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Abstract The problem of system modeling and identifi-
cation has attracted considerable attention in the non-
linear time series analysis mostly because of a large
number of applications in diverse fields like financial
management, biomedical system, transportation, ecology,
electric power systems, hydrology, and aeronautics. Many
papers have been presented on the study of time series
clustering and identification. Nonetheless, we would like
to point out that in dealing with clustering time series,
we should also take the vague case as they belong to two
or more classes simultaneously into account. Because
many patterns of grouping in time series really are
ambiguous, those phenomena should not be assigned to
certain specific classes inflexibly. In this paper, we pro-
pose a procedure that can effectively cluster nonlinear
time series into several patterns based on kernel set. This
algorithm also combines with the concept of a fuzzy set.
The membership degree of each datum corresponding to
the cluster centers is calculated and is used for perfor-
mance index grouping. We also suggest a principle for
extending the fuzzy set by kernel set and further interpret
events in a sensible light through these sets. Finally, the
procedure is demonstrated by set off RRI data and its
performance is shown to compare favorably with other
procedures published in the literature.

Keywords Fuzzy sets, Kernel sets, Clustering,
Identification, Nonlinear time series

1
Introduction
Clustering is aimed at organizing and revealing structures
within data. Clustering is commonly viewed as an instance
of unsupervised learning to cluster a data set into groups
of similar individuals. Moreover, the conventional

clustering methods restrict that each point of the data set
belongs to exactly class and omit the possibility that they
belong to two or more classes simultaneously.

Fuzzy sets originated by Zadeh (1965) gave an idea of
uncertainty that is described with a membership function.
Since hardly ever any disturbance or noise in the data set
can be completely eliminated and some inherent data
uncertainly cannot be avoided, the use of fuzzy sets
therefore provide a solvent for indistinct parts in the data.
Therefore, it is quite natural and useful to apply the idea of
fuzzy set theory in cluster analysis.

To exhibit the empirical data in an appropriate class in
the application of nonlinear system, researchers in this
field have been concerned with clustering techniques
combining with fuzzy logic. For instance, Cutsem and
Gath (1993) proposed a procedure of fuzzy clustering to
detect outliers and robustly estimate parameters. Yoshi-
nari, Pedrycz and Hirota (1993) presented fuzzy clustering
techniques to construct fuzzy models. Romer et al. (1995)
used fuzzy partitions and possibility theory in statistical
inference. Cheng et al. (1998) presented a multistage ran-
dom sampling fuzzy c-means-based clustering algorithm
to partition a data set into c classes. Wu and Hsu (1999)
utilized the average of cumulative fuzzy entropy to classify
and identity Taiwan’s unemployment structural changes.
Barra and Boire (2000) proposed a possibilistic clustering
algorithm using fuzzy theory to test on phantom image of
normal and Alzheimer’s brains. Besides, Werners (1987),
Tseng and Klein (1992), and Yang (1993) conducted more
comprehensive research on fuzzy clustering in fuzzy
decision analysis.

In the field of time series analysis for system identi-
fication, time series are often encountered is important
cases where the statistics of the data exhibit nonstation-
ary structure. There is a need for techniques to identify
the system of some patterns that could influence
decision-making. In the absence of a powerful enough
algorithm for this in the past, the usual ploy has been
to assume the data under consideration we piecewise
stationary and apply identification algorithms which
were signed for stationary data but whose estimates
converge quickly enough that the assumption of
piecewise stationary would be badly abused.

Hence, in order to meet real situation, it has been better
to employ the concept of ‘‘kernel set’’ instead of ‘‘crisp set’’
in clustering and identification. In this paper, we propose a
procedure that can effectively cluster nonlinear time series
into several patterns based on kernel set. This paper is
organized as follows. In Sect. 2, we introduce definitions
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and related theorems for clustering and analyzing. In
addition, we develop a measuring method for calculating
membership degree of each datum corresponding to the
cluster centers and further get kernel set from fuzzy set
after clustering in Sect. 3. The empirical application and
comparative issues for RRI data are covered in Sect. 4.
These include computational problems in clustering non-
linear time series, and the issue of whether the procedure
combining fuzzy set theory has a better performance than
other procedures. Sect. 5 gives the conclusion and sug-
gestions.

2
The nature of kernel sets

2.1
Fuzzy sets and kernel sets
Though there are huge papers discussing about the fuzzy
sets and its applications. Few literatures can be found
about the crisp definition of fuzzy set. In this paper, we
will present an appropriate definition for it. The following
definitions are made in order to formalize and simplify
nonlinear time series analysis.

Definition 2.1. [Fuzzy set] Let X ¼ Xt; t ¼ 1; 2; . . . ;Nf g
be a universal set and L ¼ Lk; k ¼ 1; 2; . . . ; rf g be a
sequence of linguistic terms with monotone degree of
semantic. For each k ¼ 1; 2; . . . ; r, the fuzzy set Ak

generated by Lk on X is a generalized set, which assigns
each Xt to a value between 0 and 1.

Definition 2.2. [Kernel set] Let X ¼ Xt; t ¼ 1; 2; . . . ;Nf g
be a universal set and L ¼ Lk; k ¼ 1; 2; . . . ; rf g be a
sequence of linguistic terms with monotone degree of
semantic. For any significant level ak 2 ½0; 1�,
k ¼ 1; 2; . . . ; r, the kernel set of Ak generated by Lk is
denoted by

KerðAkÞ ¼ _
a2KðAkÞja�ak

a � ðAkÞa; k ¼ 1; 2; . . . ; r : ð1Þ

where KðAkÞ is the level set of Ak, ðAkÞa is a a-cut of Ak,
and _ denotes the finite fuzzy union.

Fuzzy set – an extension of kernel set
Let X ¼ Xt; t ¼ 1; 2; . . . ;Nf g be a universal set and

L ¼ Lk; k ¼ 1; 2; . . . ; rf g be a sequence of linguistic terms
with monotone degree of semantic. The fuzzy set Ak

generated by Lk defined on X is an extension of its kernel
set and denoted by

Ak ¼ _
a2KðAkÞ

a � ðAkÞa; k ¼ 1; 2; . . . ; r : ð2Þ

where KðAkÞ is the level set of Ak, ðAkÞa is a a-cut of Ak,
and _ denotes the finite fuzzy union.

Example 2.1. Let X ¼ fX1;X2;X3;X4g ¼ fLavender;
Eucalyptus;Thyme; Ylangg be a universal set of essential
oil for helping sleep and
L ¼ fL1; L2; L3; L4; L5g ¼ fHighly inef f ective;
Inef f ective;Common;Ef f ective;Highlyef f ectiveg be a
sequence of linguistic terms with monotone degree of

semantic. After interviewing 10 consumers, we get the
membership grades of the foregoing essential oils. The
results are showed at Table 1.

By Definition 2.1, the fuzzy set A1 generated by L1 on X is

A1 ¼ 0:10=X1 þ 0:30=X2 þ 0:20=X3 :

and the level set of A1 is KðA1Þ ¼ f0:10; 0:30; 0:20g.
Moreover, via its membership grades, the a-cuts of A1

become

ðA1Þ0:10 ¼ 1=X1 þ 1=X2 þ 1=X3 þ 0=X4 ;

ðA1Þ0:30 ¼ 0=X1 þ 1=X2 þ 0=X3 þ 0=X4 ;

ðA1Þ0:20 ¼ 0=X1 þ 1=X2 þ 1=X3 þ 0=X4 :

If we multiply each ðA1Þa by corresponding a value, then
we convert each of the a-cuts to a special fuzzy set, i.e.

0:10 � ðA1Þ0:10¼ 0:10=X1þ0:10=X2þ0:10=X3þ0:00=X4 ;

0:30 � ðA1Þ0:30¼ 0:00=X1þ0:30=X2þ0:00=X3þ0:00=X4 ;

0:20 � ðA1Þ0:20¼ 0:00=X1þ0:20=X2þ0:20=X3þ0:00=X4 :

Under the significant level a1 ¼ 0:80 and by Definition 2.2,
we can get the kernel set of A1 is

KerðA1Þ ¼ _
a2KðA1Þja�0:80

a � ðA1Þa ¼ / :

and take the finite fuzzy union of above special fuzzy sets,
a � ðA1Þa, we get

A1 ¼ _
a2KðA1Þ

a � ðA1Þa

¼ ½0:10 � ðA1Þ0:10� _ ½0:30 � ðA1Þ0:30� _ ½0:20 � ðA1Þ0:20�

¼ ð0:10_ 0:00_ 0:00Þ=X1þ ð0:10_ 0:30_ 0:20Þ=X2

þ ð0:10_ 0:00_ 0:20Þ=X3 þ ð0:00_ 0:00_ 0:00Þ=X4

¼ 0:10=X1 þ 0:30=X2 þ 0:20=X3 :

Similarly, we can get the following Table 2.

Table 1. The membership grades of fXtg for fLkg

L1 L2 L3 L4 L5

X1 0.10 0.35 0.50 0.75 0.65
X2 0.30 0.50 0.60 0.20 0.10
X3 0.20 0.45 0.80 0.50 0.30
X4 0.00 0.10 0.40 0.80 0.92

Table 2. The kernel sets and fuzzy sets for fLkg under the sig-
nificant levels ak ¼ 0:80, k ¼ 1; . . . ; 5

Kernel set Fuzzy set

L1 / 0:10=X1 þ 0:30=X2 þ 0:20=X3

L2 / 0:35=X1 þ 0:50=X2 þ 0:45=X3 þ 0:10=X4

L3 0:80=X3 0:50=X1 þ 0:60=X2 þ 0:80=X3 þ 0:40=X4

L4 0:80=X4 0:75=X1 þ 0:20=X2 þ 0:50=X3 þ 0:80=X4

L5 0:92=X4 0:65=X1 þ 0:10=X2 þ 0:30=X3 þ 0:92=X4
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Theorem 2.1. Let X be a universal set and A be a fuzzy
set on X. Then the complement of fuzzy set, Ac, is
denoted by

Ac ¼ _
ð1�aÞ2KðAcÞ

ð1� aÞ � ðAcÞð1�aÞ : ð3Þ

where KðAcÞ is the level set of Ac, ðAcÞð1�aÞ is a ð1� aÞ-cut
of Ac, and _ denotes the finite fuzzy union.

Proof. For each x 2 X, let a ¼ lAcðxÞ. Then,

l
_

ð1�aÞ2KðAcÞ
ð1�aÞ�ðAcÞð1�aÞ

� �ðxÞ

¼ max
ð1�aÞ2KðAcÞ

l ð1�aÞ�ðAcÞð1�aÞð ÞðxÞ

¼ max max
ð1�aÞ2KðAcÞjð1�aÞ�a

l ð1�aÞ�ðAcÞð1�aÞð ÞðxÞ;
 

max
ð1�aÞ2KðAcÞjð1�aÞ>a

l ð1�aÞ�ðAcÞð1�aÞð ÞðxÞ
!
: ð4Þ

For each ð1� aÞ 2 KðAcÞjð1�aÞ>a, we have

lAcðxÞ ¼ a < 1� a ;

it implies

l ð1�aÞ�ðAcÞð1�aÞð ÞðxÞ ¼ 0 : ð5Þ

On the other hand, for each ð1� aÞ 2 KðAcÞjð1�aÞ�a, we
have

lAcðxÞ ¼ a � 1� a ;

it implies

l ð1�aÞ�ðAcÞð1�aÞð ÞðxÞ ¼ 1� a : ð6Þ

Eq. (4) follows,

l
_

ð1�aÞ2KðAcÞ
ð1�aÞ�ðAcÞð1�aÞ

� �ðxÞ ¼ max
ð1�aÞ2KðAcÞjð1�aÞ�a

ð1� aÞ

¼ a ¼ lAcðxÞ :

The proof is complete.

Corollary 2.1. Let X be a universal set and A be a fuzzy set
on X. For any significant level ð1� a1Þ 2 ½0; 1�, the com-
plement of fuzzy set, Ac, is denoted by

Ac ¼ KerðAcÞ

[F _
ð1�aÞ2KðAcÞjð1�aÞ<ð1�a1Þ

ð1� aÞ � ðAcÞð1�aÞ

 !
: ð7Þ

where KðAcÞ is the level set of Ac, ðAcÞð1�aÞ is a ð1� aÞ-cut
of Ac and [F denotes the standard fuzzy union.

Proof. For each x 2 X, let 1� a1 ¼ lAcðxÞ be the signifi-
cant level. Then,

lAcðxÞ ¼ l
_

ð1�aÞ2KðAcÞ
ð1�aÞ�ðAcÞð1�aÞ

� �ðxÞ ðby Theorem 2:1:Þ

¼ max
ð1�aÞ2KðAcÞ

l ð1�aÞ�ðAcÞð1�aÞð ÞðxÞ

¼ max max
ð1�aÞ2KðAcÞjð1�aÞ<ð1�a1Þ

l ð1�aÞ�ðAcÞð1�aÞð ÞðxÞ;
 

max
ð1�aÞ2KðAcÞjð1�aÞ�ð1�a1Þ

l ð1�aÞ�ðAcÞð1�aÞð ÞðxÞ
!

¼ max l
_

ð1�aÞ2KðAcÞjð1�aÞ<ð1�a1Þ
ð1�aÞ�ðAcÞð1�aÞ

� �ðxÞ;

0
BB@

l
_

ð1�aÞ2KðAcÞjð1�aÞ�ð1�a1Þ
ð1�aÞ�ðAcÞð1�aÞ

� �ðxÞ

1
CCA :

ð8Þ
Since, under the significant level 1� a1,

_
ð1�aÞ2KðAcÞjð1�aÞ�ð1�a1Þ

ð1� aÞ � ðAcÞð1�aÞ ¼ KerðAcÞ : ð9Þ

Eq. (8) follows,

lAcðxÞ ¼ max l
_

ð1�aÞ2KðAcÞjð1�aÞ<ð1�a1Þ
ð1�aÞ�ðAcÞð1�aÞ

� �ðxÞ;

0
BB@

lKerðAcÞðxÞ

1
CA

¼ max lKerðAcÞðxÞ;

0
BB@

l
_

ð1�aÞ2KðAcÞjð1�aÞ<ð1�a1Þ
ð1�aÞ�ðAcÞð1�aÞ

� �ðxÞ

1
CCA :

ðby the commutative lawÞ ð10Þ
By the standard fuzzy union, Eq. (10) follows,

lAcðxÞ¼l
KerðAcÞ[F _

ð1�aÞ2KðAcÞjð1�aÞ<ð1�a1Þ
ð1�aÞ�ðAcÞð1�aÞ

� �� �ðxÞ :

The proof is complete.

Example 2.2. From Example 2.1, the complement of fuzzy
set A1 generated by L1 on X can be written as:

Ac
1 ¼ 0:90=X1 þ 0:70=X2 þ 0:80=X3 þ 1:00=X4

¼ ð1� 0:10Þ=X1 þ ð1� 0:30Þ=X2

þ ð1� 0:20Þ=X3 þ ð1� 0:00Þ=X4 :
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and the level set of Ac
1 is KðAc

1Þ ¼ f0:90; 0:70; 0:80; 1:00g.
Thus, the ð1� aÞ-cuts of Ac

1 according to its membership
grades become

Ac
1

� �
ð1�0:10Þ ¼ 1=X1 þ 0=X2 þ 0=X3 þ 1=X4 ;

Ac
1

� �
ð1�0:30Þ ¼ 1=X1 þ 1=X2 þ 1=X3 þ 1=X4 ;

Ac
1

� �
ð1�0:20Þ ¼ 1=X1 þ 0=X2 þ 1=X3 þ 1=X4 ;

Ac
1

� �
ð1�0:00Þ ¼ 0=X1 þ 0=X2 þ 0=X3 þ 1=X4 :

If we multiply each ðAc
1Þð1�aÞ by corresponding ð1� aÞ

value, then we convert each of the ð1� aÞ-cuts to a special
fuzzy set, i.e.

ð1� 0:10Þ � Ac
1

� �
ð1�0:10Þ

¼ 0:90=X1 þ 0:00=X2 þ 0:00=X3 þ 0:90=X4 ;

ð1� 0:30Þ � Ac
1

� �
ð1�0:30Þ

¼ 0:70=X1 þ 0:70=X2 þ 0:70=X3 þ 0:70=X4 ;

ð1� 0:20Þ � Ac
1

� �
ð1�0:20Þ

¼ 0:80=X1 þ 0:00=X2 þ 0:80=X3 þ 0:80=X4 ;

ð1� 0:00Þ � Ac
1

� �
ð1�0:00Þ

¼ 0:00=X1 þ 0:00=X2 þ 0:00=X3 þ 1:00=X4 :

Since, under the significant level 1� a1 ¼ 0:80, we can get

Ker Ac
1

� �

¼ _
ð1�aÞ2KðAc

1Þjð1�aÞ�0:80

ð1� aÞ � ðAc
1Þð1�aÞ

¼ ½ð1� 0:10Þ � Ac
1

� �
ð1�0:10Þ� _ ½ð1� 0:20Þ � Ac

1

� �
ð1�0:20Þ�

_ ½ð1� 0:00Þ � ðAc
1Þð1�0:00Þ�

¼ ð0:90_ 0:80_ 0:00Þ=X1 þ ð0:00_ 0:00_ 0:00Þ=X2

þ ð0:00_ 0:80_ 0:00Þ=X3 þ ð0:90_ 0:80_ 1:00Þ=X4

¼ 0:90=X1 þ 0:00=X2 þ 0:80=X3 þ 1:00=X4 :

and

_
ð1�aÞ2K Ac

1ð Þjð1�aÞ<0:80

ð1� aÞ � Ac
1

� �
ð1�aÞ

¼ ð1� 0:30Þ � Ac
1

� �
ð1�0:30Þ

¼ 0:70=X1 þ 0:70=X2 þ 0:70=X3 þ 0:70=X4 :

Finally, by Corollary 2.1, we get

Ac
1 ¼ KerðAc

1Þ [F _
ð1�aÞ2KðAc

1Þjð1�aÞ<0:80

ð1� aÞ � Ac
1

� �
ð1�aÞ

0
@

1
A

¼ 0:90=X1 þ 0:70=X2 þ 0:80=X3 þ 1:00=X4 :

Similarly, we can get the following results.

Ac
2 ¼ 0:65=X1 þ 0:50=X2 þ 0:55=X3 þ 0:90=X4 ;

Ac
3 ¼ 0:50=X1 þ 0:40=X2 þ 0:20=X3 þ 0:60=X4 ;

Ac
4 ¼ 0:25=X1 þ 0:80=X2 þ 0:50=X3 þ 0:20=X4 ;

Ac
5 ¼ 0:35=X1 þ 0:90=X2 þ 0:70=X3 þ 0:08=X4 :

Theorem 2.2. Let X be a universal set, A and B be two
fuzzy sets on X. For any significant levels a1; a2 2 ½0; 1�, the
standard fuzzy union and intersection of A and B are
denoted by

(i)

A [F B ¼ ½ _
a2KðAÞ

a � ðAÞa� [F ½ _
b2KðBÞ

b � ðBÞb�

¼ ½KerðAÞ [F KerðBÞ�

[F _
a2KðAÞja<a1

a � ðAÞa

 !"

[F _
b2KðBÞjb<a2

b � ðBÞb

 !#
: ð11Þ

(ii)

A \F B ¼ _
a2KðAÞ

a � ðAÞa
� �

\F _
b2KðBÞ

b � ðBÞb
� �

¼ ½KerðAÞ \F KerðBÞ�

[F KerðAÞ \F _
b2KðBÞjb<a2

b � ðBÞb

 !" #

[F _
a2KðAÞja<a1

a � ðAÞa

 !
\F KerðBÞ

" #

[F _
a2KðAÞja<a1

a � ðAÞa

 !"

\F _
b2KðBÞjb<a2

b � ðBÞb

 !#
: ð12Þ

where KðAÞ is the level set of A, KðBÞ is the level set of B,
ðAÞa is a a-cut of A, ðBÞb is a b-cut of B, [F and \F denote
the standard fuzzy union and intersection respectively.

Proof. (i) For each x 2 X, let lAðxÞ ¼ a1 and lBðxÞ ¼ a2 be
the significant levels. Then, by the standard fuzzy union, it
implies

lA[F BðxÞ

¼ maxðlAðxÞ;lBðxÞÞ

¼ max l
_

a2KðAÞ
a�ðAÞa

� �ðxÞ; l
_

b2KðBÞ
b�ðBÞb

� �ðxÞ
0
@

1
A

¼ max max
a2KðAÞ

l a�ðAÞað ÞðxÞ; max
b2KðBÞ

l b�ðBÞbð ÞðxÞ
� �

¼ max

"
max max

a2KðAÞja<a1

lða�ðAÞaÞðxÞ; max
a2KðAÞja�a1

lða�ðAÞaÞðxÞ
 !

;

max max
b2KðBÞjb<a2

lðb�ðBÞbÞðxÞ; max
b2KðBÞjb�a2

lðb�ðBÞbÞðxÞ
 !#
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¼max max

2
664 l

_
a2KðAÞja<a1

a�ðAÞa

� �ðxÞ;l
_

a2KðAÞja�a1

a�ðAÞa

� �ðxÞ

0
BB@

1
CCA;

max l
_

b2KðBÞjb<a2

b�ðBÞb

� �ðxÞ;l
_

b2KðBÞjb�a2

b�ðBÞb

� �ðxÞ

0
BB@

1
CCA

3
775 :

ð13Þ

Since, under the significant level a1,

_
a2KðAÞja�a1

a � ðAÞa ¼ KerðAÞ : ð14Þ

Similarly, under the significant level a2,

_
b2KðBÞjb�a2

b � ðBÞb ¼ KerðBÞ : ð15Þ

Eq. (13) follows,

lA[F BðxÞ

¼max max l
_

a2KðAÞja<a1

a�ðAÞa

� �ðxÞ;lKerðAÞðxÞ

0
BB@

1
CCA;

2
664

max l
_

b2KðBÞjb<a2

b�ðBÞb

� �ðxÞ;lKerðBÞðxÞ

0
BB@

1
CCA

3
775

¼max

2
664max lKerðAÞðxÞ;lKerðBÞðxÞ

� �
;

max l
_

a2KðAÞja<a1

a�ðAÞa

� �ðxÞ;l
_

b2KðBÞjb<a2

b�ðBÞb

� �ðxÞ

1
CCA

0
BB@

3
775 :

ðby the commutative and associative lawsÞ ð16Þ
By the standard fuzzy union, Eq. (16) follows,

lA[F BðxÞ

¼ max l KerðAÞ[F KerðBÞð ÞðxÞ;

0
BB@

l
_

a2KðAÞja<a1

a�ðAÞa

� �
[F _

b2KðBÞjb<a2

b�ðBÞb

� �� �ðxÞ

1
CCA

¼ l
KerðAÞ[F KerðBÞ½ �[F _

a2KðAÞja<a1

a�ðAÞa

� ���

[F _
b2KðBÞjb<a2

b�ðBÞb

� ��� ðxÞ
:

The proof is complete.

(ii) For each x 2 X, let lAðxÞ ¼ a1 and lBðxÞ ¼ a2 be the
significant levels. Then, by the standard fuzzy intersection,
it implies

lA\F BðxÞ

¼ min lAðxÞ;lBðxÞð Þ

¼ min l
_

a2KðAÞ
a�ðAÞa

� �ðxÞ; l
_

b2KðBÞ
b�ðBÞb

� �ðxÞ
0
@

1
A

¼ min max
a2KðAÞ

l a�ðAÞað ÞðxÞ; max
b2KðBÞ

l b�ðBÞbð ÞðxÞ
� �

¼ min

"
max max

a2KðAÞja<a1

l a�ðAÞað ÞðxÞ; max
a2KðAÞja�a1

l a�ðAÞað ÞðxÞ
 !

;

max max
b2KðBÞjb<a2

l b�ðBÞbð ÞðxÞ; max
b2KðBÞjb�a2

l b�ðBÞbð ÞðxÞ
! #

¼ min

2
664max l

_
a2KðAÞja<a1

a�ðAÞa

� �ðxÞ; l
_

a2KðAÞja�a1

a�ðAÞa

� �ðxÞ

0
BB@

1
CCA;

max l
_

b2KðBÞjb<a2

b�ðBÞb

� �ðxÞ;l
_

b2KðBÞjb�a2

b�ðBÞb

� �ðxÞ

1
CCA

0
BB@

3
775 :

ð17Þ

Since, under the significant level a1,

_
a2KðAÞja�a1

a � ðAÞa ¼ KerðAÞ : ð18Þ

Similarly, under the significant level a2,

_
b2KðBÞjb�a2

b � ðBÞb ¼ KerðBÞ : ð19Þ

Eq. (17) follows,

lA\F BðxÞ

¼ min max l
_

a2KðAÞja<a1

a�ðAÞa

� �ðxÞ; lKerðAÞðxÞ

0
BB@

1
CCA;

2
664

max l
_

b2KðBÞjb<a2

b�ðBÞb

� �ðxÞ; lKerðBÞðxÞ

0
BB@

1
CCA

3
775

¼ max min lKerðAÞðxÞ; lKerðBÞðxÞ
� �h

;

min lKerðAÞðxÞ; l
_

b2KðBÞjb<a2

b�ðBÞb

� �ðxÞ

0
BB@

1
CCA;
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min l
_

a2KðAÞja<a1

a�ðAÞa

� �ðxÞ; lKerðBÞðxÞ

0
BB@

1
CCA;

min l
_

a2KðAÞja<a1

a�ðAÞa

� �ðxÞ;

0
BB@

l
_

b2KðBÞjb<a2

b�ðBÞb

� �ðxÞ

1
CCA

3
775 :

ðby the distributive lawÞ ð20Þ
By the standard fuzzy intersection, Eq. (20) follows,

lA\F BðxÞ

¼ max

 
l KerðAÞ\F KerðBÞð ÞðxÞ;

l
KerðAÞ\F _

b2KðBÞjb<a2

b�ðBÞb

� �� �ðxÞ;

l
_

a2KðAÞja<a1

a�ðAÞa

� �
\F KerðBÞ

� �ðxÞ;

l
_

a2KðAÞja<a1

a�ðAÞa

� �
\F _

b2KðBÞjb<a2

b�ðBÞb

� �� �ðxÞ

1
CCA :ð21Þ

By the standard fuzzy union, Eq. (21) follows,

lA\FBðxÞ¼ l
KerðAÞ\F KerðBÞ½ �[F KerðAÞ\F _

b2KðBÞjb<a2

b�ðBÞb

� �� ��
:

[F _
a2KðAÞja<a1

a�ðAÞa

� �
\F KerðBÞ

� �

[F _
a2KðAÞja<a1

a�ðAÞa

� ��

\F _
b2KðBÞjb<a2

b�ðBÞb

� ���ðxÞ
:

The proof is complete.

Example 2.3. From Example 2.1, the standard fuzzy union
and intersection of A3, A5 can be written, respectively, as:

A3 [F A5 ¼ 0:65=X1 þ 0:60=X2 þ 0:80=X3 þ 0:92=X4 :

A3 \F A5 ¼ 0:50=X1 þ 0:10=X2 þ 0:30=X3 þ 0:40=X4 :

and the level set of A3 is KðA3Þ ¼ f0:50; 0:60; 0:80; 0:40g,
the level set of A5 is KðA5Þ ¼ f0:65; 0:10; 0:30; 0:92g Thus,
the a-cuts of A3 and A5 according to their membership
grades, respectively, become

ðA3Þ0:50 ¼ 1=X1 þ 1=X2 þ 1=X3 þ 0=X4 ;

ðA3Þ0:60 ¼ 0=X1 þ 1=X2 þ 1=X3 þ 0=X4 ;

ðA3Þ0:80 ¼ 0=X1 þ 0=X2 þ 1=X3 þ 0=X4 ;

ðA3Þ0:40 ¼ 1=X1 þ 1=X2 þ 1=X3 þ 1=X4 ;

ðA5Þ0:65 ¼ 1=X1 þ 0=X2 þ 0=X3 þ 1=X4 ;

ðA5Þ0:10 ¼ 1=X1 þ 1=X2 þ 1=X3 þ 1=X4 ;

ðA5Þ0:30 ¼ 1=X1 þ 0=X2 þ 1=X3 þ 1=X4 ;

ðA5Þ0:92 ¼ 0=X1 þ 0=X2 þ 0=X3 þ 1=X4 :

If we multiply each ðAkÞa by corresponding a value,
k ¼ 3; 5, then we convert each of the a-cuts to a special
fuzzy set, i.e.

0:50 � ðA3Þ0:50

¼ 0:50=X1 þ 0:50=X2 þ 0:50=X3 þ 0:00=X4 ;

0:60 � ðA3Þ0:60

¼ 0:00=X1 þ 0:60=X2 þ 0:60=X3 þ 0:00=X4 ;

0:80 � ðA3Þ0:80

¼ 0:00=X1 þ 0:00=X2 þ 0:80=X3 þ 0:00=X4 ;

0:40 � ðA3Þ0:40

¼ 0:40=X1 þ 0:40=X2 þ 0:40=X3 þ 0:40=X4 ;

0:65 � ðA5Þ0:65

¼ 0:65=X1 þ 0:00=X2 þ 0:00=X3 þ 0:65=X4 ;

0:10 � ðA5Þ0:10

¼ 0:10=X1 þ 0:10=X2 þ 0:10=X3 þ 0:10=X4 ;

0:30 � ðA5Þ0:30

¼ 0:30=X1 þ 0:00=X2 þ 0:30=X3 þ 0:30=X4 ;

0:92 � ðA5Þ0:92

¼ 0:00=X1 þ 0:00=X2 þ 0:00=X3 þ 0:92=X4 :

Since, under the significant levels ak ¼ 0:80, k ¼ 3; 5, we
can get

KerðA3Þ ¼ _
a2KðA3Þja�0:80

a � ðA3Þa

¼ 0:80 � ðA3Þ0:80

¼ 0:00=X1 þ 0:00=X2 þ 0:80=X3 þ 0:00=X4 :

KerðA5Þ ¼ _
a2KðA5Þja�0:80

a � ðA5Þa

¼ 0:92 � ðA5Þ0:92

¼ 0:00=X1 þ 0:00=X2 þ 0:00=X3 þ 0:92=X4 :

and

_
a2KðA3Þja<0:80

a � ðA3Þa

¼ 0:50 � ðA3Þ0:50

	 

_ 0:60 � ðA3Þ0:60

	 

_ 0:40 � ðA3Þ0:40

	 


¼ ð0:50_ 0:00_ 0:40Þ=X1 þ ð0:50_ 0:60_ 0:40Þ=X2

þ ð0:50_ 0:60_ 0:40Þ=X3 þ ð0:00_ 0:00_ 0:40Þ=X4

¼ 0:50=X1 þ 0:60=X2 þ 0:60=X3 þ 0:40=X4 :
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_
a2KðA5Þja<0:80

a � ðA5Þa

¼ 0:65 � ðA5Þ0:65

	 

_ 0:10 � ðA5Þ0:10

	 

_ ½0:30 � ðA5Þ0:30




¼ ð0:65_ 0:10_ 0:30Þ=X1 þ ð0:00_ 0:10_ 0:00Þ=X2

þ ð0:00_ 0:10_ 0:30Þ=X3 þ ð0:65_ 0:10_ 0:30Þ=X4

¼ 0:65=X1 þ 0:10=X2 þ 0:30=X3 þ 0:65=X4 :

Finally, by Theorem 2.2 (i), we get

A3 [F A5 ¼ KerðA3Þ [F KerðA5Þ½ �

[F _
a2KðA3Þja<0:80

a � ðA3Þa
� ��

[F _
a2KðA5Þja<0:80

a � ðA5Þa
� ��

¼ 0:65=X1þ 0:60=X2þ 0:80=X3þ 0:92=X4 :

Similarly, by Theorem 2.2 (ii), we get

A3 \F A5 ¼ KerðA3Þ \F KerðA5Þ½ �

[F KerðA3Þ \F _
a2KðA5Þja<0:80

a � ðA5Þa
� �� �

[F _
a2KðA3Þja<0:80

a � ðA3Þa
� �

\F KerðA5Þ
� �

[F _
a2KðA3Þja<0:80

a � ðA3Þa
� ��

\F _
a2KðA5Þja<0:80

a � ðA5Þa
� ��

¼ 0:50=X1 þ 0:10=X2 þ 0:30=X3 þ 0:40=X4 :

Definition 2.3. [The Crisp set] Let X ¼
fXt; t ¼ 1; 2; . . . ;Ng be a universal set and
L ¼ fLk; k ¼ 1; 2; . . . ; rg be a sequence of linguistic terms
with monotone degree of semantic. For each k ¼ 1; 2; . . . ; r;
the crisp set Hk generated by Lk on X is a set, which
contains all elements Xt map to the value 1.

Note. For any fuzzy set A on X and the corresponding
membership function lA. If the significant level a ¼ 1 and
lAðxÞ ¼ 1 for each x 2 X, then A and KerðAÞ are equal.
Moreover, A is called a crisp set on X.

3
Sample memberships estimation with respect
to the kernel set

3.1
How to measure the membership for a sample
with respect to its cluster center
It is interesting to see how far for a sample (sets) away
from the kernel set in the sampling survey or time series
analysis. Especially in the pattern identification process-
ing, when we have several typical patterns (here means
kernel set of the object), we are eager to know how far are
the data different from the proposed type.

3.2
How to get the kernel set after clustering
In order to solve this problem, we will use the sample
memberships with respect to the kernel set to estimate
their distance. Firstly, we have to construct the kernel set
under the features of the samples we have gathered. Which
means we will learn the pattern from the experiments or
the experience as the neural network did. An integrated
procedure for deriving a kernel set with samples pattern is
presented as follows:

A procedure for kernel set construction

Step 1. For time series fXitgn
i¼1, do i ¼ 1; . . . ; n.

Step 2. Input the time series fXitg. Find the cluster center
Ci for fXitg.

Step 3. Let lti be the degree of membership of each ob-
servation of fXitg to the cluster center Ci. Compute
the membership lti by

lti ¼
1

Xit � Cik k ; t ¼ 1; . . . ;N :

where �k k denote Euclidean distance and if lti > 1,
then let lti ¼ 1.

Step 4. Constructing the fuzzy set Ai by its memberships.
Step 5. Choose a proper significant level a for Ai, and

decide the kernel set KerðAiÞ of Ai.
Step 6. The kernel set learned from these samples will be

KerðAÞ ¼ [
n

i¼1
FKerðAiÞ.

After we decide the kernel set form the samples we have
known, we will compute the sample memberships. And
under the significant level a, we will see how many data
exceed the threshold value that will give us a useful
suggestion for the final decision-making.

4
Applications with the RRI data
The data analyzed here comes from the ICU of Taipei Vet-
erans General Hospital, 2001. The data records RRI of the
dead patients and survival patients for the first four days of
ICU. The RRI data for each patient is measured with 30
minutes. By discarding the first 100 observation, we analysis
the 101 to 600 observations from each patient which con-
tains about 1800–3000 observations of RRI. The purpose of
this study is to extract features and identify nonlinear time
series for the ICU patients. Figure 1a and b plot respectively
the dead and survival patients’ RRI. For the 500 observa-
tions, we can find the cluster centers for each data set. Now,
under the significant level a ¼ 0:9, we can construct our
kernel sets by the proposed procedures in the Sect. 3. In
following, the dead patients’ and the survival patients’
cluster centers, radiuses of kernel set and ratios are showed
in Table 3.

The kernel set learned from the dead patients is

KerðDÞ ¼ [
4

i¼1
FKerðDi2Þ. Then, we can give the following

testing-hypothesis procedure:

H0: the data belongs to the dead patterns.
H1: the data doesn’t belong to the dead patterns.
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Decision rule: for the new sample KerðDnewÞ, under the
significant level aD, if there exist i, such that
KerðDnewÞ=KerðDi2Þ > 1� aD then we accept H0. Other-
wise, we reject H0.

Similarly, the kernel set learned from the survival pa-
tients is KerðSÞ ¼ [

4

i¼1
FKerðSi2Þ, and the testing-hypothesis

procedures:

H0: the data belongs to the survival patterns.
H1: the data doesn’t belong to the survival patterns.

Decision rule: for the new sample KerðSnewÞ, under the
significant level aD, if there exist i, such that KerðSnewÞ=
KerðSi2Þ > 1� aD then we accept H0. Otherwise, we reject
H0.

Now, we examine two new RRI samples of patients from
ICU. First, we can find the cluster centers for each data set
and construct their kernel sets under the significant level
a ¼ 0:9. Then we can find radiuses of kernel sets for these
samples. Finally, we can get their patterns according to
their features by above the testing-hypothesis procedures.

Fig. 1. Plots of RRI for dead and survival
patients
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For these two samples, we get the cluster centers
592.624 and 761.658 respectively. We can calculate the
membership for each observation via the distance between
observation and its cluster center. Under the significant
level a ¼ 0:9, if the membership of observation is lager
than 0.9, then this observation is a member of the kernel
set. Therefore, the results of two new samples are showed
in Table 4.

From Table 4 we can find that:

(1) For two new samples, the radiuses of kernel sets are
0.624 and 0.658 respectively.

(2) For new sample one, the ratio of observations which
belongs to its kernel set and total observations is
0:094ð¼ 47=500Þ, which is larger than 0.05. This
indicates that the patient has some features of dead
patients.

(3) From Table 3, we obtain the significant level
aD ¼ 0:05. Under this condition, there exists D32 and
D42 such that the ratio of observations which belongs

to its kernel set and KerðDi2Þ is lager than 0.95,
i ¼ 3; 4. By way of decision rule, the patient will not be
surviving.

(4) For new sample two, the ratio of observations which
belongs to its kernel set and total observations is
0:034ð¼ 17=500Þ, which is smaller than 0.05. This in-
dicates that the patient has some features of survival
patients.

(5) Under the significant level aD ¼ 0:05, there exists S22

such that the ratio of observations which belongs to its
kernel set and KerðS22Þ is lager than 0.95. By way of
decision rule, the patient will be alive.

5
Conclusion
In the medical science analysis discussed above the time
series data have the uncertain property. If we use the
conventional clustering methods to analyze these data, it
will not solve the orientation problem. The contribution of

Table 4. The sample memberships and kernel set for RRI of new samples

The sample memberships and kernel set for
RRI of new sample one (Cluster center:
592.624, a ¼ 0:9)

The sample memberships and kernel set for RRI of new
sample two (Cluster center: 761.658, a ¼ 0:9)

Data Memberships Is a member of
the kernel set?

Data Memberships Is a member of the
kernel set?

1 569 0.042 no 751 0.094 no
2 573 0.051 no 740 0.046 no
3 571 0.046 no 760 0.603 no
4 529 0.016 no 734 0.036 no
5 622 0.034 no 730 0.032 no
6 598 0.186 no 729 0.031 no
7 609 0.061 no 718 0.023 no
8 614 0.047 no 713 0.021 no
9 608 0.065 no 708 0.019 no
10 605 0.081 no 741 0.048 no
..
. ..

. ..
. ..

. ..
. ..

. ..
.

..

. ..
. ..

. ..
. ..

. ..
. ..

.

491 591 0.616 no 737 0.041 no
492 591 0.616 no 725 0.027 no
493 591 0.616 no 722 0.025 no
494 595 0.421 no 717 0.022 no
495 598 0.186 no 721 0.025 no
496 598 0.186 no 721 0.025 no
497 595 0.421 no 717 0.022 no
498 592 1.000 yes 725 0.027 no
499 598 0.186 no 736 0.039 no
500 596 0.296 no 728 0.030 no

Total 47ð0:094 > 0:05Þ 17ð0:034 � 0:05Þ

Table 3. The dead and the survival patients’ cluster centers, radiuses and ratios

Patient Cluster center Radius of
kernel set

Its ratio
KerðDi2Þj j= Di2j j

Patient Cluster
center

Radius of
kernel set

Its ratio
KerðSi2Þj j= Si2j j

D12 623.734 0.734 0.348 S12 750.546 0.546 0.078
D22 976.018 1.018 0.118 S22 850.132 0.868 0.006
D32 883.592 0.592 0.088 S32 561.882 0.882 0.066
D42 651.442 0.558 0.046 S42 667.570 0.570 0.060

Average of KerðDi2Þj j= Di2j j _¼¼0:15 Average of KerðSi2Þj j= Si2j j _¼¼0:05
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this paper is that it provides a new method to cluster and
identify time series. In this paper, we presented a proce-
dure that can effectively cluster nonlinear time series into
several patterns based on kernel set. The proposed
algorithm also combines with the concept of a fuzzy set.
We have demonstrated how to find a kernel set to help
to cluster nonlinear time series into several patterns.

Our algorithm is highly recommended practically for
clustering nonlinear time series and is supported by the
empirical results. A major advantage of this framework is
that our procedure does not require any initial knowledge
about the structure in the data and can take full advantage
of much more detailed information for some ambiguity.

However, certain challenging problems still remain
open, such as:

(1) Since hardly ever any disturbance or noise in the data
set can be completely eliminated, therefore, for the
case of interacting noise, the complexity of multivar-
iate filtering problems still remains to be solved.

(2) The convergence of the algorithm for clustering and
the proposed statistics have not been well proved,
although the algorithms and the proposed statistics
are known as fuzzy criteria. This needs further
investigation.

Although there remain many problems to be overcome,
we think fuzzy statistical methods will be a worthwhile
approach and will stimulate more future empirical work
in time series analysis.
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