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Abstract

We consider second order integro-differential systems with periodic boundary
conditions. Assuming that the upper solution is less than the lower solution, the
existence of periodic solution by the method of mixed monotony is obtained.

1 Introduction

In this paper we shall consider periodic boundary value problem (PBVP) of second
order integro-differential system of the form

−ui = fi t, u, T iu , 0 < t < 2π, i = 1, 2, ..., N, (1)

with boundary condition

u (0) = u (2π) , u (0) = u (2π) , (2)

where f ∈ C I ×RN ×RN , RN , I = [0, 2π] , and T i = T i1, ..., T iN , 1 ≤ i ≤ N,
are some bounded integral operators which are nondecraesing. For example,

T iju (t) =
t

0

aij (s)uj (s) ds, t ∈ I

where aij(s) are nonnegative functions on I.
There are many results for the periodic boundary value problem without integral

terms, see [2] and the references therein. The method of upper and lower solutions is
widely used to discuss the existence, uniqueness, boundedness, stability and asymptotic
behavior of the solutions. Usually it is assumed that the upper solution is larger
than the lower solution when we use monotone method. The question is whether the
existence of solution holds by reversing the order of the upper and lower solutions.
Some results are given in [2]. On the other hand, the method of mixed monotony has
been used to discuss the existence of boundary value problems by [1], [3] and [4] under
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the assumption that the upper solution is greater than the lower solution. In this note
we shall consider the reverse order case and discuss the existence of the solution of
periodic BVP by the method of mixed monotony. This will complement the result of
[1] and generalize the result in section 5.3 of [2]. For convenience, we use the notation:

[β,α] = u ∈ C I,RN | β ≤ u ≤ α on I

here β ≤ u means that βi ≤ ui for 1 ≤ i ≤ N.
THEOREM 1 ([1]). Assume that there exist a positive constant ε, a function

F ∈ C I ×RN ×RN ×RN ×RN , RN , and two functions α,β ∈ C2 I,RN such
that the following conditions hold :
(A1) α (t) ≤ β (t) , t ∈ I.
(A2) for all u, v ∈ C I,RN with α ≤ u ≤ β and α ≤ v ≤ β, we have

αi + Fi t, u, T
iu, v, T iv ≥ − 1

2ε [(vi − αi) + (ui − αi)] on I,
α (0) = α (2π) , α (0) ≥ α (2π) .

(A3) for all u, v ∈ C I,RN with α ≤ u ≤ β and α ≤ v ≤ β, we have

βi + Fi t, u, T
iu, v, T iv ≤ − 1

2ε [(vi − βi) + (ui − βi)] on I,
β (0) = β (2π) , β (0) ≤ β (2π) .

(A4) Fi (t, u, y, v, z) is nondecreasing in u and y and nonincreasing in v and z
respectively for fixed the remaining arguments.

(A5) Fi t, u, T
iu, u, T iu = fi t, u, T

iu , 1 ≤ i ≤ N.
(A6) If there exist two functions ρ, γ ∈ C2 I,RN such that

ρi + Fi t, ρ, T
iρ, γ, T iγ = − 1

2ε (γi − ρi) on I,
ρ (0) = ρ (2π) , ρ (0) = ρ (2π) ,

and
γi + Fi t, γ, T

iγ, ρ, T iρ = − 1
2ε (ρi − γi) on I,

γ (0) = γ (2π) , γ (0) = γ (2π) ,

then ρ ≡ γ on I.
Then the problem (1)-(2) has a unique solution u with α (t) ≤ u (t) ≤ β (t) on I.

LEMMA 2 ([2, Lemma 5.11]). Assume that g ∈ C (I) , g ≥ 0 on I and g is not
trivial. Then any solution to the boundary value problem

u + ku = g(t)
u (0) = u (2π) , u (0) = u (2π) + λ

is positive on I for any λ ≥ 0 if and only if 0 < k ≤ 1/4.

2 Main Results

We shall consider the existence of the solution for periodic boundary value problem
(1)-(2) under the assumption that the upper solution is less than the lower solution.
The method of mixed monotony will be used.
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THEOREM 3. Assume that there exist two functions α,β ∈ C2 I,RN and a

function F ∈ C I ×RN ×RN ×RN ×RN , RN such that the following conditions
hold :
(B1) β (t) ≤ α (t) on I.
(B2) For all u, v ∈ C I,RN with β ≤ u ≤ α and β ≤ v ≤ α, we have

αi + Fi t, u, T
iu, v, T iv ≥ 1

8 [(vi − αi) + (ui − αi)] on I,
α (0) = α (2π) , α (0) ≥ α (2π) .

(B3) For all u, v ∈ C I,RN with β ≤ u ≤ α and β ≤ v ≤ α, we have

βi + Fi t, u, T
iu, v, T iv ≤ 1

8 [(vi − βi) + (ui − βi)] on I,
β (0) = β (2π) , β (0) ≤ β (2π) .

(B4) Fi (t, u, y, v, z) is nonincreasing in u and y and nondecreasing in v and z
respectively.

(B5) Fi t, u, T
iu, u, T iu = fi t, u, T

iu , 1 ≤ i ≤ N .

(B6) If there exist two functions ρ, γ ∈ C2 I,RN such that

ρi + Fi t, ρ, T
iρ, γ, T iγ = 1

8 (γi − ρi) ,
ρ (0) = ρ (2π) , ρ (0) = ρ (2π) ,

and
γi + Fi t, γ, T

iγ, ρ, T iρ = 1
8 (ρi − γi) ,

γ (0) = γ (2π) , γ (0) = γ (2π) ,

then ρ ≡ γ on I.
Then the problem (1)-(2) has a unique solution u with β (t) ≤ u (t) ≤ α (t) on I.

PROOF. For a pair (η, τ) ∈ [β,α]× [β,α] with η ≤ τ, consider the linear boundary
value problems

ui +
1
4ui = −Fi t, η, T iη, τ, T iτ + 1

8 (ηi + τi) ,
u (0) = u (2π) , u (0) = u (2π) ,

(3)

and
wi +

1
4wi = −Fi t, τ, T iτ, η, T iη + 1

8 (ηi + τi) ,
w (0) = w (2π) , w (0) = w (2π) .

(4)

Note that the existence and uniqueness of the solutions to the above linear boundary
value problems are guaranteed by the linear theory of ordinary differential equations.
Let V = w − u, we have

Vi +
1

4
Vi = Fi t, η, T

iη, τ, T iτ − Fi t, τ, T iτ, η, T iη ,

V (0) = V (2π) , V (0) = V (2π) .

By the mixed monotonicity of F in (B4), the right hand side of the equation is non-
negative. Hence by Lemma 2, we get V ≥ 0 on I. Hence we have w ≥ u on I. We also
see that u ≥ β on I. In fact, let W = u− β on I, we have

Wi +
1
4Wi ≥ 0

W (0) =W (2π) , W (0) ≥W (2π)
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By Lemma 2 again, we have u ≥ β on I. Similarly we have α ≥ w on I. Thus there
exists a unique solution u of (3) and a unique solution w of (4) such that α ≥ w ≥ u ≥ β
on I.
Define a map Ψ from C I,R2N into itself by Ψ (η, τ) = (u,w) . Note that Ψ is

continuous and compact on C I,R2N . Let β0,α0 = (β,α) and βn+1,αn+1 =
Ψ (βn,αn) for n ≥ 0. We generate two sequences of functions, {βn} and {αn} such
that β = β0 ≤ β1 ≤ .... ≤ βn ≤ ... ≤ αn ≤ ... ≤ α1 ≤ α0 = α on I. Since {βn}
and {αn} are uniformly bounded on I, there exist two convergent subsequences {βnk}
and {αnk} with {βnk} → β∗ and {αnk} → α∗ uniformly on [0, 2π] as nk → ∞. By
monotonicity of {βn} and {αn} , we then have {βn}→ β∗ and {αn}→ α∗ as n→∞.
Hence Ψ (β∗,α∗) = (β∗,α∗) . By (B6) , β∗ ≡ α∗ on I. (B5) implies that α∗ is a solution
of (1)-(2).

Remark: The arguments in [1] and Theorem 3 are similar. The only difference
between them is that the maximum principle, which is used in [1], is not applicable in
theorem 3. Hence Lemma 2 is used instead.

Some sufficient conditions for the existence of F in Theorem 3 are given below.

THEOREM 4. Assume that there exist two functions α,β ∈ C2 I,RN satisfying
the following conditions :
(C1) β (t) ≤ α (t) on I,
(C2) For all u ∈ C I,RN with β ≤ u ≤ α on I, we have

αi + fi t, u, T
iu ≥ 1

8 (ui − αi) on I,
α (0) = α (2π) , α (0) ≥ α (2π) .

(C3) For all u ∈ C I,RN with β ≤ u ≤ α , we have

βi + fi t, u, T
iu ≤ 1

8 (ui − βi) on I,
β (0) = β (2π) , β (0) ≤ β (2π) .

(C4) fi (t, u, y) is nonincreasing in u and y for each fixed t ∈ I.
Then the boundary value problem (1) , (2) has a unique solution u with β (t) ≤ u (t) ≤
α (t) on I.

PROOF. Define

Fi (t, u, y, v, z) =
1

2
[fi (t, u, y) + fi (t, v, z)] , t ∈ I, u, y, v, z ∈ RN .

In view of the assumptions (C1)-(C4), it is not difficult to see that (B1)-(B5) are
satisfied. (B6) is true as follows. If the assumption of (B6) holds, let V = ρ− γ on I,
then we have

Vi +
1
4Vi = 0 on I,

V (0) = V (2π) , V (0) = V (2π) .

The general solution of Vi +
1
4Vi = 0 is Vi (t) = Ai sin

1
2 t + Bi cos

1
2 t for arbitrary

constants Ai and Bi. From V (0) = V (2π) , we get Bi = 0 and from V (0) = V (2π) ,
we get Ai = 0. Hence V = 0 on I and then ρ = γ on I. By Theorem 3, the problem
(1)-(2) has a unique solution u with β (t) ≤ u (t) ≤ α (t) on I.
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In a similar manner, a variant of theorem 3 can be obtained as follows.

THEOREM 5. Assume that there exist two functions α,β ∈ C2 I,RN and a

function F ∈ C I ×RN ×RN ×RN ×RN , RN such that the following conditions
hold :
(D1) β (t) ≤ α (t) on I.
(D2)

αi + Fi t,α, T
iα,β, T iβ ≥ 0 on I,

α (0) = α (2π) , α (0) ≥ α (2π) .

(D3)
βi + Fi t,β, T

iβ,α, T iα ≤ 0 on I,
β (0) = β (2π) , β (0) ≤ β (2π) .

(D4) For fixed t, u, y, we have

Fi (t, u, y, v, z) ≥ Fi (t, u, y, v∗, z∗) for v ≥ v∗, z ≥ z∗,
and for fixed t, v, z,

Fi (t, u
∗, y∗, v, z)− Fi (t, u, y, v, z)− 1

4
(u∗i − ui) ≤ 0 for u∗ ≥ u, y∗ ≥ y.

(D5) Fi t, u, T
iu, u, T iu = fi t, u, T

iu , 1 ≤ i ≤ N.
(D6) If there exist two functions ρ, γ ∈ C2 I,RN such that

ρi + Fi t, ρ, T
iρ, γ, T iγ = 0 on I,

ρ (0) = ρ (2π) , ρ (0) = ρ (2π) ,

and
γi + Fi t, γ, T

iγ, ρ, T iρ = 0 on I,
γ (0) = γ (2π) , γ (0) = γ (2π) ,

then ρ ≡ γ on I.
Then the problem (1)-(2) has a unique solution u with β (t) ≤ u (t) ≤ α (t) on I.

PROOF. Given a pair (η, τ) ∈ [β,α]×[β,α] with η ≤ τ, consider the linear boundary
value problems

ui +
1
4ui = −Fi t, η, T iη, τ, T iτ + 1

4ηi on I,
u (0) = u (2π) , u (0) = u (2π) ,

(5)

and
wi +

1
4wi = −Fi t, τ, T iτ, η, T iη + 1

4τi on I,
w (0) = w (2π) , w (0) = w (2π) .

(6)

As in the proof of Theorem 3, by (D2)-(D4) and Lemma 2, there exists a unique
solution u of (5) and solution w of (6) such that α ≥ w ≥ u ≥ β on I. Define a map
Ψ from C I,R2N into itself by Ψ (η, τ) = (u,w) . Then Ψ is continuous and compact

on C I,R2N . Let β0,α0 = (β,α) and βn+1,αn+1 = Ψ (βn,αn) for n ≥ 0. Two
sequences of functions {βn} and {αn} are generated such that

β = β0 ≤ β1 ≤ .... ≤ βn ≤ ... ≤ αn ≤ ... ≤ α1 ≤ α0 = α on I.
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By uniform boundedness and monotonicity of {βn} and {αn}, we see that {βn}→ β∗
and {αn}→ α∗ as n→∞ for some β∗ and α∗ in C I,RN and Ψ (β∗,α∗) = (β∗,α∗) .
By (D6) , β∗ ≡ α∗ on I. Hence by (D5), we get the solution of (1)-(2).
THEOREM 6. Assume that there exist two functions α,β ∈ C2 I,RN satisfying

the following conditions :
(E1) β (t) ≤ α (t) on I.
(E2)

αi + fi t,α, T
iα ≥ 0 on I,

α (0) = α (2π) , α (0) ≥ α (2π) .

(E3)
βi + fi t,β, T

iβ ≤ 0 on I,
β (0) = β (2π) , β (0) ≤ β (2π) .

(E4) For u∗ ≥ u, y∗ ≥ y, we have

fi (t, u
∗, y∗)− fi (t, u, y)− 1

4
(u∗i − ui) ≤ 0.

Then the boundary value problem (1)-(2) has a unique solution u with β (t) ≤ u (t) ≤
α (t) on I.

PROOF. Let

Fi (t, u, y, v, z) =
1

2
fi (t, u, y) + fi (t, v, z) +

1

4
(ui − vi) on I.

All hypotheses of theorem 5 are satisfied. Hence there exists a unique solution u of the
problem (1)-(2) on I.
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