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Abstract 

Kemel-type estimators of the multivariate density of stationary random fields indexed by multidimensional lattice points 
space are investigated. Sufficient conditions for kernel estimators to converge uniformly are obtained. The estimators can 
attain the optimal rates L~  of convergence. The results apply to a large class of spatial processes. @ 1997 Elsevier 
Science B.V. 
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1. Introduction 

Our goal in this paper is to study density estimation for random variables which show spatial interaction. 
We sense a practical need for nonparametric spatial estimation for situations in which parametric families 
cannot be adopted with confidence. 

Denote the integer lattice points in the N-dimensional Euclidean space by 7/s, N ~> 1. Consider a strictly 
stationary random field {An} indexed by n in Z s and defined on some probability space ( f 2 , ~ , P ) .  A point 
n in 77 N will be referred to as a site. We will write n instead of  n when N = 1. For two finite sets o f  sites 
S and S t, the Borel fields ~ ( S ) =  ~ (X. ,  n E S)  and M ( S ' ) =  ~(XB, n E S t) are the a-fields generated by the 
random variables X. with n ranging over S and S' ,  respectively. Denote the Euclidean distance between S 
and S'  by dist (S, St). We will assume that X. satisfies the following mixing condition: there exists a function 
¢p(t) + 0 as t --~ oo, such that whenever S,S' C 7~N, 

ct(M(S), .~(S ' ) )  = sup{ IP(AB) - P(A)P(B)I, A E ~(S) ,  B E ~ (S ' ) }  

~< h(Card(S), Card(S'  ))q~(dist (S, S t)), ( 1.1 ) 
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where Card(S) denotes the cardinality of S. Here h is a symmetric positive function nondecreasing in each 
variable. Throughout the paper, assume that h satisfies either 

h(n, m) <. min{m, n} (1.2) 

o r  

h(n,m)<~C(n + m + 1) ~ (1.3) 

for some /c~> 1 and some C>0.  If h =- 1, then Xn is called strongly mixing. Conditions (1.2) and (1.3) are 
the same as the mixing conditions used by Neaderhouser (1980) and Takahata (1983), respectively, and are 
weaker than the uniform mixing condition used by Nahapetian (1980). They are satisfied by many spatial 
models. Examples can be found in Neaderhouser (1980), Rosenblatt (1985) and Guyon (1987). For relevant 
works on random fields, see, e.g., Neaderhouser (1980), Bolthausen (1982), Guyon and Richardson (1984), 
Guyon (1987) and Nahapetian (1987). 

Denote by In a rectangular region defined by 

I n = { i : i E  7/N, l<~ik<~nk, k = l  . . . . .  N}. 

Assume that we observe {XR} on In. Suppose X, takes values in Rd and has density f .  The letter C will be 
used to denote constants whose values are unimportant. We write u--* c~ if 

min{nk} ~ c~ and Inj/nkl<C (1.4) 

for some 0 < C < c ~ ,  1 <~j,k<~N. Define f i=nl  . . .nu. All limits are taken as n ~ c~ unless indicated other- 
wise. We use x to denote a fixed point of R a. The integer part of a number a is denoted by [a]. 

The kernel density estimator fn of f ( x )  is defined by 

fa(x) = (fibnd) -I Z K((x - Xi)/b. ), 
|EI, 

where b, is a sequence of bandwidths tending to zero as n tends to infinity. 
Density estimation for weakly dependent processes {X,} has generated a considerable amount of interest. 

See for example, Roussas (1969, 1988), Robinson (1983), and Masry and Gyrrfi (1987). The reason is partly 
due to the fact that many stochastic processes, among them various useful time series models, satisfy the 
strong mixing property; and the strong mixing property is relatively easy to check. 

The asymptotic normality of fn has been established by Tran (1990). Recently, Tran and Yakowitz (1993) 
have investigated nearest neighbors estimators for random fields. 

2. Assumptions 

Assumption 1. The kernel function K is a density function on R a and f IIzllK(x)dx<c~. In addition K 
satisfies a Lipschitz condition IK(x) - K(y)] < Cllx - y[[, where II • II is the usual norm on ~a. 

Since K is Lipschitz and integrable, supx~R~ K(x)</~,  for some constant/(. 

Assumption 2. The density f satisfies a Lipschitz condition [ f ( x ) -  f(Y)l < C I ] x -  Yl]. 
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Assumption 3. The joint probability density Ji,i(x, y)  of Xi and ~ exists and satisfies 

[j~,i(x, y)  - f ( x ) f ( y ) ]  <<. C 

for some constant C and for all x, y and i, j. 

We will implicitly assume that Assumptions 1-3 hold. The letter D denotes an arbitrary compact set in R d. 
Denote 

~,, = (log fi(fibd)-1 )1/2. (2.1) 

3. The polynomial case 

In this section, we will consider the case where q~(i) tends to zero at a polynomial rate, that is, 

q)( i) <~ Ci -°, (3.1) 

for some 0 > 0. 
Denote 

d(dN + 2N + O) N(d + 2) - 0 
Ol = , 02 = 

0 - (d + 2)N 0 - (d + 2)N'  

d(dN + 3N + O) N(d + 1) - 0 
03 = 0 -  (d + 1 + 2 k ) N '  04= 0 -  (d + 1 +2k)N"  

Our main effort is devoted to proving the following result giving sharp rates of convergence of fn to f .  Its 
proof is deferred to Section 7. 

Theorem 3.1. Suppose (3.1) holds. 
(i) I f  (1.2) is satisfied and 

fib °' (log fi)02 ~ oo, (3.2) 

(ii) or t f  (1.3) is satisfied and 

~ib°3(log ~i) °4 ~ (3.3) 

then 

sup [fn(x) - Efn(x)[ = O(~Pn) in probability. (3.4) 
xED 

Remark 3.1. For (3.2) to hold it is necessary that O>(d+2)N since bn goes to zero. Hence 01 > d  and (3.2) 
implies 

~ib. a ~ ~ .  ( 3 . 5 )  

Similarly, it can be shown that (3.3) implies (3.5). 

The convergence of Ef . (x )  to f ( x )  behaves as in the independent case and is now given. 
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Lemma 3.1. Assume 

fib~+a(logfi) - I  ~ 0. 

Then 

(3.6) 

[Ef,(x) - f (x ) [  = o(~n).  

Proof.  A simple computation shows that (3.6) implies that b, = o(7'n). By Assumptions 1 and 2, 

IEf , (x)  - f (x ) l  <~Cb, [ IlzllK(z)dz~Cb. =o(~'.). [] 
J 

A combination of  Theorem 3.1 and Lemma 3.1 yields, 

Theorem 3.2. Suppose (3.1) holds. I f  (3.2) and (3.6) hold, or (3.3) and (3.6) hold, then 

sup If~(x) - f ( x ) [ - -  O ( ~ . )  in probability. 
xED 

Example  3.1. Consider the case where ~o satisfies (1.2) and choose the popular bandwidth bn = f i - a  where 
a > 0  is specified below. Clearly, (3.2) is satisfied if 

0 - (d + 2)N 

a <  d (dN  + 2N + 0) - ~ 

and 3.6 is satisfied if 

a> l /(2 + d ) = a .  

1 1 < a < 7 would work. Such an a exists if  d > a. Suppose 0 = 20, d = 1, N = 2 then ~i = 7 and a = 5 so any 

Consider the case N = 1. We write fi as n. Taking the limit o f  ~ as 0 --+ cx~, it is easily seen that Condition 
3.2 is marginally close to the condition nba~--+ oo normally assumed in the i.i.d, case. 

Define 

o r = d ( d N + Z X + O )  . N ( d + 2 ) - O  
O - (d + 4)N ' 02 - -O--- (d  T ~ N '  

d ( d N  + 3N + 0) , = N ( d  + 1 ) -  0 
07 = 0 - (d + 2 + 2/~)N' 04 0 - (d + 2 + 2/~)N" 

Let e be an arbitrary small positive number and denote g ( n ) =  1-I,.N=t (log ni)(log log n,-)l+L Clearly, ~ 1/(fig(n)) 
< ~ ,  where the summation is over all n in 7 u. 

Theorem 3.3. Suppose (3.1) and (3.6) hold. 
(i) I f  1.2 is satisfied and 

nbn ^ 0~ ( log fi)0~_ g(n)  -2N/(O-(d+4)N) --+ cx), 

(ii) or i f  1.3 is satisfied and 

fib °; (log fi)0; g(n)--2N/(O-(d+2+2g)N) __~ 00. 

(3.7) 

(3.8) 
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Then 

sup I f . ( x )  - f ( x ) ]  = O ( ~ . )  a.s. 
x E D  

The proof of Theorem 3.3 is presented in Section 7. 

119 

4. Preliminaries 

The next lemma can be found in Tran (1990) (see also Ibragimov and Linnik, 1971). 

Lemma 4.1. (i) Suppose (1.1) holds. Denote by ~r(~, ~ )  the class of  ~-measurable r.v.'s X satisfying ]]X]]r = 
(E[Xf)l/r < cx~. Suppose X E ~q~r(~(S)) and Y E Y s ( ~ ( S  ~)). Assume also that 1 <~ r, s, t < ~ and r - l  + s-1 + 
t -  1 = 1. Then 

IEXY-EXEYJ ~< CIIXIIr II Ylls{h(Card(S), Card(S/))~o(dist (S, S ~))} l/t (4.1) 

(ii) For r.v.'s bounded with probability 1, the right-hand side of (4.1) can be replaced by Ch(Card(S), 
Card(S r))q~(dist (S,S ~)). 

Denote by Kn(x) the averaging kernel 

K. (x ) = ( 1/b~ )K (x/b. ). 

Then 

1 Z K . (  x - X j ) .  
f . ( x  ) = -fi 

Define 

Ai(x) = f i- l  ( K . ( x  - X i  ) - E K n ( x  - Xi)) ,  (4.2) 

In(x)= ZE(AI(x))2 and R.(x)---- Z ~ lCov{A,(x),Aj(x)}l. 
iE/n j E l n i E l n  

ik ~jk  for some k 

Lemma 4.2. I f  (3.1) holds for 0 > 2N, then 
OC 

Z iN-l(q~(i))a < CXD (4.3) 
i=1 

I for some 0 < a < 3" 

Proof. Choose an a such that ½ >a>N/O. Then (4.3) holds. [] 

Lemma 4.3. I f  (3.1) holds for 0 > 2N, then 

lim fiba(I.(x) + R.(x))  < C, 

where C is a constant independent of  x. 

The proof of Lemma 4.3 follows from Lemma 2.2 of Yran (1990). The following lemma of Rio (1993) 
will be needed in the sequel. Its proof is found in Rio (1995) (see Theorem 4). 
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Lemma 4.4. Suppose sJ is a a-field of (Y2,~,P) and X is a real-valued random variable taking a.s. its 
values in [a, b]. Suppose furthermore that there exists a random variable U with uniform distribution over 
[0, 1], independent of ~¢ V a(X). Then there exists some random variable X* independent of  sJ and with 
the same distribution as X such that 

EIX - X*[ <~ 2(b - a)cc(sd, a(X)). 

Moreover, X* is a sd V rr(X) V a(U)-measurable random variable. 

The approximation of strongly mixing r.v.'s by independent ones used later is presented below. Its proof 
is given in Section 7. 

Lemma 4.5. Suppose $1,$2 . . . . .  Sr be sets containing m sites each with dist(Si,Sj)>~6 for all i7~ j where 
1 <<.i<~r and 1 <~j<~r. Suppose Y1, Y2 . . . . .  Yr is a sequence of real-valued r.v.'s measurable with respect to 
~(Sl  ) ,~($2) . . . .  ,~(Sr),  respectively, and Yi takes values in [a,b]. Then there exists a sequence of indepen- 
dent r.v.'s Y~, Y~ . . . . .  Y* independent of  Y1, Y2,..., Y~ such that Yi* has the same distribution as Y~ and 
satisfies 

r 

y ~  ELY,.- Y~*I ~<2r(b-  a ) h ( ( r -  1)m,m)rp(6). 
i=1 

(4.4) 

5. Uniform convergence of  the kernel estimator 

Choose 

f -h(d+l)m (5.1) 
- -  v n a l l -  

Since D is compact, it can be covered with, say v cubes Ik having sides of length ( and center at xk. Clearly, 

V <~ C ( b ( d + l ) ~  n ) - d .  (5.2) 

Define 

QIn = max sup If,(x) - fn(xk)l, 
l <~k~VxElk 

Q2. = max sup [Ef.(xk) - Efn(x)l, 
l<~k<.VxElk 

Q3n = max ]f.(xk) - Ef,(xk)l. 
l<~k<.v 

Then 

sup Ifn(X) - E fn(x)l <-G Qln + Qz. + Q3n. 
xED 

Lemma 5.1. Both Qln and Qzn equal O(TJn) a.s. 

Proof. By Assumption 1, the kernel K satisfies the Lipschitz condition. Therefore 

I A ( x )  - A(Xk)l  <<.Cb~(~+l)llx -xkll <~Cb~ (d+l)vt = O(~ , )  a.s. 

The lemma easily follows. [] 
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We proceed to show 

Q3n = O( ~n ) in probability. 

Define 

S . ( x )  = 

(5.3) 

(2jk+l)p 2(j~,'t + l )p  2(jx+l)p 

U(4,n,j,x) = Z Z Z Ai(x), 
il.=2jkp+l bv-i=(2j~,-i+l)p+l iu=(2jx+l)p+l 

k=l,...,N--2 

and so on. Note that 

U(2N-l,n,j,x) = 

(2jt.+l)p 2 ( j x - t + l ) p  (2ju+l)p 

u<3,.,i,x)= Z Z Z 
i~=2jkp+l im--L=(2jv--i+l)p+l ix=2jxp+l 

k=l,...,N--2 

(2jk+l)p 2(ju+l)p 

U(2,n,i,x) = ~ ~ Ai(x), 
ik=2j, p+l i,~,=(2j~v+l)p+I 

k=l,...,N-- 1 

(2j, +l )p 

U(1,n,j,x) = Z Ai(x), (5.7) 
ik =2jk p+ 1 
k=l,... ,N 

2(jk+l)p (2jN+l)p 

Z 
ik=(2jk+l)p+l iN=2j,~,p+l 

k=l,...,N--I 

Ai(x) .  

Finally, 

2(j~.+l)p 

U(2N'n'j'x) = Z di(x). 
ik =(2jk + 1 )p+l 

k=l,...,N 

For each integer 1 ~< i ~< 2 N, define 

q~.-- 1 

T ( n , i , x ) =  Z U(i ,n , j ,x) .  
Jk=o 

k=l,...,N 

nk 

Ai(x). (5.4) 
ik=l 

k=l,...,N 

Then 

Sn(x) = fN(x) - E f , (x ) .  (5.5) 

Showing (5.3) is equivalent to showing that 

max ]S.(xk)]=O(~U.) a.s. (5.6) 
I <~k<~v 

Without loss of generality assume that ni = 2pqi  for 1 ~< i ~<N. The random variables Ai(x) can be grouped 
into 2Uql × q2 × "'" × qN cubic blocks of side p. Denote 
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Clearly, 

2 ,v 

Sn(x) = Z T(n,i,x). (5.8) 
i : l  

The blocking idea here is reminiscient of the blocking scheme in Tran (1990) and Politis and Romano (1993). 
By (5.8), to establish (5.6), it is sufficient to show that 

max [T(n,i, xk) l=O(Tn) a.s. (5.9) 
l<<.k<.v 

for each 1 <~i<~2 u. Without loss of generality we will show (5.9) for i = 1. Now, T(n, 1,x) is the sum of 

r=ql  × q2 x . . .  × qu (5.10) 

of the U(1, n, j,x)'s. Note that U(1, n, j ,x) is measurable with the a-field generated by Xi with i belonging to 
the set of sites 

{i:2jkp + 1 ~<ik~<(2jk ÷ 1)p, k = l  . . . .  ,N}. 

These sets of sites are separated by a distance of at least p. Enumerate the r.v.'s U(1,n,j ,x) and the cor- 
responding a-fields with which they are measurable in an arbitrary manner and refer to them respectively 
as Y1, Y2 . . . . .  Yr and S1,S2,... ,St. Approximate Yl, Y2 . . . . .  Yr by the r.v.'s Y*, Y* . . . . .  Y* as was done in 
Lemma 4.5. Clearly, 

[Ytl <CpU( flbd) - l k .  (5.11) 

Denote 

'~n ----- ~ T n ,  

where ~/ is a constant to be chosen later. 
Define flt~=bndh(fi, pU)cp(p)Tn 1. Then the following results holds whose justification is given in 

Section 7. 

Lemma 5.2. Given an arbitrarily large positive constant a, there exists a positive constant C such that 

P F  max IT(n,l ,xk)l>en I <-..Cv(fl-a+fllfl)- 
L 1 <~k<~v 

Theorem 3.1 follows easily from the development of the lemmas of this section. Its proof is given in 
Section 7. 

6. The exponential case 

Assume that for some s > 0, 

<p(i) = C exp{-si}. 

Theorem 6.1. Assume (6.1) holds. 

(i) I f  

fibnd(1og 11) - 2 N - I  ~ OO, 

then SUPxeD If . (x)  -- Ef . (x ) l  = O(Tn) a.s. 
(ii) I f  in addition (3.6) holds, then SUpxcD I f a ( x ) -  f (x ) l  : O(Tn) a.s. 

(6.1) 

(6.2) 
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7. Proofs  

P roo f  of  Theorem 3.1. To complete the proof, we will show that vfi -~ ---~0 and Vfll fi -"--~0. Using (5.2)  and 
(2.1), 

V ~ C Ild/2b~d((d/2)+l)(log Ii) -d/2. 

Relation (3.5) implies fi > Cb~ a o r  bn d((d/2)+l) ~ C I1 (d/2)+1 . Therefore 

v fi-~ ~< C fia+l -~(log Ii) -d/2, 

which goes to 0 if a > d + 1. 
Using (5.2), 

villa ~ bnd(d+ Z)h( fi, pN ) p--Otp~-(d+ l ). (7.1) 

A computation using (1.2), (2.1) and (7.1) shows that (3.2) is equivalent t o  (UJ~lfi) -1--~ C~ which implies 
v/31a ~ 0. Analogously, (1.3), (2.1), and (7.1) show that (3.3) is equivalent to v/31 fi ~ 0. 

P roo f  of Lemma 4.5. Suppose 8j, j~> 1 is a sequence of  i.i.d, uniform [0, 1] r.v.'s independent of  Yj, j>>, 1. 
Define Yl* = Yl. By Lemma (4.4), for every i~>2, there exists a measurable function fi  such that Yi*= 
f i(Yl . . . . .  Yi, Si). In addition, each Y/* is independent of  Yl . . . . .  Yi-l, has the same distribution as Yi and 
satifies 

E[Yi - Yi*l ~<2(b - a)cffa(Yr: ( < i  - 1),a(Yi))~2(b - a)h((i - 1)m,m)q~(8). 

The last inequality follows by using (1.1). For 1 <~i<~r, we have h ( ( i -  1)m,m)<,h(rm, m) since h is non- 
decreasing in each variable as stated in the introduction and (4.4) follows by summing up on 1 ~< i ~<r. 

It remains to show that Yl* . . . . .  Y* are independent. To prove this it is sufficient to show that I1,.. and 
(Yt* . . . . .  Yi*-i) are independent for i > 1. Note that (Y1,--., Y,), 81 . . . . .  3i are independent. Thus (Y1,.. . ,  Yt, 8i), 
81 . . . . .  3i-1 are independent. Since Yi* is a measurable function of  II1 . . . . .  Y/,Si, it follows that (Yi*, Yl . . . . .  
Yi- 1 ), 81 . . . . .  3i-1 are independent. Now Yi* is independent of  YI . . . . .  Yi- 1. Hence Y/*, (Y1 . . . .  , Yi- 1 ), 31 . . . . .  8i-  1 
are independent. Finally Yi* and (Y*, . . . ,  Yi*- 1 ) are independent since (Yl* . . . . .  Y,*- 1 ) is measurable with respect 
to the a-field generated by Y1 . . . . .  ~-1,81 . . . . .  8i- l .  

r 
Proof  of Lemma 5.2. Since T(n, 1,x) is equal to ~-]~i=1 Yi, we have 

P[IT(n,l,x)l>~.]~P [ i=~l Yi * >gn/2]÷P [ f~= lYi- Y,*[ >en/2 ] • (7.2) 

We now proceed to obtain bounds for the two terms on the right hand side of  (7.2). 
By Markov's inequality and using (4.4), (5.11) and recall that the sets of  sites with respect to which the 

Yi's are measurable are separated by a distance of  at least p, 

P [ ~--~lYi- Yi*l >en] <~ CrpN( fiba)-~h( (7.3) 
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Set 

2n = ( fibn a log fi)l/2, (7,4) 

P -  [ \42 . /C, /  J "~ \ log  fiJ " 

A simple computation yields, 

2hen = q log fi, 

and by Lemma (4.3) 

22 ~ E(Yi*) 2 <~ Cfiba~ (In(x) + R.(x)) log fi < C  log ft. 
i=0 

Using (5.11), we have 12nYi*l < 1/2 for large ft. Applying Berstein's inequality, 

~< 2 exp((-tl  + C)log fi)~< fi-a, (7.6) 

for sufficiently large ft. 
Combining (7.2), (7.3) and (7.6), 

P [sup IT(.. 1,x)l + B,,). 
- xfiD 

Proof of Theorem 3.3. (i) Condition (3.7) is equivalent to 

v/~l~ ri0(n) ~ 0, 

which entails y~ VnezNfll~ <cx~. The theorem follows by the Borel--Cantelli lemma. 
(ii) The proof of (ii) is similar to that of (i) and is omitted. 

Proof of Theorem 6.1. We prove (i) only since the proof of (ii) is the same as the proof of (ii) of Theorem 
3.1. Condition (6.2) implies that 

( fibd/log f i ) l /2N(1og  l i )  -1  ~ ~ .  

Suppose a is an arbitrarily given large positive number a. For all fi except finitely many, 

( fibda/log fi)l/2N/> (a/s) log ft. 

Therefore 

q~(p) ~< C exp{-sp} <, C exp{-s(a/s)log fi} ---- C fi-a, (7.7) 

where the value of p is given in (7.5). If necessary, the constant C in inequality (7.7) can be increased 
so that the inequality holds for all ft. Using (7.1) and (7.7), it is easy to show that ~-]nez N Vflli<Oo. 
The theorem follows by the Borel-Cantelli lemma. 
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