Galois Theory of the Essential Extensions of an R-MODULE

Chiu-Wen Leu.

Introduction: Every ring R contains an identity element l and every right R-module M_R is unitary right R-module (simply, R-module). If N_R is a submodule of the R-module M_R , we use the symbol $N_R \subseteq M_R$ to denote M_R is an essential extension of N_R .

The purpose of this paper is to exploit the analogy between algebraic extension of fields and essential extension of R-modules. In this analogy, the role of the algebraic closure of a field is played by the injective hull H(M) of the R-module M_R and that of a polynomial is played by an ideal R-homomorphism $f\colon I_R \longrightarrow M_R$, where I is a right ideal of R. The process of solving the equation p(x)=0 in the field F or in an algebraic extension of F will be replaced by the process of extending an ideal R-homomorphism to an R-homomorphism $f\colon R_R \longrightarrow M_R$ from R into M_R or into an essential extension of M_R .

Definition 1. An ideal R-homomorphism $f: I_R \longrightarrow M_R$ where I is a right ideal of R is called irreducible iff f cannot be extended to an ideal R-homomorphism $f: K_R \longrightarrow M_R$ where K is a right ideal of R properly containing I.

R. Baer (1) proved that an R-module M_R is injective if and only if for every right ideal I of the ring R and for any element $f \in \operatorname{Hom}_R (I_R, M_R)$ there exists an irreducible ideal R-homomorphism $f^* \in \operatorname{Hom}_R (R_R, M_R)$ given by $f^*(r) = f^*(1)r$, $\forall r \in R$ such that the following diagram commutes; that is, $f^*oj = f$, where $j: I \longrightarrow R$ is the canonical injection.

It is easily seen that if M_R is an injective R-module, the R-homomorphism f^* is completely determined by the element f^* (1) which is in M_R for if $f^*(1)=x$, then $f^*(r)=f^*(1)r=xr$, for all $r \in R$.

In general, if M_R is not injective, the element $f^*(1)$ need not be in M_R , but in some essential extension of M_R , for example, in the injective hull of the R-module M_R . Thus, we have the following definition.

Definition 2. Let $f \in \operatorname{Hom}_R(I_R, M_R)$ be an ideal R-homomorphism and let $f^* \in \operatorname{Hom}_R(R_R, M_R)$ be the extension of f. any element of the form $x = f^*(1)$ in some essential extension S_R of M_R is said to be a root of f in S_R .

In this terminology, we can restate the R. Baer's theorem as follows: an R-module M_R is injective if and only if every ideal R-homomorphism into M_R has a root in M_R .

Proposition 1. If x and y are roots of an ideal R-homomorphism f ϵ Hom_R (I_R, M_R), where I is a right ideal of R, then (x-y) I=O.

Proof: Let

f* and f be extensions of f such that $f^*(1)=x$ and f(1)=y. Thus, for any element a ϵ I, we have (x-y) a=x a-y $a=f^*(1)$ $a-\overline{f}(1)$ $a=f^*(1a)-\overline{f}(1a)$ = f (a)-f (a)=0. Hence (x-y) I=0. Q. E. D.

For each $x \in H$ (M), the injective hull of M_R , then we construct a nonzero right ideal $I_x = \{r \in R \mid x \ r \in M_R\}$. This is the first result of the following proposition.

Proposition 2. (a) I_x is a nonzero right ideal of R.

- (b). Let the function $f_x: I_x \longrightarrow M_R$ be defined by f_x (i)=x i, \forall i ϵ I_x , then f_x is irreducible.
- (c). Let the function $g:I \longrightarrow M_R$ be any ideal R-homomorphism having x as a root. Then $I \subseteq I_x$ and f_x $I_i = g$.

Proof:

(a). We show first that I_x is a right ideal of R. To do this, for any m, $n \in I_x$, then x = 0 and x = 0. Thus

x(m+n)=x m+x n=o+o=o. This shows that m+n ϵ I_x . Moreover, for any m ϵ I_x and r ϵ R, we have x(m r)=(x m) r =o r=o. Hence m r ϵ I_x . Therefore, I_x is a right ideal of R.

Next, we show that $I_x \neq 0$. It is trivial in case x = 0. So we may assume that $x \neq 0$. Since H(M) is the injective hull of M_R , it is an essential extension of M_R . Hence, by Proposition 1.2.1. (see the author's master thesis), there

exists $o \neq r$ ϵ R such that $o \neq x$ r ϵ M_R . This shows that r ϵ I_x . Hence $I_x \neq o$. (b). Suppose that there exists an ideal R-homomorphism $h: K \longrightarrow M_R$ properly extending f_x , where K is a right ideal of R properly containing I_x ; $I_x \not\equiv K$. For any $y \in K - I_x$, $y \in K$ and $y \notin I_x$. Since $y \notin I_x$, $x y \notin M_R$. Thus $h(y) - x y \neq o$. Since H(M) is an essential extension of M_R , there exists $o \neq r$ ϵ R such that $o \neq (h(y) - xy)$ r ϵ M_R . That is, $o \neq h(y)$ r - x y r ϵ M_R . Since h(y) ϵ M_R , h(y) r ϵ M_R . Hence h(y) r - (h(y) r - x y) ϵ M_R ; that is, x y r ϵ M_R . Hence x $y \in I_x$. But then (h(y) - x y) r = h (y) r - x y r = h (y $r) - f_x$ (y $r) - f_x$ (y $r) - f_x$ (y r) = o, a contradiction. Hence f_x is irreducible. (c) Let g^* be an extension of g such that $g^*(1) = x$. Then $g^*(i) = g$ (i), $\forall i$ ϵ I. Thus, $g^*(i) = g^*(1) = g^*(1)$ i = x i = g(i). Hence x i = g i i = g. So x i = g(i) <math>i = x $i = f_x$ $i = f_x$ $i = f_x$ i = g. Furthermore, for each i ϵ i = g.

The function f_x : $I_x \longrightarrow M_R$ defined by $f_x(i) = x$ i, $\forall i \in I_x$ in Proposition 2 will be called the irreducible ideal R-homomorphism of x over M_R . This is the analog of the minimum polynomial of an element of an algebraic field extension.

Definition 3. (2) Let x, y ϵ H(M). Then x and y are said to be conjugate over M_R if there exists an M-automorphism φ of H(M) (φ : H(M) \longrightarrow H(M) is an automorphism with φ (m)=m, \forall m ϵ M_R) such that φ (x)=y.

Proposition 3. Let x and y be elements of H(M) which are roots of the same irreducible ideal R-homomorphism over M_R . Then the mapping Ψ : $M+xR\longrightarrow M+yR$ defined by Ψ (m+x r)=m+yr, for m ϵ M_R , r ϵ R is an isomorphism of M+xR onto M+yR.

Proof:

The mapping Ψ is well-defined, because if m+x r=o, then x r=-m ϵ M_R , and hence r ϵ I_x . Since x and y are roots of the same irreducible ideal R-homomorphism over M_R . By Proposition 1 we have (x-y) $I_x=o$. Since (x-y) r ϵ (x-y) r ϵ (x-y) r ϵ (x-y) r ϵ or r r r. Hence r r r r r r. This shows that Ψ is well-defined.

Clearly, Ψ is onto. Finally, we show that Ψ is one-one. If

 Ψ (m+xr) =0, then m+yr=0. Thus yr=-m ϵ M_R and hence r ϵ I_y.

Since x and y are conjugate over M_R , $I_x = I_y$. Thus, by Proposition 1, we have $(x-y)I_x = 0$. Hence $(x-y)r \in (x-y)I_x = 0$, so xr = yr. Thus, m+xr = m+yr=0. This shows that Ψ is one-one. Hence Ψ is an isomorphism of M+xR onto M+yR.

Proposition 4. Let x and y be elements of H(M). Then x and y are conjugate over M_R if and only if x and y are roots of the same irreducible ideal R-homomorphism over M_R .

Proof: Suppose that x and y are roots of the same irreducible ideal R-homomorphism over M_R . Then, by Proposition 3, the mapping $\varphi: M+xR \longrightarrow M+yR$ defined by

 $\varphi(m+xr)=m+yr$ for all $m\epsilon$ M_R and all r ϵ R is an isomorphism of M+xR onto M+yR. Since H (M) is injective, and M+xR and M+yR are essential extensions of M_R , we have, by Eckmann and Schopf's theorem(3), can be extended to an isomorphism Φ : $H(M) \longrightarrow H(M)$. Thus $\Phi(x)=y$ and $\Phi(m)=m$, $\forall m$ ϵ M_R . Hence x and y are conjugate over M_R . The converse part of the proof is trivial since there exists an Φ ϵ Hom_R (H(M), H(M)) such that Φ (x)=y.

Definition 4. Let S_R be such that $M_R \subseteq {}'S_R \subseteq H(M)$. Then the set of all M-automorphisms of S_R is called the Galois group of S_R over M_R and is denoted by G(S/M).

Definition 5. A submodule S_R of H(M) is called the splitting R-module over M_R of a collection of ideal R-homomorphisms $f_i: I_i \longrightarrow M_R$ (each I_i is a right ideal of R,) if it is generated by M_R and all the roots in H(M) of the given ideal R-homomorphisms f_i .

If a R-module $S_R \subseteq H(M)$ is a splitting R-module over M_R of a collection $\{f_1\}$ of ideal R-homomorphisms of I_1 into M_R , then it is obvious that $S_R = M + xR$ where $x = f_1^*(1)$ and the summation extends over all possible extensions f_1^* of f_1 .

Proposition 5. Let S_R be such that $M_R \subseteq' S_R \subseteq H(M)$. Then S_R is a splitting R-module over M_R of a collection of ideal R-homomorphisms into M_R if and only if every M-automorphism of H(M) maps S_R onto itself (that is, for each $\varphi \in G(H(M)/M)$, $\varphi(S)=S$) and thus induces an M-automorphism of S_R .

Proof: (i). Suppose that S_R is a splitting R-module over M_R of a collection

of $\{f_i\}$ of ideal R-homomorphisms $f_i: I_i \longrightarrow M_R$. Let x_i be a root of f_i , by Proposition 4, for each $\varphi \in G(H(M)/M)$, $\varphi(x_i)$, being a conjugate of x_i , is a root of f_i and hence $\varphi(x_i) \in S_R$. Thus $\varphi(S) \subseteq S_R$. Using the same arguement apply to the inverse function $\varphi^{-1} \in G(H(M)/M)$, we have $\varphi^{-1}(S) \subseteq S_R$. Hence $\varphi(S) = S_R$. (ii). Suppose, conversely, that every $\varphi \in G(H(M)/M)$ induces an M-automorphism of S_R . We show first that if $f: I \longrightarrow M_R$ is an irreducible ideal R-homomorphism having a root in S_R , then all roots of f are also in f and f are conjugate over f and hence there exists an M-automorphism f and f are conjugate over f and hence there exists an M-automorphism f and f are f and f are conjugate over f and hence there exists an M-automorphism of f and f are f and f are conjugate over f and hence there exists an M-automorphism of f are f and f are f and f are conjugate over f and hence there exists an M-automorphism of f are f and f are f are f and f are f are f and f are f are f are f and

$$\{f_x \mid x \in S_B\}.$$
 Q. E. D.

Proposition 5 says that any splitting R-module over M_R is stable relative to M_R and H(M). (4).

Corollary 1. Let S_R be such that $M_R \subseteq 'S_R \subseteq H(M)$. Then S_R is a splitting R-module over M_R of a collection of ideal R-homomorphisms into M_R if and only if $S_R \subseteq 'E_R \subseteq H(M)$ implies $\varphi(S) = S_R$, for each $\varphi \in G(E/M)$.

Proof: Suppose that S_R is a splitting R-module over M_R of a collection of ideal R-homomorphisms into M_R . Let $\varphi \in G(E/M)$. Then, since $S_R \subseteq 'E_R$, $M_R \subseteq 'E_R$ and hence H(E)=H(M). By Eckmann and Schopf's theorem, φ can be extended to an M-automorphism Ψ of H(M). Since S_R is a splitting R-module over M_R , by Proposition 5, $\Psi(S)=S_R$. Hence $\varphi(S)=S_R$.

The proof of the converse part of the theorem is just the same as part (ii) of Proposition 5.

Q. E. D.

Proposition 6. Let S_R and N_R be splitting R-modules of M_R such that $M_R \subseteq 'N_R \subseteq 'S_R \subseteq H(M)$. Then

- (i). G(S/N) is a normal subgroup of G(S/M).
- (ii). $G(S/M)/G(S/N) \cong G(N/M)$.

Proof: For $\sigma \in G(S/M)$, since N_R is a splitting R-module of M_R , by

Galois Theory of the Essential Extensions of an R-module

Proposition 5, σ induces an M-automorphism $\sigma_N \in G(N/M)$. The mapping Φ : $G(S/M) \longrightarrow G(N/M)$ defined by $\Phi(\sigma) = \sigma_N$ for $\sigma \in G(S/M)$ is obviously an R-homomorphism. Then the kernel of Φ is clearly G(S/N). Hence G(S/N) is a normal subgroup of G(S/M). To show that Φ is also onto. For any $\sigma_N \in G(N/M)$, since $M_R \subseteq 'N_R$, σ_N can be extended to an M-automorphism

 $\varphi \in G(H(M)/M)$. By Proposition 5, since S_R is a splitting R-module over M_R , φ induces an M-automorphism $\sigma \in G(S/M)$ and $\Phi(\sigma) = \sigma_N$. Hence Φ is onto. Thus

 $G(S/M)/G(S/N) \cong G(N/M).$

Q. E. D.

REFERNCES

- (1). R. Baer: Abelian Groups which are direct summands of every containing group, Proc. Amer. Math. Soc., 46 (1940) 800-806.
- (2). J. Goldhaber & G. Ehrlich: Algebra, The Macmillan Company.
- (3). B. Eckmann and A. Schopf: Über Injektive Moduln, Archi. der Math., 4 (1953) 75-78.
- (4). I. Kaplansky: Fields and Rings, the University of Chicago Press.
- (5). J. Fraleigh: A First Course in Abstract Algebra, Addison-wesley Publishing Company.
- A. Rosenberg and D. Zelinsky: Finiteness of the Injective Hull, Math. Z., 70 (1959) 372-380.
- (7). E. Matlis: Injective Modules over Prufer Rings, Nagoya Math. J., 15 (1959) 57-69.
- (8). G. D. Findlay and J. Lambek: A Generalized Ring of Quotients I, II, Canad. Math. Bull. 2 (1958) 77-85, 155-167.