
Abstract. Understanding the behavior of an idle time of a limited resource is
the key to increase productivity in service operations. When the system
consists of nonexponential properties of time distributions it becomes difficult
to provide results for the general case. We derive the MacLaurin series for the
moments of the idle time with respect to the parameters in the service time
and interarrival time distributions for a GI=G=1 queue. The light traffic
derivatives are obtained to investigate the quality of a well-known MacLaurin
series. The expected error bound under this approach is identified. The
coefficients in these series are expressed in terms of the derivatives of
the interarrival time density function evaluated at zero and the moments of
the service time distribution, which can be easily calculated through a simple
recursive procedure. The result for the idle period is easily taken as input to
the calculation of other performance measures of the system, e.g., cycle time
or interdeparture time distributions. Numerical examples are given to illus-
trate these results.
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1. Research background

The overall objective in designing and operating a service line is to produce a
high efficiency throughput at the lowest possible cost per job. Although it is
usually quite easy to determine the costs associated with a proposed service
line design, it is often quite difficult to predict the impact on output
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production rate of changes in design and operating practices. In the context
of production scheduling or output analysis, idle time analysis occurs
whenever a resource is deliberately kept idle in the face of waiting jobs. For
example, a scheduling problem concerns estimating job completion times to
obtain an estimate of the total cost of a marked schedule where a decision
point corresponds to the event that a resource has become available. A
decision alternative corresponds to the selection of a waiting job from the
queue. At each decision point, the total cost of an extended schedule corre-
sponds to each decision alternative is estimated. Kanet and Sridharan (2000)
indicated many research areas in idle time scheduling might prove beneficial.
In seeking to increase the productivity in service operations, further devel-
opment of algorithms and dominance properties is needed to better under-
stand these issues in a variety of environments.

Our objective here is not to provide any scheduling rule in operations
management, but rather to cast some light on idle time distributions by giving
some explicit formulas that characterize it. That our purpose here is to de-
velop simple explicit formulas for the moments of the idle time distribution as
a function of the moments of the intarrarrival times and the service times in
standard queueing models.

The GI=G=1 queueing model has been of much interest to queueing theory
researchers and practitioners since the 1950’s. The study of this model is
significant since it has wide applications in computers, communication sys-
tems and networks of queues. Among those applications, we are often
interested in numerical computations of the steady-state distributions of
many aspects of this queue, for example, the steady-state distribution of the
waiting time, the idle time and the interdeparture time. The analytic results
for particular cases have been available for some time in the literature, but the
exact computational analysis, in many cases, has been difficult to obtain.
Several references may be found in the work of Gross and Harris (1985),
Kleinrock (1975), and in a number of other textbooks or similar research
papers. Only recently some studies have been undertaken in this direction.
For example, Li (1997) introduces a new method for the analysis of the
GI=G=1 queue that is based on GH approximations which are represented by
a linear combination of exponential functions. He showed that once a
GI=G=1 queue is approximated by a GH=G=1 queue, it can be solved without
resorting to the embedded-Markov-chain method. He uses a linear approxi-
mation of a nonlinear integral equation of the distribution of idle time.
However, to approximate any specified function by a GH distribution in
practice is not so simple as it describes in theory.

The recent results of Sridharan and Zhou (1996) suggest that the value of
idle time is indeed a function of utilization, with marked improvement when
the machine is not heavily loaded. Our strategy is to consider the idle time
instead of the waiting time. We assume the interarrival time is approximated
by an analytic function. We derive a simple recursive formula in the Ma-
cLaurin series for the moments of the idle time in a GI=G=1 queue in this
paper. Since the result for the idle period is easily taken as input to the
calculation of other performance measures of the system, the moments of
interdeparture time are derived as well. These series are expressed in terms of
the derivatives of the interarrival time probability density function (p.d.f.)
evaluated at zero and the moments of the service time. However, we shall
point out that some of the relationships used in this paper are known and
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have also been used by others. For instances, Gong and Hu (1992) used these
MacLaurin series to obtain the waiting time distribution. Hu (1996) uses it to
obtain the entire response curves of the moments of the departure process but
without taking the idle time into account. The main method of Hu (1995) is to
investigate the recursive Lindley equation. He finds that the kth moment of
the delay depends only on the ðk þ 1Þth and higher moments of the system
time. This leads to a recurrence relation for the moments of the system time
and the waiting time.

So far, analytic methods that have been proposed for presenting moments
of the waiting time distribution in GI=G=1 assume that the error term will
vanish eventually and ignore it, i.e., a convergence assumption. However, this
is usually not the case in actual implementation of queueing systems. Indeed
an error is often associated with this approximation. For example, the con-
vergent speed is very slow or the computation must stop in certain time
intervals. It is thus important to estimate an error (remainder) so that we may
know how far the approximating point is away from the true value when
applying a MacLaurin series of finite terms to a queueing system. In this
paper, we investigate the quality of a well-known MacLaurin series for per-
formance measures. We derive the MacLaurin series for the moments of the
idle time with respect to the parameters in the service time and interarrival
time distributions. The expected error bound under this approach is dis-
cussed. It will be shown that because the expected error is independent of the
number of terms which are used for estimation in light traffic, this approxi-
mation is very accurate in light traffic.

This paper is organized as follows: In Section 2, we review how the Ma-
cLaurin series is used to derive the recursive formulas for the moments of the
waiting time distribution and estimate its error. In Section 3, we derive the
approximation of the moments of the idle time and discuss the error esti-
mation of this approach. In Section 4, we calculate the light traffic derivatives
for both the interdeparture time and the idle time distributions and present
numerical examples in Section 5. Finally, summary and concluding remarks
are drawn in Section 6.

Below, we introduce the definition for some notations, so that it’s clear
and convenient for discussion. The following notations are established:

An-the arrival time of the n-th custom,
Sn- the service time of the nth customer,
sn- the interarrival time between ðn� 1Þth and nth customer arrival,
Tn- the flow time of the nth customer,
Wn- the waiting time of the nth customer,
S - a generic service time,
s- a generic interarrival time,
T - a generic steady-state flow time,
W - a generic steady-state waiting time,
D- a generic interdeparture time,
f ðxÞ - a bounded probability density function of s,

aj ¼
4

f ðjÞð0þÞ is the jth right-hand-side derivative of f ðxÞ at x ¼ 0,

bk ¼
4 E½Sk�

k!

ck ¼
4 E½sk�

k!
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2. Power series approach

In this section, we first define an expected error bound and review the mo-
ments of the waiting time approximated by a MacLaurin series. Then, we
propose a general error estimation for an approximation under this devel-
opment.

Expected error bound

Suppose f ðxÞ is approximated by a polynomial of degree n. Then RnðxÞ is
defined as the difference between the polynomial and f ðxÞ. According to the
theory of Taylor expansion, we have a formal definition of RnðxÞ.

Definition 1 If f ðxÞ has derivatives of order up to and including n in a neigh-
borhood ða; bÞ of x0 then for any x 2 ða; bÞ, we define

RnðxÞ ¼
4 f ðxÞ �

Xn

k¼0

f ðkÞðx0Þ
k!

ðx� x0Þk ð1Þ

Thus if f has a derivative of order n at x0 ¼ 0, we may write

f ðxÞ ¼
Xn

k¼0

f ðkÞð0Þ
k!

xk þ RnðxÞ; ð2Þ

which is the standard definition of a MacLaurin series.
It is easy to prove that if f ðxÞ has a continuous ðnþ 1Þ derivation f ðnþ1ÞðxÞ

in the same neighbor, we have

RnðxÞ ¼
1

n!

Z x

x0

f ðnþ1ÞðtÞtndt: ð3Þ

Furthermore, it suffices to choose an appropriate point �x between x and x0
and we obtain a Lagrange’s form of the remainder,

RnðxÞ ¼ f ðnþ1Þð�xÞ ðx� x0Þnþ1

ðnþ 1Þ! ð4Þ

If limn!1 RnðxÞ ¼ 0, we can define an analytic function at x0 in the following.

Definition 2 A function f ðxÞ is said to be analytic at a point x0 if there is an
open interval ða; bÞ about x0 on which f ðxÞ is infinitely differentiable and such
that limn!1 RnðxÞ ¼ 0 for each x 2 ða; bÞ.

Suppose f ðxÞ is analytic at x0 ¼ 0, which can be expanded as

f ðxÞ ¼
X1

j¼0

aj

j!
: xj; for x 2 ða; bÞ; ð5Þ

where aj ¼4 f ðjÞð0þÞ assuming it exists, is the jth right-hand-side derivative of
f ðxÞ at x ¼ 0. Numerically, the assumption limn!1 RnðxÞ ¼ 0 is too strong to
follow if the series converges slowly. In particular, this is the case when the
MacLaurin series is applied to calculate the moments of waiting time in
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queueing problems. In Gong and Hu (1992), they indicate that it needs 0.6
seconds to compute 40 MacLaurin coefficients and 194.25 seconds to com-
pute 500 MacLaurin coefficients. The slowness of convergence rate is clearly a
curse in this approach. For this reason, it is intuitive to ask how far away
from the limit when n MacLaurin coefficients has been calculated. Thus, to
consider RnðxÞ as an error by any approximation in a finite term n is
important for n is not large enough.

We turn now to a discussion of the error in the approximation of p.d.f.,
f ðxÞ. Clearly, if f ðxÞ is a p.d.f. of a random variable X , RnðX Þ is also a random
variable with its p.d.f. f ðxÞ. If upper and lower bounds for f ðnþ1ÞðxÞ are
known for each x, we can compute corresponding expected upper and lower
bounds for RnðxÞ, as described in the next theorem. Before the theorem is
presented, we define the expected error.

Definition 3 The expected error of approximating f ðxÞ by a polynomial of
degree n is given by

Enðf Þ ¼4
Z 1

0

RnðxÞf ðxÞdx: ð6Þ

Now we present the first result of this paper.

Theorem 1 Suppose f ðxÞ which is analytic at x0 on interval ð0;1Þ is a prob-
ability density function for a random variable X . If jf ðnþ1ÞðxÞj � M for all
x 2 ð0;1Þ, then

jEnðf Þj � M
Xnþ1

k¼0

E½X k�
k!ðnþ 1� kÞ! xnþ1�k

0 : ð7Þ

Proof
First, according to (4) and (6) for every x 2 ð0;1Þ, we compute

Z 1

0

ðx� x0Þnþ1f ðxÞdx ¼
Z 1

0

Xnþ1

k¼0

nþ 1

k

� �
xkxnþ1�k

0 f ðxÞdx

¼
Xnþ1

k¼0

nþ 1

k

� �
xnþ1�k
0 E½X k�:

By (6) again, we have

Enðf Þ ¼ f ðnþ1Þð�xÞ � 1

ðnþ 1Þ!
Xnþ1

k¼0

ðnþ 1Þ!
k!ðnþ 1� kÞ! xnþ1�k

0 E½X k�

which implies

jEnðf Þj � M
Xnþ1

k¼0

E½X k�
k!ðnþ 1� kÞ! xnþ1�k

0
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Corollary 1

If f ðxÞ is an exponential distribution with parameter 1=k, k > 0 and analytic at
x0 ¼ 0, then jEnðf Þj ¼ k

2 for all n.

Proof
Since f ðxÞ is exponential distributed, its nth derivative and ðnþ 1Þth moment
are

f ðnÞðxÞ ¼ knþ1e�kxð�1Þn and E½X nþ1� ¼ ðnþ 1Þ!
knþ1

If x0 ¼ 0, then we have

Enðf Þ ¼ f ðnþ1Þðx0Þ
E½xnþ1�
ðnþ 1Þ! ¼

knþ2

2
ð�1Þnþ1 � ðnþ 1Þ!

knþ1 � 1

ðnþ 1Þ! ¼
k
2
ð�1Þnþ1

This corollary indicates that if f ðxÞ is exponential then jEnðf Þj is only a
function of k no matter how large n is. It also says that jEnðf Þj can only be
reduced by k.

Error bounds on waiting time

We now turn to discuss a GI=G=1 queue. Consider the First Come First Serve
(F.C.F.S.) GI=G=1 queue where the renewal arrival process and the service
times are independently and identically distributed (i.i.d.). The service times
are also independent of the arrival process. We assume the GI=G=1 queue is
stable. Let An be the arrival time of the nth customer, Sn be the service time of
the nth customer, and sn ¼ An � An�1 is the interarrival time between the
ðn� 1Þth and nth customer arrivals, n ¼ 1; 2; . . ., where A0 ¼ 0. Let s be a
generic interarrival time with a bounded probability density function f ðxÞ and
S be a generic service time. Assume E½Sk� and E½sk� exist, for any k > 0. Denote
by Tn and Wn the flow time and delay of the nth customer, respectively. Let T be
a generic steady-state flow time, and W be a generic steady-state waiting time.
Note that Tn and Wn are equal in distribution to T and W , respectively.

First we introduce a scale parameter h into the service time. i.e., we
consider GI=G=1 queue with interarrival time s and service time hS. It is clear
that parameterized queue reduces to the original queue when h ¼ 1. In order
to derive the two moments of the flow time and waiting time, we must discuss
the relation in (8) shown in Figure 1. If Tn�1 � sn then Wn ¼ Tn�1 � sn. If
Tn�1 < sn in which s0n, A0n and S0n denote the interarrival time, arrival instant
and service time, then Wn ¼ 0. Since the flow time equals service time plus
waiting time, we have

Tn ¼ h � Sn þ Wn and Wn ¼ ðTn�1 � snÞþ where xþ ¼4 maxðx; 0Þ: ð8Þ
Therefore in steady-state we have

T ¼ h � S þ W ¼d h � S þ ðT � sÞþ ð9Þ
where ¼d means equal in distribution.

Note that in (8), Tn�1, sn, and Sn are independent of each other; therefore,
T , s and S in (9) are independent of each other as well. According to the result
of (9) and binomial expansion of T , it immediately follows as:
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E½T k�
k!
¼
Xk

j¼0
bk�j

E½W j�
j!

hk�j ð10Þ

where bk ¼
4 E½Sk �

k! k ¼ 1; 2; . . .

In order to derive the MacLaurin Series for the waiting time distribution, we
adopt the following two conditions proposed in Hu (1996):

(A1) All the moments of s and S are finite, and E½Sk� � k!ðCsÞk for
k ¼ 0; 1; 2 . . ., where Cs > 0 is a constant;

(A2) f ðxÞ is an analytic at x ¼ 0þ, i.e., there exists y > 0 such that

f ðxÞ ¼
P1

j¼0

aj

j! � xj, for 0 < x < y

where jajj � ðCf Þjþ1, j ¼ 1; 2; . . . and f ðxÞ � Cf , for x � 0:

Hu (1996) has proved that (A1) is equivalent to the condition that S has finite
generating functions, i.e., there is a r > 1 such that E½ers� <1. According to
(A2) f ðnþ1Þ is bounded and there exists M > 0 such that f ð�xÞ < M , for
0 < �x < x. We shall always assume E½S� < E½A� in this paper.

Depending upon (2) and (8), we then have

E½W k�
k!
¼ E

Z T

0

ðT � xÞk

k!
f ðxÞdx

¼ E
Z T

0

Xn

j¼0

aj

j!
ðT � xÞk

k!
xjdxþ E

Z T

0

ðT � xÞk

k!
RnðxÞdx

¼
Xn

j¼0
aj

E½T kþjþ1�
ðk þ jþ 1Þ!þ /n

E½T kþnþ2�
ðk þ nþ 2Þ!

for k ¼ 1; 2; . . . ð11Þ
The expression is derived based on Gone and Hu (1992). In order to compute
the error while estimating the moment of waiting time, we impose a correct
term in (11), namely,

/n
E½T kþnþ2�
ðk þ nþ 2Þ! ð12Þ

which occurs as the interarrival time is approximated by a polynomial of
degree n. Under assumption (A2) and limn!1 RnðxÞ ¼ 0 the second term in
(11) will tend to zero for n tends to very large, which implies limn!1 /n ¼ 0.

Fig. 1. Successive flow times

Characterizing the idle time of a nonexponential server system 385



However, for a finite n, /n is a constant depending on n and the point at
which we evaluate for the interarrival time distribution.

For computing E½W k�=k!, (11) defines a correct term that depends upon
the expected ðk þ nþ 2Þth moment of flow time and the function f . Thus (11)
provides an error estimation for E½W k�=k! . Resorting to the derivation of the
moments of waiting and flow times, we make use of the transformation of
E½T k�=k! and E½W k�=k! written in a MacLaurin series in the following Lemma.

Lemma 1 Under (A1) and (A2), E½T k� and E½W k� exist, for k ¼ 1; 2; . . ., which
can be expressed as follows: for 0 < h < 1 then

E½T k�
k!
¼
X1

m¼0
tkmhm; ð13Þ

and

E½W k�
k!
¼
X1

m¼0
xkmhm: ð14Þ

The proof of this lemma, is given in Gong and Hu (1992).

By repeatedly substituting (13) and (14) into (10) and (11), and comparing
the coefficients tkm, xkm of hm in (10) and (11), it leads to

tkm ¼
bk m ¼ k
Pk

i¼1
bk�ixiðm�kþiÞ m > k

0 m < k

8
><

>:
ð15Þ

and

xkm ¼
Pm�k�1

j¼0
aj tðkþjþ1Þm þ /n � tðkþnþ2Þm m > k,

0 m � k

8
<

: ð16Þ

Since tðkþnþ2Þm ¼ 0 if m < k þ nþ 2, xkm is affected by /n only when
n � m� k � 2. By repeatedly using (15) and (16), it is observed that both xkm
and tkm can be estimated by /n when n < m� k � 1. If a polynomial of degree
n is used for approximating the interarrival time, the errors in E½T k� and E½W k�
should be estimated respectively. For example, if k and n are given, the error
for calculating E½W k�=k! with a fixed h ¼ h0 is estimated by

X1

m¼nþkþ2
xkmhm

0 ð17Þ

which has a upper bound written as a power series of /n,
P1

p¼0
ap/

p
n for some

ap > 0. Clearly, ap may be computed in terms of xij and tij for some i and j.

3. Idle time approximation

Moments of the idle time

In this section we discuss how to obtain the MacLaurin series of the moments
of the idle time. This derivation is presented in the following theorem.
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Theorem 2 Under assumptions (A1) and (A2) and the result of Lemma 1, we
obtain the MacLaurin series of the moments of idle time.

E½Ik�
k!
¼
X1

m¼0
dkmhm ð18Þ

where

dkm ¼

Pk

i¼0
ð�1Þ2k�ick�itim m � k

Pk

i¼0
ð�1Þ2k�ick�itim � ð�1Þ

kxkm m > k.

8
>>><

>>>:
ð19Þ

Proof.

Since In ¼ ðsn � Tn�1Þþ n ¼ 1; 2; . . . ð20Þ
and fIng, fsng and fTng converge in distribution, we have

I ¼d ðs� T ; 0Þþ

We also have,

ððs� T ; 0ÞþÞj ¼d ð�1ÞjððT � sÞj � ððT � s; 0ÞþÞjÞ ¼d ð�1ÞjððT � sÞj � W jÞ
ð21Þ

for j ¼ 1; 2; . . . ; k:

Taking results from (21), we attain the MacLaurin series of the moment of
idle time of the GI=G=1 queue,

E½Ik�
k!
¼ð�1Þ

k

k!
ðE½ðT � sÞk� � E½W k�Þ

¼ð�1ÞkE
Xk

i¼0

T i � ð�sÞk�i

i! � ðk � iÞ!

" #
� ð�1Þ

k

k!
E½W k�

¼
Xk

i¼0
ð�1Þ2k�ick�i �

X1

m¼0
timhm � ð�1Þk

X1

m¼0
xkmhm

¼
X1

m¼0

Xk

i¼0
ð�1Þ2k�ick�itim � ð�1Þkxkm

 !
hm:

Since the value of dkm depends upon xkm and tim which are defined in (15) and
(16), xkm, tim and ck�i are bounded and dkm is determined by (19).

Theorem 3 For any k > 0, E½Ik� is decreasing of h.

Proof. By (8), we have

Wnþ1 ¼ ½Wn þ hSn � sn�þ:
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On the other hand, by (20), we have

In ¼ ½�ðWn þ hSn � snÞ�þ:

Together with these two equations, it leads to

Wnþ1 � In ¼ Wn þ hSn � sn:

Under the stationary assumption and Wn and Wnþ1 with the same distribution,
it reduces to

I ¼d s� hS:

Hence, for any k > 0, and I , S, s, h � 0 the following equation holds

E½Ik� ¼ E½ðs� hSÞk�:
Thus, the theorem is proved.

It is easy to verify (19) with the existing formulas for k ¼ 1 and 2. When
k ¼ 1, (18) becomes

E½I � ¼
X1

m¼0
d1mhm ¼ d10 þ d11hþ

X1

m¼2
d1mhm:

By substituting the values of xkm, tim and ck�i, we have

d10 ¼ E½s�
d11 ¼� E½S�
d1m ¼ 0 for m � 2

Therefore E½I � ¼ E½s� � E½S� � h: ð22Þ
When k=2, (18) becomes

E½I2�
2!
¼
X1

m¼0
d2mhm ¼ d20 þ d21hþ d22h

2 þ
X1

m¼3
d2mhm

in which

d20 ¼
E½s2�
2

d21 ¼� E½s� � E½S�

d22 ¼� E½s� a0E½S2�
2

� �
þ E½S2�

2

d2m ¼� E½s�x1m þ E½S�x1ðm�1Þ for m � 3:

Now we compare these two expressions with existing formulas associated
with them in queueing models respectively. First, we illustrate that for Pois-
son arrival process, (22) will lead to the exact expression for the mean idle
time. When the interarrival times are exponentially distributed, fInjIn > 0g
which is equal to fsn � Tn�1jsn � Tn�1 > 0g has an exponential distribution
with mean E½s�. Therefore, (22) approaches to E½s� as h! 0, and approaches
to E½I � as h! 1. Second, in order to write out x1m and x1ðm�1Þ in terms of E½s�
and E½S�, we’ll let aj ¼ kð�kÞj and E½s� ¼ 1=k. Therefore, based on (15) and
(16), we have
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x1m ¼
Xm�2

i¼0
aitð2þiÞm

¼ a0E½S�x1ðm�1Þ þ a0x2m þ
Xm�2

i¼1
aitð2þiÞm

¼ a0E½S�W1ðm�1Þ m ¼ 3; 4; . . .

and d2m ¼ 0, for m � 3:
Thus For the M=G=1 queue, we have

E½I2� ¼ 2ð 1
k2
� 1

k
E½S� � hÞ: ð23Þ

It tends to the exact expression as h! 1 and tends to E½s2� which is equivalent
to E½I2jI > 0� as h! 0.

When a non-exponential interarrival time is approximated by a polyno-
mial of degree n, . E½Ik� has no a simple expression like (22) and (23). Clearly,
it will result in an error which depends on n and f . In Section 3.2, we derive
an upper bound to estimate it.

Error estimation of the idle time

To compute E½Ik� when the interarrival time is general, we start with (18).
Suppose we have computed only nþ 1 terms and the remaining terms are
defined as an error,

E½Ik�
k!
�
Xn

m¼0
dkmhm: ð24Þ

Namely, (24) is equivalent to

X1

m¼nþ1
dkmhm: ð25Þ

According to (19) and for a fixed k, (25) leads to

X1

m¼nþ1

Xk

i¼0
ð�1Þ2k�ick�itimhm �

X1

m¼nþ1
ð�1Þkxkmhm: ð26Þ

Rearranging (26), it may be written as

Xk

i¼0
ð�1Þick�i

X1

m¼nþ1
timhm � ð�1Þk

X1

m¼nþ1
xkmhm: ð27Þ

Thus, to estimate the error in computing E½Ik� is equivalent to estimate the
errors occur in E½T k� and E½W k�. Based on (15) and (16), it is sufficient to
estimate (25) by computing the error which is taken in approximating the
interarrival time distribution. To be specific, the error bound of E½Ik� may be
again written as a power series expressed by /n. This describes how we can
estimate and restrain the error of the idle time. The observation is stated in
the following theorem.

Characterizing the idle time of a nonexponential server system 389



Theorem 4 For any given n, the upper bound of the error of E½Ik� with h ¼ h0
may be written as

X1

p¼0
bp/

p
n for some bp:

Proof. The proof is immediate from (17) and (27).
Since /n is determined by Rn the error bound of the idle time is also

affected by the interarrival time distribution. Because Rn is considered as the
error calculated by the interarrival time approximation which is written by a
polynomial of degree n, the question is: in general when will /n go to zero for
any finite n? From (4), notice Rn approaches to zero as x approaches to x0.
Therefore, we need to derive the MacLaurin series for the moments of the idle
time with respect to k and let the interarrival time distribution be evaluated at
k ¼ 0. Apparently, this is the approach called the light traffic derivatives in
queueing theory.

4. The light traffic derivation

In this section, we shall derive the moments of idle time and interdeparture
time in light traffic.

There is an important reason to consider the performance measures in
light traffic. For a heavy traffic queueing model, i.e., k is very close to l,
the departure process of the GI=G=1 is theoretically a renewal process
whose interdeparture time apparently is approximated by the service time
distribution. However, it is not clear how the departure behaves when k is
very small. To answer this question, we shall first derive the idle time in
light traffic since the idle time may be used directly to derive the inter-
departure time. Based on the results developed in Section 3, we can derive
the idle time analysis easily and obtain the idle time approximation
without taking the error into account.

At first, consider the light traffic derivatives of flow time and waiting time.
We focus on the case where 1=k is a scale parameter of the interarrival time
distribution. Let Y ¼d k � s where s is independent of the parameter k. Let
h ¼ 1, eW ¼ kW and eT ¼ kT . We have

eT ¼d k � S þ eW where eW ¼d ðeT � Y Þþ:

According to the result of Lemma 1, we obtain the MacLaurin series of
E½eT k�=k! and E½ eW k�=k! as functions of k. We write

E½eT k�
k!
¼
X1

m¼0
tkmkm and

E½ eW k�
k!
¼
X1

m¼0
xkmkm:

Since eT ¼ kT and eW ¼ kW , we have

E½eT k� ¼ kkE½T k� and E½ eW k� ¼ kkE½W k�:
Hence, E½T k� and E½W k� are analytic at k ¼ 0 and their MacLaurin series can
be written respectively as
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E½T k� ¼ k!
X1

m¼k

tkmkm�k and E½W k� ¼ k!
X1

m¼k

xkmkm�k:

Readers may refer to Hu (1995) for details .
To what follows, we consider the derivatives of the interdeparture and idle

time moments with respect to the arrival rate k at k ¼ 0. Let ~D ¼ k � D and
~I ¼ k � I .

Since

D ¼d I þ S where I ¼d ðs� T Þþ ð28Þ
Now we multiply both sides of (28) by k and we have

kD ¼d kI þ k � S
and equivalently

~D ¼d ~I þ k � S:
We write the MacLaurin series of E½~Ik�=k! and E½~Dk�=k! as functions of k.

Theorem 5

We write

E½~Ik�
k!
¼
X1

m¼0
ckmkm ð29Þ

and

E½~Dk�
k!
¼
X1

m¼0
ekmkm ð30Þ

where

ckm ¼

0 m < k

ck þ
Pk

i¼1
ð�1Þ2k�ick�i � bi m ¼ k

Pk

i¼1
ð�1Þ2k�ick�i � tiðm�kþiÞ � ð�1Þkxkm m > k

8
>>>><

>>>>:

ð31Þ

and

ekm ¼

0 m < k

bk þ
Pk

i¼1
bk�icii m ¼ k

Pk

i¼1
bk�iciðm�kþiÞ m > k.

8
>>>><

>>>>:

ð32Þ

The proof of this theorem is given in the Appendix.
Since ~I ¼ kI and ~D ¼ kD, we have

E½~Ik� ¼ kkE½Ik� and E½~Dk� ¼ kkE½Dk�:
The MacLaurin series for E½Ik� and E½Dk� now can be written as

Characterizing the idle time of a nonexponential server system 391



E½Ik� ¼ k!
X1

m¼k

ckmkm�k ð33Þ

and

E½Dk� ¼ k!
X1

m¼k

ekmkm�k: ð34Þ

Now we will find the nth derivative of E½Ik� and E½Dk� with respect to k at the
value k ¼ 0. The same method was applied to study in Hu (1995) where he has
discussed the analyticity properties in light traffic in a general queueing
model. However, he only obtain E½W k� and E½T k� in light traffic.

Theorem 6 Under (A1) and (A2), E½Ik� and E½Dk� ðk ¼ 1; 2; . . .Þ have deriva-
tives of any order at k ¼ 0þ. Furthermore, we have

dp

dkp E½Ik�
� �

k¼0
¼ ckðpþkÞk! � p! ð35Þ

and

dp

dkp E½Dk�
� �

k¼0
¼ ekðpþkÞk! � p! ð36Þ

where ckðpþkÞ and ekðpþkÞ are defined by (31) and (32).
The proof is immediately derived from the discussion above.
Note that we see from (31) and (32) that the moments that are higher than

m � 2 of service times do not affect the coefficients of the terms kk; � � � ; km�2þk.
Moreover, f ðmÞð0Þ, for m � 1, only affects the coefficients of the terms
kmþkþ1; kmþkþ2; � � � in the MacLaurin series of E½Ik� and E½Dk�.

5. Numerical examples

In this section, we illustrate the numerical results based on (35) and (36) by
considering two examples.

The first example is taken from a typical M=E2=1 queueing model. Sup-
pose the p.d.f. of the interarrival time is f ðyÞ ¼ k � e�ky , for y � 0 where k is
the average arrival rate and the p.d.f. of the service time is hðyÞ ¼ 4l2y � e�2ly ,
for y � 0 where l ¼ 1 is the service rate. The results computed by using (35)
and (36) under different traffic intensities k=l ¼ k are presented in Tables 1
and 2.

Let I ½k; p� denote dp

dkp E½Ik�
� �

k¼0 and D½k; p� denote dp

dkp E½Dk�
� �

k¼0: The results
presented in Tables 1 and 2 show the rates of change of the moments in light
traffic with respect to idle times and interdeparture times respectively.

The second example is taken from Li (1997) where the interarrival time
distribution with E½s� ¼ 11=6 is so called the GH distribution given by
f ðxÞ ¼ 3e�x � 6e�2x þ 3e�3x, x � 0.

The service times are assumed to be uniform over ½0; bÞ, with b varying
from 0 to 2E½s�. Again, the solution obtained from (35) and (36) under dif-
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ferent traffic intensities q ¼ b
2E½s� are presented in Tables 3 and 4. Observe that

from D½1; 0� in Tables 2 and 4, the mean of the interdeparture time is equal to
E½s�. It is theoretically true since the system is stable with E½S� < E½s�.

6. Concluding remarks

We see that from (16), (33) and (34), /n will appear with the coefficients of the
terms knþkþ2; knþkþ3; � � � in the MacLaurin series of E½Ik� and E½Dk� for
n � m� k � 2. However, those terms with power greater than nþ k þ 2 may
be ignored since k is close to zero. Thus to compute E½Ik� and E½Dk� in (33) and
(34), we only need a finite number of terms up to nþ k þ 1. The same
arguments are also applied to compute E½T k� and E½W k�.

In summary, we have derived a simple procedure to calculate the coeffi-
cients of the MacLaurin series of the moments of the idle process of GI=G=1
queue, given all the moments of s and S are finite and f ðxÞ is an analytic at
x ¼ 0. Under some mild conditions we show that the moments of the idle time
and interdeparture time have derivatives of any order at k ¼ 0, a scale
parameter in the interarrival time, and can be calculated based on the coef-
ficients we obtain.

It has previously been established that using idle time analysis in an
exponential service system can essentially yield accurate calculation for a high

Table 1. Light Traffic Derivatives for Idle times in M=E2=1

k 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

I[1,0] 19.00 9.00 5.67 4.00 3.00 2.33 1.857 1.50
I[2,0] 761.50 181.50 77.06 41.50 25.50 17.06 12.11 9.00
I[2,1] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
I[2,2] )2.85 )2.70 )2.55 )2.40 )2.25 )2.10 )1.95 )1.80
I[2,3] 0.28 0.54 0.76 0.96 1.12 1.26 1.36 1.44
I[2,4] )1.74 )3.37 )4.87 )6.24 )7.45 )8.50 )9.38 )10.08
I[3,0] 45687.0 5442.00 1538.11 619.50 303.00 167.56 100.81 64.50
I[3,1] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
I[3,2] )171.33 )81.67 )52.01 )37.35 )28.68 )23.02 )19.07 )16.2
I[3,3] 34.23 32.53 30.90 29.34 27.84 26.41 25.05 23.76
I[3,4] )107.08 )106.14 )105.21 )104.31 )103.46 )102.70 )102.04 )100.52

Table 2. Light Traffic Derivatives for interdeparture times in M=E2=1

k 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

D[1,0] 20.00 10.00 6.67 5.00 4.00 3.33 2.857 2.50
D[2,0] 801.00 201.00 88.89 51.00 33.00 23.22 17.33 13.50
D[2,1] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
D[2,2] )2.85 )2.70 )2.55 )2.40 )2.25 )2.10 )1.95 )1.80
D[2,3] 0.28 0.54 0.76 0.96 1.12 1.26 1.36 1.44
D[2,4] )1.74 )3.37 )4.87 )6.24 )7.45 )8.50 )9.38 )10.08
D[3,0] 48060.0 6030.00 1797.78 765.00 396.00 232.22 148.51 101.25
D[3,1] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
D[3,2] )179.88 )89.77 )59.66 )44.55 )35.43 )29.32 )24.92 )21.60
D[3,3] 35.08 34.15 33.20 32.22 31.21 30.19 29.14 28.08
D[3,4] )112.32 )116.26 )119.84 )123.03 )125.82 )128.21 )130.20 )131.76
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efficiency throughput. In situation with processing times varying substan-
tially, care must be taken to design a performance evaluation procedure to
characterize the behavior of the system and to maximize the throughput rate
by incorporating optimal parameter values. This paper adds to the under-
standing of idle time and departure process for better operations manage-
ment. Further development of an optimization model needs to be studied for
service scheduling in more general cases.

Appendix

Proof of Theorem 5

To prove
E½~Ik �

k! ¼
P1

m¼0
ckmkm.

Consider ~I ¼ kI ¼ maxðY � eT ; 0Þ and where Y ¼ ks and eT ¼ kT and

Table 3. Light Traffic Derivatives for idle time in GH=G=1

q 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

I[1,0] 1.83 1.83 1.83 1.83 1.83 1.83 1.83 1.83
I[1,n] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
I[2,0] 4.72 4.74 4.77 4.81 4.86 4.92 5.00 5.08
I[2,1] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
I[2,2] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
I[2,3] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
I[2,4] )0.004 )0.07 )0.34 )1.01 )2.33 )4.50 )7.75 )12.21
I[3,0] 16.00 16.10 16.25 16.47 16.74 17.08 17.48 17.94
I[3,1] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
I[3,2] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
I[3,3] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
I[3,4] )0.019 )0.30 )1.54 )4.82 )11.64 )23.826 )43.43 )72.69

Table 4. Light Traffic Derivatives for interdeparture time in GH=G=1

q 0.05 0.1 0.15 0.20 0.25 0.30 0.35 0.40

D[1,0] 1.83 1.83 1.83 1.83 1.83 1.83 1.83 1.83
D[1,n] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
D[2,0] 4.72 4.74 4.77 4.81 4.86 4.92 5.00 5.08
D[2,1] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
D[2,2] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
D[2,3] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
D[2,4] )0.004 )0.07 )0.34 )1.01 )2.33 )4.50 )7.75 )12.21
D[3,0] 16.00 16.10 16.25 16.47 16.74 17.08 17.48 17.94
D[3,1] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
D[3,2] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
D[3,3] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
D[3,4] )0.019 )0.30 )1.54 )4.82 )11.64 )23.826 )43.43 )72.69
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eIk ¼½maxðY � eT ; 0Þ�k

¼ð�1Þk½ðeT � Y Þk � ðmaxðeT � Y ; 0ÞÞk�
¼ð�1Þk½ðeT � Y Þk � eW Þk�

We have

E½~Ik�
k!
¼ð�1Þ

k

k!
E½ðeT � Y Þk� � E½ eW k�
� �

¼ð�1Þk E
Xk

i¼0

eT i � ð�Y Þk�i

i! � ðk � iÞ!

" #
� E½ eW k�

k!

 !

¼
Xk

i¼0
ð�1Þ2k�ick�ik

k�i E½eT i�
i!
� ð�1Þk E½ eW k�

k!

¼
Xk

i¼0
ð�1Þ2k�ick�ik

k�i
X1

m¼0
timkm � ð�1Þk

X1

m¼0
xkmkm

¼
X1

m¼0

Xk

i¼0
ð�1Þ2k�ick�itimkmþk�i �

X1

m¼0
ð�1Þkxkmkm

¼ckk
k þ

X1

m¼0

Xk

i¼1
ð�1Þ2k�ick�itimkmþk�i �

X1

m¼0
ð�1Þkxkmkm

¼
X1

m¼0
ckmkm

Since

Xk

i¼1
ð�1Þ2k�ick�itimkmþk�i

¼ ð�1Þ2k�1ck�1t1mkmþk�1 þ ð�1Þ2k�2ck�2t2mkmþk�2 þ � � � þ ð�1Þktkmkm

and expanding it for m ¼ 0; 1; 2; . . ., we have

(1) m=0

ð�1Þ2k�1ck�1t10k
k�1 þ ð�1Þ2k�2ck�2t20k

k�2 þ � � � þ ð�1Þktk0

(2) m=1

ð�1Þ2k�1ck�1t11k
k þ ð�1Þ2k�2ck�2t21k

k�1 þ � � � þ ð�1Þktk1k

(3) m=2

ð�1Þ2k�1ck�1t12k
kþ1 þ ð�1Þ2k�2ck�2t22k

k þ � � � þ ð�1Þktk2k
2

..

.

Comparing them with

X1

m¼0
ckmkm ¼ ck0 þ ck1kþ ck2k

2 þ � � �
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we have

ck0¼ð�1Þktk0�ð�1Þkxk0

ck1¼ð�1Þkþ1c1tðk�1Þ0þð�1Þktk1�ð�1Þkxk1

..

.

ckðk�1Þ ¼ð�1Þ2k�1ck�1t10þð�1Þ
2k�2ck�2t21þ���þð�1Þ

ktkðk�1Þ �ð�1Þkxkðk�1Þ

ckk¼ckþð�1Þ2k�1ck�1t11þð�1Þ2k�2ck�2t22þð�1Þktkk�ð�1Þkxkk

..

.

In general, it is written as

ckm ¼

0 m < k

ck þ
Pk

i¼1
ð�1Þ2k�ick�i : tii m ¼ k

Pk

i¼1
ð�1Þ2k�ick�i : tiðm�kþiÞ � ð�1Þkxkm m > k

8
>>>><

>>>>:

To prove E½~Dk �
k! ¼

P1

m¼0
ekmkm, we write

E½~Dk �
k! ¼

Pk

j¼0
bk�j

E½~Ik �
j! kk�j

since ~D ¼ ~I þ kS.
Thus consider

X1

m¼0
ekmkm ¼

Xk

j¼0
bk�j

X1

m¼0
cjmkm � kk�j

¼
X1

m¼0

Xk

j¼0
bk�jcjmkmþk�j

¼bkk
k þ

X1

m¼0

Xk

j¼1
bk�jcjmkmþk�j

which implies

ekm ¼

0 m < k

bk þ
Pk

i¼1
bk�icii m ¼ k

Pk

i¼1
bk�iciðm�kþiÞ m > k

8
>>>><

>>>>:

These complete the proof.

References

1. Gong WB, Hu JQ (1992) The MacLaurin series for the GI=G=1 queue, Journal of Applied
Probability, 29:176–184

396 H. Luh, K. Tseng



2. Gross D, Harris CM (1985) Fundamentals of Queueing Theory, 2nd Edition, John Wiley &
Sons, Inc..

3. Hu JQ (1995) Analyticity of single-server queues in light traffic, Queueing Systems, 19:63–80
4. Hu JQ (1996) The departure process of the GI=G=1 queue and its MacLaurin series,

Operations Research, 44:810–815
5. Kanet JJ, Sridharan V (2000) Scheduling with inserted idle time: problem taxonomy and

literature review, Operations Research, 48:99–110
6. Kleinrock L (1975) Queueing Systems Volume 1, John Wiley & Sons, Inc..
7. Li J (1997) An approximation method for the analysis of GI=G=1 queues, Operations

Research, 45:140–144
8. Sridharan V, Zhou Z (1996) Dynamic non-preemptive single machine scheduling, Computer

and Operations Research, 23(12):1183–1190

Characterizing the idle time of a nonexponential server system 397


