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Abstract

Kernel type estimators of the density of continuous time R%valued stochastic processes are
studied. Uniform strong consistency on R of the estimators and their rates of convergence are
obtained. The stochastic processes are assumed to satisfy the strong mixing condition and the
sampling instants are random. It is shown that the estimators can attain the optimal L ” rates of
convergence.
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1. Introduction

This paper is concerned with the estimation of the marginal probability density
function f(x) of a stationary continuous-time R%valued process X = {X(i),
— 20 <t < ¢} on the basis of the discrete time samples { X (t)}, 1 < k < n, where the
sampling instants {t} are random. As an estimator of f(x) we shall consider the kernel
estimate defined by

Salx) = (nbg) ™" 3 K((x — X (1;))/bn).
=1
where K is a kernel function and {b.} is a sequence of bandwidths tending to zero as
n tends to infinity.
Density estimation has been studied extensively since the works of Rosenblatt
(1956) and Parzen (1962). Under dependent situations, kernel type density estimators
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have been investigated by Masry (1983, 1986), Robinson (1983), Roussas (1988) and
Tran (1989a, b, 1993) for various weakly dependent processes. Gyorfi et al. (1988)
studied the uniform convergence and the L, convergence of f, under different mixing
conditions. Masry (1983) investigated the random sampling case considered in the
present paper.

Assume that X, satisfies the strong mixing condition defined below.

Definition 1.1. Let #°  and # denote, respectively, the o-fields generated by X (t),
t <0 and by X, t = 7. Then X, is strong mixing if

a(t) = sup {{[P(AnB) — P(A)P(B)|: Ae #°,,Be F[}0.

The strong mixing condition is well known to be weaker than many dependence
conditions, for example, the absolutely regular condition or the ¢-mixing condition.
For more information on strong mixing processes, see Rosenblatt (1956), or Roussas
(1988).

The purpose of this paper is to establish weak conditions under which f, converges
to fa.s. and uniformly on R and also to obtain sharp rates of convergence of f, to f.
The rates of convergence obtained are sharp. From Theorem 3.1, it follows that f, can
achieve the uniform rate of convergence on R of order (n~!logn)!/“* 2, which is the
optimal uniform rate of convergence on compacts for nonparametric estimators of
a density function (see Stone, 1983). The letter C will be used to denote a generic
constant. All limits are taken as n — oo unless indicated otherwise.

2. Assumptions and preliminaries

Assumption 1. The density f(x) is bounded.

Assumption 2. The kernel K is a probability density function defined on R In
addition K satisfies a Lipschitz condition |K (x) — K (y)| < C|x — y|l, where ||- | is
the usual norm on R“.

Assumption 3. The process X, is strong mixing and the strong mixing coefficient
satisfies [y (1 + 1) [2(r)]”dr < oo for some 0 < p < L.

We assume that the sampling instants {t,} are random, constituting a renewal
process on [0, o). Let {7}, | < k < oo, be a sequence of i.i.d. random variables with
a common distribution G(x) on [0, o) with G0)=0 and a finite mean
g xdG(x) = 1/p < . The sampling instants are defined by 1, =Y_ 7, k=1,
2, ...
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Assumption 4. The renewal-type sampling instants {r,} have an intensity density g(x)
on [0, o) and the second-order differential m(x) satisfies m{x) < C(1 + x) on [0. ».)
where C is a constant,

Let Gi(x) be the cumulative distribution function of ¢,. If G(x) 1s absolutely
continuous with density ¢g(x) then G, has a derivative, say, gi(x), which is the
probability density function of t;. Define then m(t) = 2% | kg,(t), t > 0. The quan-
tity m is often referred to in the renewal theory literaturc as thc second-order factorial
density.

Assumption 5. The joint probability density f(x,y;1) of (X, X,) exists and satisfies

plx.v;s) = J Vf(,\', vit+s)g(ndr < C < =,
(

)

for all x, vy and s = 0.

Denote

Win, 1) = (log n)t2f(nbi)y' 2.

Assumption 6. For some / > 0,

(Wn 1)~ sup | f(x)| = O(1), (2.1

Ix) = al

Y n(l —J f(x)dx) < . (2.2)
n=1 NN

Assumption 7. Assume

@, 1)~ sup K(x/b,) = O(1). (2.3)
N = n’

Note that the constant / in Assumptions 6 and 7 are identical.

Assumption 8. Let 0 < 7 < 1/2. Denote
w= (/) + 3+ 1), a(p, 1) = ptD2d=d=rsD(log )l —d=mi2,

Define

221, p) = J(l(S))z’de(ﬁ)

and

Yi(n 2) = a(n, 1)x(21, p), (2.4)
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with
p=[Wm1)" 1], (2.5)
where [x] denotes the integer part of x. Suppose b, tends to zero in a manner that
Y (n,2)h(n) -0 (2.6)
for some function h(n) > 0 with ¥ 2, (1/h(n)) < cc and for some 0 < 7 < 4.
Lemma 2.1. Let X, satisfy the strong mixing condition. Let X and Y be random

variables measurable with respect to F°, and FE, respectively. Assume that
IXN2+5 < o0 and ||Y|l24s < o0, where [ X345 = (E|X|?*9)YC*9 Then

|EXY — EXEY| < 10X 2450 Yilz4s {2(2)}?2 7.

For a proof, see Deo (1973, Lemma 1, p. 871).

Let

Kol) = (1/62) K (x/b,). )
Then

0= (W) 3 Kl = X(1) (3)

Define
Lo(x) = (1/m)var K, [x — X(0)],

k
Li(x) = (1/n)<] - '—nl>cov {K,[x — X(tw)), K,[x — X(0)]}.

Then
n—1
cov{fu(x) (M)} = Lo} + Y Li(x). (2.9)
k:I:;(:(;l)
Denote
n—1
L= Y X (2.10)
k=—(n—-1)
k#0

Lemma 2.2. If Assumptions 1-5 are satisfied, then

(i) nbusupl, o(x) < C,

xelR?

(i) nblsupJ,(x) < C.

xeR?
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We will need the following result from Bradley {1983):

Lemma 2.3, Suppose X and Y are random variables taking their values on .9 and R,
respectively, where S is a Borel space; suppose U is a uniform — [0, 1] r.v. independent
of (X, Y), and suppose & and v are positive numbers such that &£ < || Y|, < x, where | Y|,
is as defined in Lemma 2.1. Then there exists a real-valued rv. Y* = f(X. Y, U), where
[fis a measurable function from S x R x [0, 17 into R. such that

(i) Y* is independent of X,
(i1) the probability distributions of Y and Y* are identical, and
(i) P(Y* —Y) =& <I18(IY [,/ " ' [sup|P(AnB) — P(A)P(B)[]>* 2" "1,
where the supremum is taken over all sets A, Bwithae #(X), B e #(Y). Here. 7 (X).
F (YY) are the o-fields generated by X and Y, respectively.

Lemma 2.4. Suppose Assumptions 1-8 hold and b, tends to zero slowly enough that

nbi(logn)™! - on. Then
sup | fu(x) — Ef,(x)| = OW(n 1)) as. asn— x. 2.11)
Xl < 2n”

Lemma 2.5. Suppose the conditions of Lemma 2.4 hold. Then

sup | fu(x) = f(x)] = O@W(n. 1)) as. (2.12)

ixl =20

3. Uniform convergence of f,

Theorem 3.1. Suppose the conditions of Lemma 2.4 hold. In addition assume

/() = f)l < Clix =y, JHXHIK(X)ldX <o

and
(W (n, 1)) 'h, = O(). (3.1)
Then sup,cpa| f,,(x) — f(x)] = O(W(n, 1)) as.

Proof. By the Lipschitz condition of fand since [K(x)dx = 1 and j Ix K (x)dx < x,
following Roussas (1988, p. 141), we have

sup |E f,(x) — f(x)] < Cb, (

xeR?

22
[}
=

But b, = O(y/(n, 1)) by the condition stated in (3.1). The rest of the proof follows from
Lemmas 2.4, 2.5 and (3.2).
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Example 3.1. We will consider the important case that {z;} constitutes an ordinary
renewal process with 7, having a probability density function 6 exp { — 0x} where 0 is
a positive number. In this case ¢, has the probability density function of a Gamma
distribution, namely

O(Oxy~ Lexp( — 0x)/T (k), (3.3)
where
rk) = va X le T dx. (3.4)
0

We will also assume 2(s) = O(s™") for some k > 2. Then Assumption 3 holds since
k > 2. For sequences of positive integers {a,} and {b,}, we write a, ~ b, if a,/b, — 1.
The sampling intervals {r,} have mean value 1/0. Let ¢ be the variance of 1.
Following Masry (1983, p. 704), we have

m(t) ~ 20(t56%) = 20(t + 1),

which shows that Assumption 4 holds.
Using (3.3),

(2%, p) = (()”/F(p))fsz"””‘lexp( — 0Os)ds, (3.5)
where 4(27, p) is defined in Assumption 8. Let ¢ = 0s. Then
(2%, p) = 92“(1/F(p))ft”2"””ICXp( —0)dt = 0T (p — 2k?)/ I (p). (3.6)

By Stirling’s formula
I(p) ~ 2n/p)'% (ple),

which implies that

&(2%, p) ~ 93 p =2, (3.7)
By (2.5) and (3.7),

&(2%, p) ~ 0% 4s(n, 1)**¢ ~ 02 (nb%/logn)™*" = a(n, 2). (3.8)
Using (2.4), (3.8) and the value of y given in Assumption 8§,

Y(n, 2) ~a(n, Da(n, 2). (3.9)
Choose

1+e

h(n) = h{n) = nlogn(loglogn)' **,

where ¢ 1s an arbitrary positive integer. Then ¥ .| (1/h(n)) < oo and using (3.9), it is
clear that (2.6) is satisfied if

a(n, 1)a(n, 2) h(n) — 0. (3.10)
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After a simple computation using the definitions of a(n, 1), a(n. 2) and h{n), we obtain
that (3.10) holds if

P LN d 4 3) ik P2 - d = 3= £ = 2h) (log U Adf—f),zy»xf(log log ittt 00 (301

For definiteness, let us assume further that b, = n~# for some 2 > f# > 0. Then (3.11} s
satisfied if

B2} —d—3 —1—2r1) > (1/2U2/d + d + T + 3) — rT, (3.12)

for some 0 <t < 4. Both the left-hand side and the right-hand side of (3.12) are
continuous functions of 2. Thus (3.12) holds for some 0 < 1 < % if it holds for T = &
that is,

Spd[ —d —

[N

— K] >3[2/d +d+ 1] -3k (3.13)
or equivalently,

/3<2K_4/d_2d_7 (3.14)
Cd@rk+2d+ T o

Supposc that | f(x)| = O([ x| ™") as |x]| = = for some r > 0. Then

(1 - [ ,f‘(x)dx> - J 1) dx < (‘( X rdx < O (315
JIxd < n’ x| o=t o

o

Thus (2.2) 1s finite if

Z pl D oo (3.16)
-1

"

which is in turn satisfied if / > 2/(r — d) for some r greater than d.
Now

sup [ f(x)l < Cn™". (3.17)

N
Note that W(n, 1) = (logm)"'2 '~ 12 Using (3.17). it is seen that (2.1} holds since
(logn) V2 ptt A2y — O(1), (3.18)
Assume K (x) = O(||x}| ~*) for some s > 3d as | x| —» . Then (2.3) is valid if
(logn) ™1t ~ha+ 2042028 _ (1),

which follows if 8> (1 — 2/s)/(2s —d). Finally, condition (3.1} is satisfied if
nb?*2logn~ ' = O(1), which holds for b, = n # as long as nn #4*2ogn ' = O(1),
or > 1id +2).

Summarizing, we have the following:

Proposition 3.1. Suppose that {t,} constitutes an ordinary renewal process with 1,
having a probability density function g(x) = Oexp | — 0x} where 0 is a positive number.
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Suppose that Assumptions 1, 2, 5 hold and o(s) = O(s*) for some x > 0. In addition,
assume that

) =O(IxlI™")  for some r > d,
and

K(x)=0O(x|"*) for some s > 3d
as ||x|| = oo. Let b, = n~* where B > 0 satisfies

2k — 4¢d — 24 — T(d(@x +2d + 7)) > f > max {(1 — 25)/(2s — d), 1/(d +2)}
for some ¢ > 2/(r — d). Then supxea«| f(x) — flx)] = O (n, 1)) a.s.
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Appendix A

Proof of Lemma 2.2. (i) Clearly

nbal,o(x) < J(l/bﬁ)K* (x — w)/by) f(u)du, (A.1)

with K* = K2, Set v = (x — u)/b,. Since f is bounded by Assumption 1 and K* is
integrable by Assumption 2,

J(l/bﬁ)K* {(x —u)/b,) f(u)du < CJK*(U)dU <C.

(i) Write
c(n) c(n}
J,,(X) =2 Z lIn,k(x)I + 2 Z |In,k(x)' = Jln(x) + Jln(x)’ (Az)
K=1 k=1
where c(n) is a positive integer satisfying c(n) — oo and c(n)b? = O(1). Then
c(n)

J1a(x) < (2/n) Z Hﬂw Rd n(x = u) Ky(x = 0)llgi(u, v) — fW) f(v)| dudv,  (A.3)

where

gilu, v) = j Slu, v;1)dGy (1). (A4)
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Following Masry (1983} and using Assumption 35, we have |, (u, v)| < C for all u, ¢ and
k = 1. Therefore,

sup J1(x) < C/(nbl). (A.5)
xela!
Clearly,
n—1 k
Joux)y=2 Z n*l(l — —>|COV{K,,[,\’ — X(t)} K,[x = X(0)]}]. (A.6)
k=cm+1 \ n

By Assumptions 3 and 4

ap, k) < . (A7)
Employing Lemma 2.1 with § — 2p/(1 — p),

lcov {K,[x — X(t)], K,[x — X(O)]}] < C(1/bH M *3(p, k). {A.8)

Note that the constant C in (A.8) is independent of x. Using Assumptions 3 and 4 and
following the argument of Theorem 7 of Masry (1983), we obtain

sup JZn(x) < C/(Vlbﬁ) (A())

xeR!

The proof of (i1) follows by combining (A.2), (A.5) and (A.9).

Proof of Lemma 2.4. The proof of this lemma uses similar techniques employed in
Tran (1989a, b). Let 7 = b * Vy(n, 1). Then the sphere {x: |x|| < 2n’} can be covered
with, say v, cubes Bys having sides of length 7 and center at x,. where
< CnhE TV (n, 1)]79 Now

sup [ fu(x) = Efu(x)] < max sup|f,(x) —fp(x)| + < max [f,(x) — Ef,(x,)|

Ivisan 1 < k< v xeBy lsshkse

+ max sup | Ef, (xy) — Ef, (x)].

1< k<rxeBy
For x € B,, by the Lipschitz condition of K in Assumption 2,
| £ ) = fu(xi)] < Ch7 U Vllx = x| < Ch 7107 = O, 1)) as.
Therefore

max sup | f,(x) — f,(x)| = O (n, 1)) as..

{ < h = rxeBy

max sup | Ef,(x,) — Ef,(x)] = O((n. 1) as.

| <k = v xeBy
It remains to show that

 max | fulxe) — Efu(xi)] = O (n. 1)) (A.10)
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Assume n = 2pq for some increasing integer valued function g = g(n), where p is
defined in (2.5). Note that p — oo since nb%(logn)~! — co by assumption. Define

4,(x) = K,(x — X(1,;)) — EK,(x — X(t;)).

Then the random variables 4,’s can be grouped successively into 2¢g blocks of size p.
Write S(n, x) as S(n, x) = S{(n, x, 1) + S(n, x, 2), where

S(n, x, 1) i Vin,x,2(j— 1)), S(n, x,2) = i Vin, x,2j — 1),
with
V(n’ x!j) = (1/”) Z Ai(x) (] = 17 ’q)

i=(j-Dp+l1

Note that S(n, x, 1) and S{n, x, 2) are, respectively, the sum of the even-numbered and
odd-numbered groups. If n # 2pq then the last blocks of S(n, x, 1) and S(», x, 2) can be
shorter than p but this does not affect the proofs of the results as will be seen. Let
&, = myr(n, 1), where 5 is a large number to be specified later. Observe that

P< max | f(x.) — Ef,(x)| > 8,.) = P< max | S(n, x,, 1) + S(n, x3, 2)| > g,,)

1<k<e i<k<e

< P< max | S(n, x;, 1) > an/2>

I<k<e

+ P( max | S(n, x;, 2)| > s,,/z). (A.11)

ig<k<ge

Since K is Lipschitz and absolutely integrable, |[K| is bounded by some constant K.
Thus

[V(n, x.j)| <2Kp/(nby).
Let
Ao = (4K) " (nbylogn)'/2. (A.12)

Then 4,|V (1, x, j)| < 2Rpi,/(nb?) < 4. Refer to V(n, x, 2(j — 1)) simply as Vj(x). De-
fine Wy(x) = 0, W;(x) = V;(x). By Lemma 2.3, for each j > 2, there exists a r.v. W;(x)
such that Wy(x) is independent of V;{x), ..., ¥;_(x) has the same distribution as V;(x)
and satisfies

P[|Vi(x) — Wi(x)] > & < 18([[V;(x)|, /&) 3v D
[sup|P(4\B) — P(4)P(B)]>/**" 1, (A.13)

where the supremum is taken over all sets 4, B with A and B in the ¢-fields generated,
respectively, by Vi(x), ..., V;—;(x) and Vj(x), respectively. Here ¢ and v are any
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> ;;”,"4—]‘

(A.14)

positive numbers such that 0 < ¢ < | Vj(x)|, < x. Now,

PLIS(n, x. 1)] > £,/2] < P[ S W] > 54} + P[ S V)~ W)
i=1 j=1

Now »~,|W;(x)] < 1/2. Following the same line of argument in Tran (1989a).
4
Hz Wil(x :I 2exp< = Aln + A Y E(W,—(.\‘))z). (A.15)
i=1 /
Clearly,

g n
Z E(Wj(x))z < n_2< Z EAI% +2 z \E<4k(X)A/(»V)|>
J=1 k=1

1<shk</=n

“In()( )+Jn(\) (AIG)
where [, o (x) and J,(x) are defined in (2.9) and (2.10). By Lemma 2.2 and (A.16).

sup Z E(W;(x)? < C/nb3). (A7)
xeli?! j=1
Employing (A.15) and (A.17)

supr| £
j=1

xe R

> a,} < Cexp[ — Antn + CAz/(nbiy]. (A.18)

Choose v = /(1 — 2%). Then 7 = v/(2v + 1). Clearly,

sup max | Vi(x O1IE < Cp/(nbh).

xeR! l=j=g

Consider the last term of (A.14). If ¢,/4g < | V;(x)l|,. we have by using (A.13).

sup P[ Z Vilxy = W) >« ’4} < Cqlge, Y(pAnbha2t, p) = yi(n. 3). say.
el
(A.19)
If &,/4q > || V;(x}|,. then
q
sup Pl: Z Vilx (x) >« 4} < 18¢43(27, p) < fr(n, 3), (A.20)
Nl

since ¢(qge, i p/nb?))F — o by a simple computation. Replacing &, by &,/4 in (A.18).
then using (A.14), (A.18), (A.19) and (A.20),

P( max [S(n, x;, 1) > s:,,/'2> Crexp[ — 7n6a/2 + CAH(nb2)] + Crr(n, 3).
{

whsr

(A21)
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Similarly, P(max; <;<.|S(n, x;,2)| > 3¢,) is bounded by the right-hand side of
(A.21). A simple computation shows that /e, = nlogn and A2/(nb?) = (4K) *logn.
From (A.11) and (A.21)

P< max |, (x) — Efy(x,)] > g,,) < Con™ W20 4 Cup(n, 3). (A22)
I<k<e
Note that

v < Cnt T UD(pEy~ WD Y(logn)~ 92, (A.23)

Since Y(n, 1) - oo by assumption,
b, > C(n~'logn)'"

Using (A.23),
v < Cnf Y Ylogn) 9L

Hence, for sufficiently large #,

Y on @0 < o (A.24)

n=1

En, 1) = qlge, ) (p/nb)Y, &, 2) = 0" by (n, 1)
Since 2pq < n,
£(n, 1) < Cn((n, 1) b, "
Therefore
E(n, 1)E(n,2) < Ot 1H44+ 19 (b2 (log ) 11241+, (A25)
Using (2.19), (A.25), (2.6) and note that v < C&(n, 2),
v (n, 3) < Céln, 1)<(n, 2)4(2¢, p) < C(n, 2) = o(1/h(n)).
Since Y7L, (1/h(n)) < oo,

Y. Coy(n, 3) < 0. (A.26)
n=1
The proof of the lemma follows by (A.22), (A.24),(A.26) and the Borel-Cantelli lemma.

Proof of Lemma 2.5. Obviously,
sup [ fulx) =f(¥)I < sup fu(x)+ sup f(x) (A.27)

<l > n Ixll = 2n? Il = 2n”
From (2.1) of Assumption 6
(Y(n, 1)1 sup. S <@ 1) sup [ f(x)] = O(1). (A.28)

Ix|f = 2 x|l 2 n”
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By (A.27) and (A.28), it is clear that the proof of the lemma is completed if we can
show that

sup [fu(x)l = O (n, 1)). (A.29)

X

which is equivalent to

Wi )7 sup [ £ (0] = Wi )7 b " sup Y Ky — X(t,)/h,) = O(1).

x| >n" Xt i=1
(A.30)

Define

G, =10 | Xt.0)|| <n forall | <i<n). (A.31)
Clearly,

P{G] = PLIX ()|l > n' for some 1 <i<n] <nP[IIX ()] >n"]. (A.32)
By (2.2) of Assumption (A.4)

S PG < Z n[l — inf f(x)d.\} < % (A.33)

n=1 n=1 Xl <o
Thus

P[G¢infinitely often] = 0 {A.34)
by the Borel-Cantelli lemma.

For w e G,, and | x|| > 2n’, we have | X(t;,®) — x| = n’. Thus,
(nb)) ™' sup Y K((x — X(1, o)/b,) < b, ¢ sup K(x/b,). (A.35)
PN > 207 i=1 ['xy > n

The proof of (A.30) follows by Assumption 5, (A.34) and (A.35).
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