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Galois Theory of the Essential Extensions of an

R-MODULE
Chiu-Wen Leu.

Introduction: Every ring R contains an identity element 1 and every right
R-module M; is unitery right R-module (simply, R-module). If N, is a
submodule of the R-module Mg, we use the symbol Ny <’ M, to denote M,
1s an essential extension of Ni.

The purpose of this paper is to exploit the analogy between algebraic
extension of fields and essential extension of R~modules. In this analogy, the
role of the algebraic closure of a field is played by the injective hull H(M)
of the R-module M and that of a polynomial is played by an ideal R-hom-
omorphism f: I;——>Mj;, where I is a right ideal of R. The process of solving
the equation p(x)=o0 in the field F or in an algebraic extension of F will be
replaced by the process of extending an ideal R-homomorphism to an
R-homomorphism f: Rp—— M; from R into M, or into an essential extension
of M;.

Definiton 1. An ideal R-homomorphism f: I;—>M; where I is a right
ideal of R is called irreducible iff f cannot be extended to an ideal R-hom~

omorphism f: Ky—>M; where K is a right ideal of R properly containing I.

R. Baer (1) proved that an R-module Mj is injective if and only if for
every right ideal I of the ring R and for any element f ¢ Homp (I, My)
there exists an irreducible ideal R-homomorphism f* ¢ Homy (Ry, My) given
by f* (r)=f* (1)r, ¥ r € R such that the following diagram commutes; that

is, f¥oj=f, where j: [—>R is the canonical injection.
O—I;— R, (exact)
|
f l f*
V4
M,
It is easily seen that if M; is an injective R-module, the R-~homomorph~

ism f* is completely determined by the element f* (1) which is in M; for if
f*(1)=x, then f*(r)=f*(1)r=xr, for all r ¢ R.
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In general, if M, is not injective, the element f* (1) need not be in
M;, but in some essential extension of Mj, for example, in the injective
hull of the R-module M. Thus, we have the following definition.

Definition 2. Let f ¢ Homy (Iz, M) be an ideal R-homomorphism and let
f* ¢ Homz(Ry, M) be the extension of f. any element of the form x=f* (1)
in some essential extension S; of Mj is said to be a root of f in Sg.

In this terminology, we can restate the R. Baer’s theorem as follows: an
R-module My is injective if and only if every ideal R~homomorphism into Mg

has a root in M;.

Proposition 1. If x and y are roots of an ideal R-homomorphism f €
Homg (Iz, M), where I is a right ideal of R, then (x~y) I=0.

Proof: Let
f* and f be extensions of f such that f* (1)=x and £ (1)=y. Thus, for any
element a € I, we have (x—y) a=x a—y a=f* (1) a—f (1) a=f* (la)—Tf (la)
=f (a)—f (a)=o0. Hence (x—y) I=0. Q. E. D.

For each x ¢ H (M), the injective hull of Mj;, then we construct a
nonzero right ideal Iy={r ¢ R | x r ¢ Mp}. This is the first result of the

following proposition,

Proposition 2. (a) Iy is a nonzero right ideal of R.
(b). Let the function fy : I;——>M; be defined by fy (i)=x i, ¥ i € I;, then
f; is irreducible.

(¢). Let the function g:I—>M; be any ideal R-homomorphism having x as a
root. Then ICIy and fy I,=g.

Proof:
(a). We show first that Iy is a right ideal of R. To do this, for any m,
n € Iy, then x m=o0 and x n =o. Thus

x(m+n)=x m+x n=o+o=o0., This shows that m+n ¢ I;. Moreover,
for any m ¢ Iy and r € R, we have x(m r)=(x m) r =0 r=0. Hence m r ¢
Iy. Therefore, Iy is a right ideal of R,

Next, we show that Iy5*o0. It is trivial in case x=o0. So we may assume
that x=%0. Since H(M) is the injective hull of My, it is an essential extension

of My. Hence, by Proposition 1.2.1, (see the author’s master thesis), there
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exists os4r € R such that os%x r ¢ M. This shows that r e I;. Hence Iy %o.
(b). Suppose that there exists an ideal R~homomorphism h: K——>Mj properly
extending fy, where K is a right ideal of R properly containing Iy; IyK.
For any y e K—1Iy, ye K and y & Iy. Since y ¢ Iy, x y € Mgy. Thus h(y)
—x yo. Since H(M) is an essential extension of Mj, there exists o ¥~ r €
R such that o (h (y) —xy) r ¢ M. That is, o4h (y) r—x y r € M. Since
h(y) € Mg, h(y) r € Mz. Hence h(y) r—(h(y)r—x y)e Mg; that is, x y r €
M;. Hence x ye I,. But then (h(y)—x y) r=h (y) r—x y r=h (y r)—1f,
(y r)=f.(y r)—f, (y r)=o0, a contradiction. Hence f, is irreducible.
(c)* Let g* be an extension of g such that g* (1)=x. Then g*(i)=g (i), Wi
€ I. Thus, g*(i)=g* (1 i)=g* (1) i=x i=g(i). Hence x i=g (1), ¥i eIl So
x I=g(I) €M,. This implies that I <I,. Furthermore, for each i € I,
g(i)=g*(i)=x i=f, (i). Hence g*=f  extending g. Q.E.D.

The function f,.: I,—>M;, defined by f, (i)=x i, ¥i € I, in Proposition
2 will be called the irreducible ideal R-homomorphism of x over Mjy. This is
the analog of the minimum polynomial of an element of an algebraic field

extension.

Definition 3. (2) Let x, y ¢ H(M). Then x and y are said to be
conjugate over M, if there exists an M-~automorphism ¢ of H(M) (¢:H (M)
——H(M) is an automorphism with ¢ (m)=m, ¥m e M) such that ¢ (x)=y.

Proposition 3. Let x and y be elements of H(M) which are roots of the
same irreducible ideal R-homomorphism over M;. Then the mapping ¥:
M+xR—>M+yR defined by ¥ (m+x r) = m+yr, for me My, re R is
an isomorphismof M+ xR onto M+yR.

Proof:

The mapping ¥ is well-defined, because if m+x r=o, then x r= —m ¢
M;, and hence r € I,. Since x and y are roots of the same irreducible ideal
R~homomorphism over M. By Proposition 1 we have (x—y) I,=o. Since
(x—y) re (x—y) I,, (x—y) r=o0or x r=y r. Hence o=m+x r=m+y r.
This shows that ¥ is well-defined.

Clearly, ¥ is onto. Finally, we show that ¥ is one-one. If

¥ (m+xr) =0, then m+yr=0. Thus yr=—m ¢ M; and hence r ¢ I,
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Since x and y are conjugate over Mg, I.=I,. Thus, by Proposition 1, we
have (x—-y)I,=0. Hence (x—y)r € (x—y)I,=0, so xr=yr. Thus, m+xr=
m+yr=0. This shows that ¥ is one-one. Hence ¥ is an isomorphism of
M+ xR onto M+yR.

Proposition 4. Let x and y be elements of H(M). Then x and y are
conjugate over My if and only if x and y are roots of the same irreducible
ideal R~homomorphism over Mj.

Proof: Suppose that x and y are roots of the same irreducible ideal
R~homomorphism over M. Then, by Proposition 3, the mapping ¢: M+xR
—>M+yR defined by

¢ (m+xr)=m+yr for all me My and all r € R is an isomorphism of
M+xR onto M+yR. Since H (M) is injective, and M+xR and M+yR
are essential extensions of My, we have, by Eckmann and Schopf’s theorem(3),
can be extended to an isomorphism &: H(M)-—>H(M). Thus ®(x)=y and
®(m)=m, ¥m ¢ M. Hence x and y are conjugate over M;. The converse part
of the proof is trivial since there exists an ® ¢ Hom, (H (M), H(M) ) such
that @ (x)=y.

Definition 4. Let S; be such that M, <’S; < H(M). Then the set of
all M-automorphisms of S; is called the Galois group of S, over M; and is
denoted by G (S/M).

Definition 5. A submodule S, of H(M) is called the splitting R~module
over My of a collection of ideal R-homomorphisms f, : I,—>M; (each I, is a
right ideal of R,)if it is generated by M, and all the roots in H (M) of the
given ideal R~-homomorphisms f,.

If a R-module S; cH(M) is a splitting R-module over My of a collection
{f:} of ideal R-homomorphisms of I, into Mj, then it is obvious that S;=

M+ xR where x=f*(1)and the summation extends over all possible extensions

f* of f,,

Proposition 5. Let Sy be such that M, <’ S, € H(M). Then S, is a
splitting R-module over My of a collection of ideal R-homomorphisms into
M; if and only if every M-automorphism of H(M) maps Sy onto itself (that

is, for each ¢ ¢ G (H(M)/M), ¢ (S)=S) and thus induces an M-autom-
orphism of S;.

Proof: (i). Suppose that S; is a splitting R-module over My of a collection
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of"{f,} of ideal R-homomorphisms f,: I,—>M;. Let x, be a root of f,, by
Proposition 4, for each ¢ ¢ G(H(M) /M), ¢ (x,), being a conjugate of x,,
is a root of f, and hence @ (x,)€e Siz. Thus ¢ (S)C S;. Using the same
arguement apply to the inverse function ¢ ' ¢ G (H(M)/M), we have
@ "}(S)Z Sip. Hence ¢ (S)=S;. (ii). Suppose, conversely, that every ¢ e
G (H(M)|M) induces an M~automorphism of S;. We show first that if f:
I—>sM,;, is an irreducible ideal R~-homomorphism having a root in S;, then all
roots of f are also in S;. To do this, let x and y be roots of f with x e S;.
By Proposition 4, x and y are conjugate over Mg and hence there exists an
M-automorphism ¥ ¢ G (H (M) /M) such that ¥ (x)=y. Then ¥ induces an
M-automorphism of Sz, so ¥{x) =y € Sz. Next, for each x e S;, let f; be
the irreducible ideal R-homomorphism of x over M;. Then, by the above
arguement, S is the splitting R-module over My of the collection

{f: | xe Sa}. Q. E. D.

Proposition 5 says that any splitting R-module over My is stable relative
to My and H(M). (4).

Corollary 1. Let S; be such that My &/ Sz CH(M). Then S; is a
splitting R-module over My of a collection of ideal R-homomorphisms into
M, if and only if Sz &/ Ex € H(M) implies ¢ (S)=35;, for each ¢ ¢
G(E/M .

Proof: Suppose that Sy is a splitting R-module over M; of a collection of
ideal R-homomorphisms into M. Let ¢ ¢ G(E/M). Then, since Sz S/ Eg,
M; <’ E, and hence H(E)=H (M). By Eckmann and Schopf’s theorem, @
can be extended to an M-automorphism ¥ of H(M). Since Sy is a splitting
R-module over Mg, by Proposition 5, ¥(S)=S;. Hence ¢ (S)=S,.

The proof of the converse part of the theorem is just the same as part (ii)
of Proposition 5.

Q. E. D.

Proposition 6. Let S, and Ny be splitting R-modules of My such that Mg
c’ Ny €’ Sz € HM). Then
(i). G(S/N) is a normal subgroup of G(S/M).

(i1). G(S/M)|G(S/N) = G(N/M).
Proof: For ¢ ¢ G(S/M), since N; is a splitting R-module of Mj, by
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Proposition 5, ¢ induces an M-automorphism ¢y € G(N/M). The mapping ®:
G (S/M) —G (N | M) defined by ® (¢)=0cy for ¢ € G (S/M) is obviously an
R-homomorphism. Then the kernel of ® is clearly G (S/N). Hence G (S/N)
is a normal subgroup of G(S/M). To show that ® is also onto. For any oy €
G (N/M), since My <’ N;, oy can be extended to an M~-automorphism

¢ ¢ G(H(M)[M). By Proposition 5, since Sy is a splitting R-module
over Mg, ¢ induces an M~automorphism ¢ ¢ G(S/M) and ® (6¢)=06y. Hence ®
is onto. Thus

G (S/M) | G(S/N) = G(N/M). Q. E. D
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