 inch) for the preceding step andY = skein length
(lb) for the final step. The 18 data points are used to
establish the relationship between the two variables and
to calculate the control limits, since these points are
obtained when the process is in control.

The relationship betweenX and Y is found using
least squares regression withY as the dependent variable
and X as the independent variable. The least squares fit
obtained is

Ŷi = −3558+142X −1.82X2+0.00778X3

The next step is to calculate the residuals for the 18
observations. The residuals are given in Table5.

Next the control limits of the cause-selecting chart for
the residualei , and the individualY chart are calculated.
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The centreline and control limits of the simple cause-
selecting chart are

UCL = k2

√
MSE= 4.36k2

CL = 0

LCL = −k2

√
MSE= −4.36k2

The centreline and control limits of the individualY chart
are

UCL = Ȳ + k1S = 94.22+6.58k1

CL = Ȳ

LCL = Ȳ − k1S = 94.33−6.58k1,

whereȲ is the average of the 18Yi s andS is the standard
deviation of the 18 observations.

Let βS2 = β01, βS1 = β10, βS12= β11, TsrS1= TsrS2=
Tsr, CsrS1 = CsrS2 = Csr, τ(1,{A1}) = τ1, τ(2,{A2}) = τ2,
τ(1,{A1,A2}) = τ(1), τ(2,{A1,A2}) = τ(2), δS1= δ∗

S1= δ1, δS2=
δ∗

S2 = δ2 andδS12= δ∗
S12= δ12, where:

β01 the probability that there are no alarms for the charts
given that previous process is in control and the
current process is out of control

β10 the probability that there are no alarms for the charts
given that the previous process is out of control and
the current process is in control

β11 the probability that there are no alarms for the charts
given that the previous process and the current pro-
cess are both out of control

Tsr the time of search and repair of any assignable causes
when there is at least one true alarm for the individual
Y chart and cause-selecting chart

Csr the cost of search and repair of any assignable causes
when there is at least one true alarm for the two
charts

τ j the expected arrival time of assignable causeA j

given that it occurred in the first sampling and testing
interval, j = 1,2, i.e.

τ j = E(TA j |TA j < h) = 1−e−λ j h −λ j h e−λ j h

λ j (1−e−λ j h)

τ( j ) the expected arrival time of thej th arrived assignable
cause given thatA1 and A2 occurred in the first
sampling and testing interval,j = 1,2, i.e.

τ(1) = {e−(λ1+λ2)h [h +1/λ1+1/λ2−1/(λ1 +λ2)]

−e−λ1h/λ2 −e−λ2h/λ1 +1/(λ1 +λ2)}
/[(1−e−λ1h)(1−e−λ2h)]

τ(2) = {e−(λ1+λ2)h [h +1/(λ1+λ2)] − e−λ1h/(h +1/λ1)

−e−λ2h(h +1/λ2)+1/λ1+1/λ2 −1/(λ1 +λ2)}
/[(1−e−λ1h)(1−e−λ2h)]

(for proofs see Reference [14])
δ1 the mean shift size ofδ1 standard deviation when the

preceding process is influenced by assignable cause
A1

δ2 the mean shift size ofδ2 standard deviation when the
current process is influenced by assignable causeA2

Table 6. Definition of each state

Previous Current At least one alarm
process process for cause-selecting
steps in in chart and individual

State control? control? X chart?

1 Yes Yes No
2 Yes Yes Yes
3 No Yes No
4 No Yes Yes
5 Yes No No
6 Yes No Yes
7 No No No
8 No No Yes

δ12 the mean shift size ofδ12 standard deviation when the
current process is influenced by assignable causeA2

and the preceding process is influenced by assignable
causeA1.

It is noted that the numerical calculations forα, β01,
β10 andβ11 are not easy because the individualY control
chart and multiple cause-selecting control chart are not
independent. We do know thatα > α1+α∗

1 −α1α
∗
1, β10 <

β1(1−α∗
1), β01 < β2β

∗
2 andβ11 < β12β

∗
2, whereα1 is the

probability that the individualY chart has a false alarm,
α∗

1 is the probability that the multiple cause-selecting
chart has a false alarm,β1 is the probability that the
individualY chart has no true alarm given that the overall
quality is influenced byA1, β∗

2 is the probability that the
multiple cause-selecting chart has no true alarm given
that the specific quality is influenced byA2, β2 is the
probability that the individualY chart has no true alarm
given that the overall quality is influenced byA2, andβ12

is the probability that the individualY chart has no true
alarm given that the overall quality is influenced byA1

andA2. To simplify the calculation, we letα = α1+α∗
1 −

α1α
∗
1, β10 = β1(1− α∗

1), β01 = β2β
∗
2 andβ11 = β12β

∗
2.

Without losing generality, the optimal design parameters
for the proposed control charts with required powers will
be obtained.

There are eight possible states at the end of the first
sampling and testing time. Table6 gives the definitions
of the eight states. The probability and expected residual
cycle time for each state and the cost for each state are
presented in Tables7 and8 respectively.

Before determining the optimal values ofk1, k2 and
sampling intervalh, we apply equations (1) and (2) to
obtain the expected cost per hour for the simple case of a
two-step process. Hence the expected cycle time is

E(T ) = [h +e−(λ1+λ2)hαTf + (1−e−(λ1+λ2)h)Tsr

+(1−e−λ1h)e−λ2hhβ10/(1−β10)

+e−λ1h(1−e−λ2h)hβ01/(1−β01)

+(1−e−λ1h)(1−e−λ2h)hβ11/(1−β11)]

/[1−e−(λ1+λ2)h ] (3)

The expected cycle cost is

E(C) = {b + C0h e−(λ1+λ2)h +e−(λ1+λ2)hαCf

+(1−e−(λ1+λ2)h)Csr+ [C0τ1 + C1(h − τ1)]
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Table 7. Probability and expected residual cycle time for each state

State Probability Expected residual cycle time

1 P1 = e−λ1h e−λ2h(1−α) R1 = E(T )

2 P2 = e−λ1h e−λ2hα R2 = Tf +E(T )

3 P3 = (1−e−λ1h)e−λ2hβ10 R3 = h/(1−β10)+ Tsr

4 P4 = (1−e−λ1h)e−λ2h(1−β10) R4 = Tsr

5 P5 = e−λ1h(1−e−λ2h)β01 R5 = h/(1−β01)+ Tsr

6 P6 = e−λ1h(1−e−λ2h)(1−β10) R6 = Tsr

7 P7 = (1−e−λ1h)(1−e−λ2h)β11 R7 = h/(1−β11)+ Tsr

8 P8 = (1−e−λ1h)(1−e−λ2h)(1−β11) R8 = Tsr

Table 8. Cost for each state

State Cost in first sampling and testing+ [expected residual cost]

1 R′
1 = b +C0h + [E(C)]

2 R′
2 = b +C0h + [Cf +E(C)]

3 R′
3 = b +C0τ1 +C1(h − τ1)+ [hC1/(1−β10)+Csr]

4 R′
4 = b +C0τ1 +C1(h − τ1)+ [Csr]

5 R′
5 = b +C0τ2 +C1(h − τ2)+ [hC1/(1−β01)+Csr]

6 R′
6 = b +C0τ2 +C1(h − τ2)+ [Csr]

7 R′
7 = b +C0τ(1) + (τ(2) − τ(1))(C1λ1 +C1λ2)/(λ1 +λ2)+C2(h − τ(2))+ [hC2/(1−β11)+Csr]

8 R′
8 = b +C0τ(1) + (τ(2) − τ(1))(C1λ1 +C1λ2)/(λ1 +λ2)+C2(h − τ(2))+ [Csr]

×(1−e−λ1h)e−λ2h

+(1−e−λ1h)e−λ2hhβ10C1/(1−β10)

+[C0τ2 + C1(h − τ2)](1−e−λ2h)e−λ1h

+(1−e−λ2h)e−λ1hhβ01C1/(1−β01)

+[C0τ(1) + (τ(2) − τ(1))C1 + C2(h − τ(2))]

×(1−e−λ2h)(1−e−λ1h)

+(1−e−λ1h)(1−e−λ2h)hβ11C2/(1−β11)}
/(1−e−(λ1+λ2)h) (4)

Consequently, the expected cost per hour is the ratio
of the expected cycle cost and the expected cycle time:
E(V∞) = E(C)/E(T ).

Suppose that the combination of artifical cost and
process parameters is (δ1 = 3.1, δ2 = 2.8, δ12 = 3.5,
λ1 = 0.01,λ2 = 0.05,b = 5, Tsr = 0.8, Tf = 0.2, C0 = 5,
C1 = 10, C2 = 25, Cf = 30, Csr = 50). In the process of
obtaining the approximate optimal valuesh∗, k∗

1 andk∗
2,

we treath, k1 andk2 as discrete variables and assume that
the values ofh, k1 andk2 are within the ranges 0.0–8.0
(0< h ≤ 8.0 and the unit length ofh is 0.1), 0.0–4.0 (0<
k1 ≤ 4.0,0< k2 ≤ 4.0 and the unit lengths ofk1 andk2 are
0.1) respectively. We also add constraints (α ≤ 0.1,β10 <

0.2,β01 < 0.2,β11 < 0.2) to the model, because in many
economic designs the probability of type I error of control
charts is much higher than that in a statistical design,
which will result in more false alarms than expected [15],
and we also hope that the powers of control charts are as
required. The algorithm used to obtain the approximate
valuesh∗, k∗

1 andk∗
2 of the design variablesh, k1 andk2

is the simple grid search method. Consequently,h∗ = 8.0,
k∗

1 = 2.2, k∗
2 = 1.8, E(V∞) = 5.697,α∗ = 0.0977,β∗

10 =

Table 9. Decision rules

Individual Cause-selecting Action
Y chart chart process

Combination signal? signal? stops?

1 No No No
2 Yes No Yes

search and
repairA1

3 Yes Yes Yes
search and
repairA2
or
search and
repairA1
and A2

0.1708,β∗
01= 0.1542 andβ∗

11= 0.0292. That is, the upper
and lower control limits of the optimal individualY chart
should be set at 109.70 and 79.74 respectively. The upper
and lower control limits of the optimal cause-selecting
chart should be set at 7.85 and−7.85 respectively. To
monitor the process states, every 8 h a sample with size
one (Xi , Yi ) is taken and tested. There are three possible
test results for the two subprocesses. These outcomes
and the associated various actions are given in Table9.
Combination 1 means thatYi falls inside the control
limits of the individualY chart and the cause-selecting
valueei also falls inside the cause-selecting chart, so the
process continues and the next sample is taken after 8 h.
Interpretations for combinations 2 and 3 are similar to
that for combination 1.
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CONCLUSIONS

The multiple cause-selecting chart can be used in con-
junction with the individualY chart for multiple de-
pendent process steps. They can effectively distinguish
between the uncontrollable assignable causes and the
controllable assignable cause. A method of designing the
optimal multiple cause-selecting chart and individualY
chart simultaneously has been proposed.

Constraints on powers and type I error probability are
allowed in the economic design of control charts. This
can be viewed as an improvement in economic design
while achieving desirable statistical properties.

In practice, if engineers wish to maintain processes
with minimum cost and desired statistical properties and
to determine effectively which component of the subpro-
cesses is out of control, then use of the optimal cause-
selecting control chart and individualY control chart is
preferable.

The method proposed can be extended to the case of
multiple assignable causes occurring in both the current
process and previous process steps.
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