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Abstract 

Kernel type estimators of the density of continuous time R<valued stochastic processes are 
studied. Uniform strong consistency on R e of the estimators and their rates of convergence are 
obtained. The stochastic processes are assumed to satisfy the strong mixing condit ion and the 
sampling instants are random. It is shown that the estimators can attain the optimal L ~ rates of 
convergence. 
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1. Introduction 

This paper is concerned with the estimation of the marginal probability density 
function f ( x )  of a stationary continuous-time R<valued process X -  ~X(t), 
- ~c < t < 3c} on the basis of the discrete time samples ~LX(tk)}, 1 ~< k ~< n, where the 

sampling instants {tk} are random. As an estimator o f f (x )  we shall consider the kernel 
estimate defined by 

f , ( x )  = (nb~,) - 1 ~ K( ( x  - X( t j ) ) /b , ) ,  
j - 1  

where K is a kernel function and {b,} is a sequence of bandwidths tending to zero as 
n tends to infinity. 

Density estimation has been studied extensively since the works of Rosenblatt 
(1956) and Parzen (1962). Under dependent situations, kernel type density estimators 
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have been investigated by Masry (1983, 1986), Robinson (1983), Roussas (1988) and 
Tran (1989a, b, 1993) for various weakly dependent processes. Gy6rfi et al. (1988) 
studied the uniform convergence and the L~ convergence of f ,  under different mixing 
conditions. Masry (1983) investigated the random sampling case considered in the 
present paper. 

Assume that Xt satisfies the strong mixing condition defined below. 

Definition 1.1. Let j o , , ,  and Y~:~ denote, respectively, the a-fields generated by X(t), 
t ~< 0 and by Xt, t >~ ~. Then Xt  is strong mixing if 

o¢(z) = s u p { f P ( A r ~ B )  - P(A)P(B)[ :  A • y o  B e , ~  }~,0. 

The strong mixing condition is well known to be weaker than many dependence 
conditions, for example, the absolutely regular condition or the ~b-mixing condition. 
For more information on strong mixing processes, see Rosenblatt (1956), or Roussas 
(1988). 

The purpose of this paper is to establish weak conditions under which fn converges 
to fa.s.  and uniformly on ~'~, and also to obtain sharp rates of convergence o f f ,  to f 
The rates of convergence obtained are sharp. From Theorem 3.1, it follows that f ,  can 
achieve the uniform rate of convergence on E d of order (n- 1 log n) ilia+ 2), which is the 
optimal uniform rate of convergence on compacts for nonparametric estimators of 
a density function (see Stone, 1983). The letter C will be used to denote a generic 
constant. All limits are taken as n -* ~ unless indicated otherwise. 

2. Assumptions and preliminaries 

Assumption 1. The density f ( x )  is bounded. 

Assumption 2. The kernel K is a probability density function defined on ~d. In 
addition K satisfies a Lipschitz condition ]K(x) - K(y)l < C[I x - YI[, where d[" is 
the usual norm on ~ .  

Assumption 3. The process Xt is strong mixing and the strong mixing coefficient 
satisfies ~o~(1 + T) [~(T)]° dr < 0o for some 0 < p < 1. 

We assume that the sampling instants {tk} a r e  random, constituting a renewal 
process on [0, ~). Let {rk }, l ~< k < 0% be a sequence of i.i.d, random variables with 
a common distribution G(x) on [0, sc) with G(0) = 0  and a finite mean 
~o x d G ( x ) =  1//J < oo. The sampling instants are defined by tk =Z~=I ri, k = 1, 
2~ . . . .  
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Assumption 4. The  renewal- type sampling instants ~ttkl have an intensity density ,q(x) 
on [0, ~c) and the second-order  differential re(x) satisfies re(x) ~< C(1 + x) on [0, ;,:) 

where C is a constant .  

Let Gk(x) be the cumulat ive  distr ibution function of tk If G(x) is absolutely 
cont inuous  with density g(x) then Gk has a derivative, say, ,qk(x), which is the 
probabi l i ty  density function of tk. Define then re(t) = 2 y ~  1 k,qk(t), t > 0. The quan-  
tity m is often referred to in the renewal theory li terature as the second-order  factorial 
density. 

Assumption 5. The  joint  probabi l i ty  density ,t'(x,y; r) of (Xo, Xd exists and satislies 

z 

p(x, y;s) - f ( x , y ; ' r + s ) g ( r ) d r < ~ C <  ;c, 
) 

for all x , y  and s >~ 0. 

Denote  

1'~ /' d 1,3' ~p(n, 1) = (log n) '-, (nb,,) '-. 

Assumption 6. For  some { > 0, 

((J(n, 1))-I sup I f ( x ) [ = O ( l ) ,  t2.1) 
I xI ~ > n /  

( i  ) I1 1 -  f ( x ) d x  < 7~.. (2.2) 
n =  1 i',11 > , /  

Assumption 7. Assume 

(tp(n,l)) t b~-e sup K(x /b , , )=O(1) .  (2.3) 

Note  that  the constant  { in Assumpt ions  6 and 7 are identical. 

Assumption 8. Let 0 < ~ < 1/'2. Denote  

"' (d/2)(d + 3 + z), a(n, 1) _= FI (1'2){2/d "a~r ~ 11111'; (logn) {1 ,t ,,,=. 

Define 

~(2r, p) - ((~(s))er dGp(s), 
O 

and 

~(n, 2) -= a(n, 1)~(2r, p), (2.4) 
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with 

P = [(4' (n, 1))- 1], (2.5) 

where Ix] denotes the integer part  of x. Suppose b, tends to zero in a manner  that 

4' (n, 2) h(n) ~ 0 (2.6) 

for some function h(n) > 0 with Y~,~I (1/h(n)) < oo and for some 0 < z < ½. 

Lemm a  2.1. Let Xt satisfy the strong mixing condition. Let X and Y be random 
variables measurable with respect to Y°o~  and J ~ ,  respectively. Assume that 
[[X[12+o < ~ and [rYll2+~ < oc, where I l X l l 2 + 6  = (E[X[2+6)  1/(2+6). Then 

IEXY - EXEYI  <~ 10 IIX][2+o Ir vll2+o {c~(v)} a/(2+~). 

For  a proof, see Deo (1973, Lemma  1, p. 871). 
Let  

K,(x) = (1/b, d) K(x/b,). (2.7) 

Then 

f , (x)  = (l/n) ~ K,(x  - X(tj)). (2.8) 
j = l  

Define 

I,,o(X) - (l/n) var K ,  Ix - X(0)], 

I,,k(X) -- (1/n) ( 1 - -  [-~ ) c o v  { K,  [x - X (t,kl)], K , [ x  -- X (O)]}. 

Then 

cov {f.  (x), f~ (y)} = I.,o(X) + 

Denote  

n - 1  

J,(x) = ~ ]I,,k(X)]. 
k = -  (n - 1) 

k ¢ 0  

n-1  

Z I.,k(x). 
k = - ( n -  1) 

k , a 0  

Lemma  2.2. I f  Assumptions 1-5  are satisfied, then 

(i) nba, supI,,o(X) <~ C, 
x ~  a 

(ii) nb~supJ,(x) ~ C. 
x ~  a 

(2.9) 

(2.10) 
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We will need the following result from Bradley (1983): 

Lemma 2.3. Suppose X and Y are random variables taking their values on .c/ and ~, 

respectively, where ,~ is a Borel space; suppose U is a uniform - [0, 1] r.r. independent 

o f (X,  Y); and suppose ~ and v are positive numbers such that ?~ <~ II Y iI, < ~ ,  where 1! Y [1, 

is as defined in Lemma 2.1. Then there exists a real-valued r.r. Y* = f (X ,  Y, U), where 

,]'is a measurable function from S x [R x [0, 1] into ~i. such that 

(i) Y* is independent o f  X, 

(ii) the probability distributions of  Y and Y* are identical, and 
(iii) P{[Y* - Y)  >~ ~) <~ 18([IYlI~/?,)"/{2"+l~EsuplP(Ar~B) - P(A)P(B)[]  2' 2'~+~, 

where the supremum is taken over all sets A, B with a ~ ,~(X), B ~ ,~(Y) .  Here, J ( X ) ,  

.N(Y)  are the a-fields generated by X and Y, respectively. 

Lemma 2.4. Suppose Assumptions 1 8 hold and b,, tends to zero slowly enou~lh that 
nb,a(logn)-1 __, oo. Then 

sup If,(x} - Ef,(x)l = O{¢(n,  1)} a.s. as n --+ ~:c. (2.11) 

Lemma 2.5. Suppose the conditions o f  Lemma 2.4 hold. Then 

sup IL(x) - f ( x ) l  = O(4,(n,  1)) a . s .  
i ",li > 2n  / 

(2.12} 

3. Uniform convergence of f .  

Theorem 3.1. Suppose the conditions o f  Lemma 2.4 hold. In addition assume 

I f ( x ) - f (Y ) l  ~< CIIx -YII ,  [ l lx l l lK(x)Idx < 
.1 

and 

{0{n, 1 ) ) -~b ,  = O(1).  {3.1) 

Then s u p x ~  If,(x) - f (x ) ]  = O0)(n, 1))a.s. 

Proof. By the Lipschitz condit ion o f f  and since ~K(x )dx  = 1 and )" nxII qK(x}l dx  < ~, 
following Roussas (1988, p. 141), we have 

sup IEf,,(x) - f (x ) ]  ~< Cb,. 13.2) 

But b, = O(~b(n, 1)) by the condition stated in (3.1). The rest of the proof follows from 
Lemmas 2.4, 2.5 and (3.2). 
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Example  3.1. We will consider the impor t an t  case that  {r~} consti tutes an ordinary  
renewal process with rk having a probabi l i ty  density function 0exp  { - Ox} where 0 is 
a posit ive number .  In this case tk has the probabi l i ty  density function of a G a m m a  
distr ibution,  namely  

O(Ox)k- 1 exp( - Ox)/F (k), (3.3) 

where 

f0 ~(' F ( k ) =  x k l e  Xdx. (3.4) 

We will also assume ~(s) = O(s -K) for some K > 2. Then Assumpt ion  3 holds since 
K > 2. Fo r  sequences of positive integers {a,,} and {b,}, we write a,  ~ b, if a,/b, ~ 1. 
The sampling intervals {rk} have mean  value 1/0. Let a2 be the variance of r l .  

Fol lowing Mas ry  (1983, p. 704), we have 

m(t) ~ 20(t02~72) = 20(t + 1), 

which shows that  Assumpt ion  4 holds. 
Using (3.3), 

= (OP/F (p)) fs  2~ + r -  1 exp( - Os) ds, (3.5) ~ ~2~ P) 

where ~(2f, p) is defined in Assumpt ion  8. Let t = Os. Then 

~(2"L p) = 02K~(1/F(p))ft -2~+p l exp( -- t )d t  = OZ~F(p - 2k~)/F(p). (3.6) 

By Stirling's formula  

r (p) ~ (2~/p) 1/2 (p/e) p, 

which implies that  

.~(2~, p) ~ 02~p 2~. (3.7) 

By (2.5) and (3.7), 

~(27, p) ~ 02~e ~k(n, 1) 2K~ ~ 02~ (nb~/log n) - ~  -- a(n, 2). (3.8) 

Using (2.4), (3.8) and the value of 7 given in Assumpt ion  8, 

O(n, 2) ~ a(n, 1)a(n, 2). (3.9) 

Choose  

h(n) = h(n) - n log n(log log n) 1 +~:, 

where e is an arb i t ra ry  positive integer. Then y~,]% 1 (1/h(n)) < oc and using (3.9), it is 
clear that  (2.6) is satisfied if 

a(n, 1) a(n, 2) h(n) --* 0. (3.10) 
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After  a s imp le  c o m p u t a t i o n  us ing  the de f in i t ions  of  a(n, 1 ), a(n, 2) a n d  h(n), we o b t a i n  

tha t  (3.10) ho lds  if 

n11.'2~2Ja+a+~+31 ~ebfa/21~-a 3- f  2~i)( lognllq3-a ~t21+~e(loglogn)l  +~_~0. (3.11) 

F o r  def in i teness ,  let us a s s u m e  fu r the r  tha t  b,, = H ¢~ for s o m e  u~ > [,~ > 0. T h e n  (3. I 1) is 

sa t i s f ied  if 

fi(d/2)( - d - 3 - ? - 2~,?) > (1 /2) (2 /d  + d + ~ + 3) - ~,"?, {3.12) 

for  s o m e  0 < ~ < ½. Bo th  the l e f t -hand  s ide  a n d  the r i g h t - h a n d  side of (3.12) are  

c o n t i n u o u s  func t ions  of  "?. T h u s  (3.12) h o l d s  for s o m e  0 < i- < ½ if it h o l d s  for -? = ~. 

t ha t  is. 

½ ISd[ - d - ~ - ,,] > ½ [2Zd + d + v2] - ~ ,,. (3.1~) 

or  equ iva l en t l y ,  

2~ - 4 / d  - 2d - 7 
fi < (3.14) 

d(2~, + 2d + 7) 

S u p p o s e  tha t  I,/(x)l O( l lx l i  ¢) as !lx!l -+ 7.  for  s o m e  r > 0. T h e n  

( 1 -  [ . , , : ,< , ,~ . )¢ ' ( ' / ) dx )= f~ l> , ,~ . f (x )d \ '< - . . ( ' [~  ,, >,," ]i.x]' " d x ~ < C ,  ~l ,-+at. (3.151 

T h u s  (2.2) is finite if 

/ 

i l l+J( , - + a ) < ~ ,  (3.101 
I1 1 

which is in tu rn  sa t i s f ied  if / > 2/(r d) for  s o m e  J" g rea t e r  t han  d. 

N o w  

sup I./(x)l ~< Cn ~/. (3,17) 
\ I n 

N o t e  tha t  ~p(,, l) = ( log H) 1/2 tl ( l ld -  112 U s i n g  (3.17), it is seen tha t  (2.1) ho lds  since 

( log ~1) l:_~ n~l - t*a~/= n - "~ = O( I ). (3.18) 

A s s u m e K ( x )  O(l lx l l  '~) for  s o m e  s > ½d as I lx ! ! - -+7~ .Yhen(2 .3 )  i s v a l i d i f  

(Iogll)  1 i l l - f l d + 2 [ h l  2/s  2/3,s = 0 { 1 ) ,  

which  fol lows if f i > ( 1 - 2 / s ) / ( 2 s - d ) .  F ina l ly ,  c o n d i t i o n  (3.1) is sa t i s l ied  if 

nh~+21ogll  1 = O(1),  wh ich  h o l d s  for b,, = 11 l~ as long  as nn l~ta+Z~logn 1 = O(1),  

or  [J > l::{d + 2). 

S u m m a r i z i n g ,  we have  the fo l lowing:  

P r o p o s i t i o n  3.1. Suppose  that ~tvkl cons t i tu tes  at7 ordinary renewal  process with vk 

havin 0 a probabi l i ty  densi ty  junc t ion  .q(x) = 0 exp { - Ox ~, where 0 is a posi t ire  mmlher.  



148 B. Wu /Journal of Statistical Planning and In/brence 61 (1997) 141-154 

Suppose that Assumptions 1, 2, 5 hold and c~(s) = O(s-k) for some tc > O. In addition, 
assume that 

If(x)[ = O(Irxl l - r )  .(or some r > d, 

and 

K(x) = O(l lxl l -s)  for some s > ½d 

as rlxl] --* ~ .  Let b, = n -~ where [3 > 0 satisfies 

(2~ - 4dd - 2d - 7)/(d(2~ + 2d + 7)) > [3 > max  {(1 - 2ds)/(2s - d), 1/(d + 2)} 

for some { > 2/(r - d). Then s u p x ~  rf , (x)  - f ( x ) ]  = O($(n,  1)) a.s. 
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Appendix A 

Proof of Lemma 2.2. (i) Clearly 

<. f(1/b~)K* ((x - u)/b.)f(u) du, (A. 1) nb~In.o(X) 

with K* = K z. Set v = ( x -  u)/b,. Since f is bounded  by Assumpt ion  1 and K* is 
integrable by Assumpt ion  2, 

f (1/b~)K* ((x - u)/b,) f(u) du < Of K* (v)dv ~< C. 

(ii) Write 

c(n) c(n) 
J,(x)  = 2 ~ [l,,k(X)[ + 2 ~ [I,,k(X)l = J l . (x )  + J2,(x), (A.2) 

k = l  k = l  

where c(n) is a posit ive integer satisfying c(n) --, ~ and c(n)b~, = O(1). Then 

c(n) f f ~  
Jl , (x )  <~ (2/n)k~ d×~, IK,(x -- u )K, (x  - v)rlqk(u, v) --f(u)f(v)[ dudv, (a.3) 

where 

qk(u, v) = (f(u, v; t) dGk (t). (A.4) 
3 
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Following Masry (1983) and using Assumption 5, we have Iqk(u, v)[ < C for all u, c and 
k > l. Therefore,  

sup J l " ( x )  <~ C/(nba,). (A.5) 
xelf~ a 

Clearly, 

J= , , (x )=2  y~ , , *  1 - 7 ,  I cov{~ , ,Ex-X( tk ) ] .  K , , [ x - X ( O ) ] : l .  ~A.(,I 
k=c(n)+ 1 

By Assumptions 3 and 4 

~(#, k) < ~0c. (A.7) 

Employing Lemma 2.1 with ,5 - 2p/(l - p), 

Icov { K , [ x  - X(tk)], K ,  Ex - X(0)]}I ~< C(l/ba,)  ' +°5(0 ,  k). (A.8) 

Note  that the constant  C in (A.8) is independent  of x. Using Assumptions 3 and 4 and 
following the argument  of Theorem 7 of Masry  (1983), we obtain 

sup J2,,(x) ~< C/(nba).  (A.9) 
XG[R '~ 

The proof  of (ii) follows by combining (A.2), (A,5) and (A.9). 

P roof  of Lemma 2.4. The proof  of this lemma uses similar techniques employed in 
Tran  (1989a, b). Let {7 = b}, a+ ~ ( n ,  1). Then the sphere [x: Ilxll ~< 2d  I can be covered 
with, say v, cubes Bk's having sides of length ,7 and center at xk, where 
~" ~< C.~"Eb~ + ~ 4,(n, 1)] % Now 

sup ] . g ( x )  - Ef,(x)] <~ m a x  sup  ] f , , (x )  - f . ( x k ) l  + ~< m a x  ] £ ( x k )  - El;,lx~)l 

+ max sup  lEJ; , (xD - E/;,(x)l.  
14 k ~ ~ xeBk 

For  x ~ Bk, by the Lipschitz condit ion of K in Assumption 2, 

].£(x) --£(Xk)l ~< Cb,7(a+l)]]x -- x~tl ~< C/,,, ~d+"7 = O(,/,(n. 1)) a.s. 

Therefore  

max sup I L ( x )  - . f , ( x k ) [  = O(~(n,  1)) a.s., 

max sup  l E f , ( x k )  -- Efn(x) l  = O(~b(n, 1)1 a.s. 
I ~ k < t ,  XeBk 

It remains to show that 

max I.[;,(Xk) -- E f , ( xk ) [  = O(0(n,  1)). 
I % k ~ ' l  

(A.IO) 
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Assume n = 2pq for some increasing integer valued function q = q(n), where p is 
defined in (2.5). Note that p ~ ~ since nb~(log n)- 1 __, ~ by assumption. Define 

Aj(x) - K, (x  - X(ti)) - EK,(x  -- X(tj)). 

Then the random variables Afs can be grouped successively into 2q blocks of size p. 
Write S(n, x) as S(n, x) = S(n, x, 1) + S(n, x, 2), where 

q q 

S(n,x, 1)-- ~ V(n,x, 2 ( j -  1)),S(n,x, 2 )=  ~ V(n,x,  2 j -  1), 
j = l  j = l  

Jp 
V(n , x , j ) - - (1 /n )  ~ Ai(x) ( j =  l , . . . ,q ) .  

i = ( j -  1)p+ 1 

with 

Note that S(n, x, 1) and S(n, x, 2) are, respectively, the sum of the even-numbered and 
odd-numbered groups. Ifn :~ 2pq then the last blocks of S(n, x, 1) and S(n, x, 2)can be 
shorter than p but this does not affect the proofs of the results as will be seen. Let 
e, = t/~9(n, 1), where r/is a large number to be specified later. Observe that 

l~<k~<l l~<k~<v 

~< P (  max 
l~<k~<t, 

[ S(n, xk, 1) + S(n, x~, 2)[ > e..) 

[ S(n, xk, 1)[ > e../2) 

+ P(l~<k~<~max ] S(n, xk, 2)]> ~:n/2). (A.I 1) 

Since K is Lipschitz and absolutely integrable, [K] is bounded by some constant/£. 
Thus 

IV(n, x,j)] <~ 2Kp/(nb~). 

Let 

2, = (4/() 1 (nb~logn)l/2. (A.12) 

Then 2,IV(n, x,j)[ <~ 2ff, p2,/(nba,) <~ 1. Refer to V(n, x, 2(j - 1)) simply as Vj(x). De- 
fine Wo(x) = O, Wl(x) = Vl(X). By Lemma 2.3, for eachj  > 2, there exists a r.v. Wj(x) 
such that Wj(x) is independent of Vl(x), ..., Vj l(x) has the same distribution as Vj(x) 
and satisfies 

p [ - i V j ( x ) _  Wj(x) I  > ~1 ~ 18(11Vj(x)ll),/~)v/(2v+ 1) 

[sup [P(A ~ B) - -  P ( A ) P ( B ) ]  2~/(2v + 1), (A.13) 

where the supremum is taken over all sets A, B with A and B in the a-fields generated, 
respectively, by Vl(X), .. . ,  Vj l(X) and Vj(x), respectively. Here ~ and v are any 
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positive numbers  such that 0 < ~ ~< I[ Vj(x)I1~, < 7+. Now, 

P[IS(n, x, l), > ~;,/2] ~< P I  .i-~t Wi(x)> ~:,,.."4] + PI j~l Vj(X)-- Wj(.Y.)))£n.."4]. 

(A.14) 

Now 2,,IWa(x) I ~< 1/2. Following the same line of argument in Tran (198%). 

PI ~ Wi(x)>~,,]~ 2exp(--2 , ,~ : ,  + 2~, ~E(Wj(x))2). (A.15) 
L / i ~ t  i = t  

Clearly, 

E{Wi(x)) 2 ~ tl -2 EA 2 + 2 IE,4dx)A~(x 
j = l  ,k 1 1 - < _ k < /  , 

= l,,.o(x) + J,,(x), (A.16) 

where l,,.o(x) and J,,(x) are defined in (2.9) and (2.10). By Lemma 2.2 and (A.16). 

q 

sup E E(WJ (X))2 ~ C/tlhd)" ( A . 1 7 t  
Xe[l~d .j 1 

Employing (A.l 5) and (A.17) 

- " W~(x) ] "~-" " s u p P  ~ > ,%j ~< C e x p [  -- 2,,~:,, + C/.,,..(nb,,)]. (%18) 
~ '  L .j = 1 

Choose  v = ~/(1 - 2~). Then "~ = v.,(2v + 1). Clearly, 

sup max liVi(x)ll{7~< C(p/(nb ))+. 
xE ~'* 1 i q 

Consider the last term of (A.14). If +:,,/4q <<. ][ Vj(x)[],.. we have by using (A.13). 

sup PI ~ Vj(x)-- Wj{x) 
.',@il'* i 1 

If 6,,,"4q > Ii I/5(x)ll,,, then 

snpPI ~ Vj(x)-Wi(x) 
.\~Jl " ] l 

~> G,/41 ~< Cq(q~:,7 t)~'(p/(nh,a,))ec2(2L p) - |k(n. 3). say. 

(A.19) 

> ~:,/4] ~< 18q:i(2"L p) ~< tp(n, 3), (A.20) 

since q(q~:,Tt ~" , a ~'__, )) (p/.(nb,,)) :.,-+ by a simple computat ion.  Replacing 6, by 6,/4 in (A.18). 
then using (A.14), (A.18), (A.19) and (A.20), 

P max [S(n, x~, 1)[ > +:,,,/+2 ~< C v e x p [  - ).,,+:,,++,+2 + Cz,,/(nb,)] + CrOin, 3). 
I ~; k -< * 

(A.21) 
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Similarly, P(maxl ~i<~,lS(n, Xk, 2)1 > ½e,) is bounded by the right-hand side of 
(A.21). A simple computation shows that 2,E, qlogn and 2 d = 2,/(nb,) = (4/£) 2 log n. 
From (A.11) and (A.21) 

P (  max ,f. (Xk)-- Ef.(Xk), > ~:.] <~ Cvn ((rl/2)+C) -I- CtrO(Fl , 3). (1.22) 
\ l<~k~t, / 

Note that 

v <~ Cn de + 1/2)(b,d)-(d/2)- 1 (log n) d/2. (A.23) 

Since O(n, 1) --, oQ by assumption, 

b. > C(n-  1 log n) lld. 

Using (A.23), 

U ~ Cl1 d(/+ 1 ) +  1 (log n)-d- 1 

Hence, for sufficiently large r/, 

~ Vn (("/2)+0 < o C .  (A.24) 
n - - 1  

Let 

~(n, 1) = q(qe21)e(p/(nb~)) ~, 

Since 2pq <~ n, 

~(n, 1) ~< Cn(O(n, l ) )  1 -ebn de. 

Therefore 

~(n, 1)~(n, 2) ~ Cn/a+ lb-dtd+l +~) {(nbd,) 1/~ (log n) ' ' '2  }d-, +f. 

Using (2.19), (A.25), (2.6) and note that v <~ C~(n, 2), 

vO(n, 3) ~ C~(n, 1)d.(n, 2)~(2"~, p) <<, CO(n, 2) = o(1/h(n)). 

Since 52,~ 1 (1/h(n)) < ~, 

~ Ct@(n, 3) < o0. 
n = l  

~(n, 2) ~ n/d(b~+lO(n, 1)) -d. 

(A.25) 

(A.26) 

The proof of the lemma follows by (A.22), (A.24), (A.26) and the Borel Cantelli lemma. 

Proof  of Lemma 2.5. Obviously, 

sup I f~(x ) - f (x ) l  <~ sup f . ( x ) +  sup f(x). (A.27) 
Ixll > n / Ilxll > / 2 n  e IIx!l /> 2 n "  

From (2.1) of Assumption 6 

(~,(n, 1)) - I  sup f(x) <<. (O(n, 1))-1 sup ]f(x)l = O(1). (A.28) 
IIxlF > 2n / : lxl l /> n / 
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By (A.27) and (A.28), it is clear that  the p roof  of the l emma is comple ted  if we can 

show that  

sup I./'~(x)l = O(~(n,  1)), (A.29) 
ix >2n ~ 

which is equivalent  to 

0/J(n.l)) I sup [f , (x) l=(~(n.  1))-l(nb~) -l sup ~ K( (x -X( t i ) ) /b , , )=O( l ) .  
Ixll>,z / iv~ . ~ /  j - t  

(A.30I 

Define 

a,~ = {(,): IlX(gi.('))l] ~< n / for all 1 ~ i ~< n I. (A.31) 

Clearly, 

P[G~,] = P[llX(ti)ll > n / for some 1 ~< i ~ n] ~< nP[]lX(tl)l] > n/]. {A.32) 

By (2.2) of Assumpt ion  (A.4) 

P[G,~] 4 ~ n 1 - inf f ( x )dx  < z .  IA.33} 
n = 1 n = 1 i~11 < , /  J 

Thus  

P[G~,infinitely often] = 0 (A.34) 

by the Bore l -Cante l l i  lemma.  

For  (,) e G,,, and ][x]l > 2n/, we have I[X(ti,(o) - xll > n ~. Thus,  

(nb;l) i sup ~ K((x - X(t  i, e)))/b,) <~ b2 a sup K(x/b,,). (A.35) 
]~i >2n / j = l  I'xl >n ~ 

The proof  of (A.30) follows by Assumpt ion  5, (A.34) and (A.35). 
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