TORSION THEORY AND QUOTIENT RINGS(*)

Chiu-wen Leu

Introduction: Any ring in this paper means a ring with identity and any module means unitary right R-module.

In this paper we introduce the construction of the ring of right quotients Q(R) of the ring R with respect to a given torsion theory for the category ModR of modules.

It is well known that any module has an injective hull which is unique up to isomorphism and is divisible.

A torsion theory $(\underline{T},\underline{F})$ for ModR is a pair of nonempty classes of modules satisfying the following conditions:

$$\underline{T} = \{T \in ModR \mid Hom_R(T, H(F)) = 0, \forall F \in \underline{F}\} \text{ and }$$
 $\underline{F} = \{F \in ModR \mid Hom_R(T, H(F)) = 0, \forall T \in \underline{T}\}.$

A module M is divisible with respect to a given torsion theory $(\underline{T}, \underline{F})$ if $H(M)/M \in \underline{F}$. A submodule N of M is closed in M with respect to a given torsion theory $(\underline{T}, \underline{F})$ if $M/N \in \underline{F}$, and the closure of N is the intersection of all closed submodules containing N. Every module M has a divisible hull D(M) which is just the closure of M in H(M)

Let A be the full subcategory of ModR consisting of torsion-free divisible modules, then the inclusion functor U: A \longrightarrow ModR has a left adjoint Q whose object function Q(M)=D(M/t(M)) which is exact. Moreover, if U is representable, then Q(R) becomes a ring. This ring is called the ring of right quotients of R with respect to the torsion theory $(\underline{T},\underline{F})$.

1. Torsion Theory for Category of R-modules over integral domain R.

In the elementary algebra course one is familiar with the torsion and the torsion-free groups. Let G be an additive abelian group. An element $x \in G$ has finite order if there exists an $n \in N$ such that n = 0, the identity element of G. It is easily seen that the annihilator of x in Z, $Ann_z(x) = \{n \in Z \mid nx = 0\}$, is an

^(*) Part of this paper was supported by the National Science council.

ideal of Z, the ring of integers. Suppose now that the order of x is n, then nx =0 and hence $n \in Ann_z(x)$. Consequently $Ann_z(x) \neq 0$. Conversely, if $Ann_z(x) \neq 0$, then there exists a nonzero integer $m \neq 0$ such that mx = 0. This implies that there is an $n \in N$ which is the order of x. Thus an element $x \in G$ has finite order if and only if its annihilator $Ann_z(x) \neq 0$.

An element $x \in G$ is said to be torsion if $Ann_z(x) \neq 0$; if x is not a torsion element, it is said to be torsion-free.

Note that any additive abelian group is an Z-module. This concept can be extended to the R-modules over integral domain R.

Definition 1.1. (Levy (1)) Let R be an integral domain, and let $M_{\mbox{\tiny R}}$ be an Rmodule. Then

- (i) an element $x \in M$ is said to be a torsion element if $Ann_R(x) = \{r \in R \mid xr = 0\}$ $\neq 0$; otherwise, x is said to be a torsion-free element.
- (ii) M_R is said to be a torsion module if all its elements are torsion.; it is said to be torsion-free module if every nonzero element of it is torsion-free.

From the definition, it is obvious that the zero module is both torsion and torsion-free.

Since R is an integral domain, it has a quotient field Q. Note that any field is a vector space over itself, Thus Q_R is both projective and injective, and hence Q_R is torsion-free and injective as R-module. (2) (3).

We can state the torsion module in the following equivalent form:

Theorem 1.1. The module M_R is torsion if and only if $Hom_R(M_R,Q_R)=0$. $Proof: (\Longrightarrow)$ Suppose that M_R is torsion. For any $f \in Hom_R(M_R,Q_R)$. If $x \in M$, then x is a torsion element and hence $Ann_R(x) \neq 0$. Thus there exists a nonzero element $r \in R$ such that xr = 0. Hence f(xr) = f(0) = 0. This implies that f(x)r = 0 in the field Q. Hence f(x) = 0, $\forall x \in M$. That is, f = 0 and $Hom_R(M_R, Q_R) = 0$.

(\Leftarrow) Suppose that $\operatorname{Hom}_R(M_R,Q_R)=0$. Assume, on the contrary, that M_R is not torsion, then there is an nonzero element $x\in M$ which is torsion-free. Thus $\operatorname{Ann}_R(x)=0$. Let the mapping $f\colon xR\longrightarrow Q$ be the homomorphism defined by $f(xr)=r,\ \forall r\in R$. Clearly, $f\models 0$. Since Q_R is injective, there is an $f*\in \operatorname{Hom}_R(M_R,Q_R)$ such that $f*|_{xR}=f$. Hence $f*\not\models 0$. Therefore $\operatorname{Hom}_R(M_R,Q_R)\not\models 0$, a contradiction.

Q. E. D.

Proposition 1.1. Le M_R , N_R be modules, and let $f: M_R \longrightarrow N_R$ be R-homomorphism from M_R onto N_R . Suppose that M_R is torsion, then so is N_R .

Proof: For any $g \in \text{Hom}_R(N_R, Q_R)$, the composite function gof is an element of $\text{Hom}_R(M_R, Q_R)$. Since M_R is torsion, we have $\text{Hom}_R(M_R, Q_R) = 0$. This implies that gof = 0. Thus $\forall x \in N$, there exists an $a \in M$ such that f(a) = x. Hence g(x) = g(f(a)) = gf(a) = 0. That is g = 0. Hence $\text{Hom}_R(N_R, Q_R) = 0$. Q. E. D.

We can also state the torsion-free module in the following equivalent form:

Theorem 1.2. A nonzero module M_R is torsion-free if and only if it contains no nonzero torsion submodules.

Proof: (\Longrightarrow) Suppose that M_R is torsion-free. Let N_R be any nonzero submodule of M_R , then there exists a nonzero torsion element $x \in N$. Hence $Ann_R(x) \ne 0$. On the other hand, since $x \in M$ and M_R is torsion-free, we must have $Ann_R(x) = 0$, a contradiction.

(\Leftarrow) Suppose that M_R contains no nonzero torsion submodules. Assume that M_R is not torsion-free, then there is a nonzero torsion element $x \in M$, and hence $Ann_R(x) \rightleftharpoons 0$. But then the cyclic submodule xR is a nonzero torsion submodule of M_R , a contradiction. Q. E. D.

Proposition 1.2. Any submodule of a torsion-free module is torsion-free.

Proof: Let F be a given torsion-free module and let M_R be submodule of F. Assume that M_R is not torsion-free, then there is a nonzero torsion submodule N_R of M_R . Thus N_R is also a nonzero torsion submodule of F, contradicting the fact that F is torsion-free. Q. E. D.

Theorem 1.3. Let F be a given module. Then F is torsion-free if and only if $Hom_R(T,F)=0$ for all torsion modules T.

Proof: (\iff) Suppose that $\operatorname{Hom}_R(T,F)=o$ for all torsion modules T. Assume that F is not torsion-free, then there is a nonzero torsion submodule N_R of F. Thus the canonical injection j: $N \longrightarrow F$ is an element of $\operatorname{Hom}_R(N_R, F)=o$. Hence j=o, a contradiction.

(\Longrightarrow) Suppose that F is torsion-free. Let T be any torsion module. For any $f \in Hom_R(T, F)$. Since T is torsion, the homomorphic image f(T) is also torsion submodule of F. On the other hand, since F is torsion-free, f(T) is a torsion-free submodule of F. Hence f(T)=0 and hence f=0. Therefore $Hom_R(T, F)=0$

Theorem 1.4. Let T be a given module. Then T is torsion if and only if $Hom_R(T,F)=0$ for all torsion-free modules F.

Proof: (\Longrightarrow) Suppose that T is torsion. Let F be any fixed torsion-free module and let $f \in Hom_R(T,F)$. Since T is torsion, then f(T) is a torsion submodule of F. On the other hand, since F is torsion-free, it follows that f(T) must be torsion-free. Hence f(T) = 0 and hence f = 0. Therefore $Hom_R(T,F) = 0$. (f = 0) Suppose that f = 0 for all torsion-free modules F. Note that f = 0 is torsion-free. We have f = 0 and hence T is torsion. Q. E. D.

Let ModR denote the category of all modules over the integral domain R.

Definition 1.1. Let \underline{T} and \underline{F} be nonempty classes of modules in ModR satisfying the following conditions:

 $\underline{T} = \{T \in ModR \mid Hom_R(T,F) = 0, \forall F \in \underline{F}\}$ and

 $\underline{\underline{r}} = \{F \in ModR \mid Hom_R(T,F) = 0, \forall T \in \underline{\underline{T}}\}.$

Then the pair $(\underline{T},\underline{F})$ is called a torsion theory for ModR.

Theorem 1.5. Let \underline{T} be the class of all torsion modules in ModR, and let \underline{F} be the class of all torsion-free modules in Mod R. Then the pair $(\underline{T}, \underline{F})$ is a torsion theory for ModR. (This is called the usual torsion theory for ModR).

Proof: Clearly $o \in \underline{T}$ and $o \in \underline{F}$ and hence $\underline{T} \neq \phi$, $\underline{F} \neq \phi$. The result follows from Theorems 1.3. and 1.4. Q. E. D.

Let the pair $(\underline{T},\underline{F})$ be a torsion theory for ModR. Then we have the following properties:

(T1). T is closed under isomorphic images.

Proof: For any $T \in \underline{T}$. Let $f: T \longrightarrow T^*$ be an isomorphism from T onto T^* . For any fixed $F \in \underline{F}$ and for any $g \in Hom_R$ (T^*, F) , then the composite function $g \circ f \in Hom_R$ (T, F) = 0 because $T \in \underline{T}$. This implies that $g \circ f = 0$ and hence g = 0, Therefore $Hom_R(T^*,F) = 0$. Hence $T^* \in \underline{T}$. Q. E. D.

(T2). T is closed under factor modules.

Proof: Let $T \in \underline{T}$ and let S be any submodule of T. For any fixed $F \in \underline{F}$ and $\forall f \in Hom_R$ (T/S, F). If $\Pi: T \longrightarrow T/S$ is the canonical epimorphism, then the composite function $f \circ \Pi$ is an element of Hom_R (T, F) = 0 since $T \in \underline{T}$. This

implies that $f \circ \Pi = 0$ and hence f = 0. Hence Hom_R (T/S, F) = 0 and $T/S \in T$. (T3). T is closed under extensions.

Proof: Suppose that the sequence $o \longrightarrow M \longrightarrow T \longrightarrow T/M \longrightarrow o$ is exact, where M_R is a submodule of T_R and M_R and T/M are in \underline{T} . We want to show $T \in \underline{T}$. Since the exact sequence $o \longrightarrow M \longrightarrow T \longrightarrow T/M \longrightarrow o$ implies that the sequence $o \longrightarrow Hom_R(T/M,F) \longrightarrow Hom_R(T,F) \longrightarrow Hom_R(M,F)$ is exact. Since M_R and T/M are in \underline{T} , we have $Hom_R(M,F) = Hom_R(T/M,F) = o$. This implies that $Hom_R(T,F) = o$, $\forall F \in \underline{F}$. Hence $T \in \underline{T}$.

(T4). T is closed under direct sums.

Proof: Let $T = \sum_{i} \oplus T_{i}$, where each $T_{i} \in \underline{T}$. We want to show $T \in \underline{T}$. Since $Hom_{R}(T, F) = Hom_{R}(\sum_{i} \oplus T_{i}, F) = \prod_{i} Hom_{R}(T_{i}, F)$, it follows that $Hom_{R}(T_{i}, F) = 0$. $\forall i$. Hence $Hom_{R}(T, F) = 0$. Hence $T \in \underline{T}$.

(F1) F is closed under isomorphic images.

Proof: Let $f: F \longrightarrow F^*$ be the isomorphism from F onto F*, and $F \in \underline{F}$. Let T be any fixed module in \underline{T} , and let $g \in Hom_R(T, F^*)$, then the composite function $f^{-1} \circ g \in Hom_R(T,F) = 0$. This implies that $f^{-1} \circ g = 0$. and hence g = 0. Hence $Hom_R(T,F^*) = 0$ and F^* is in \underline{F} . Q. E. D.

(F2). F is closed under submodules.

Proof: Let F be any element of \underline{F} , and let H be any submodule of F. Since any element of $\operatorname{Hom}_R(T, H)$ is an element of $\operatorname{Hom}_R(T, F)$, we see that H must be torsion-free, and hence $H \in \underline{F}$.

(F3). F is closed under extensions.

Proof: Let F be an module and let H be submodule of F such that H and F/H are in F. Assume that F is torsion, then so are H and F/H, a contradiction.

(F4). F is closed under direct products.

Proof: Let $F = \prod_{i} F_{i}$, where each $F_{i} \in \underline{F}$, we want to show $F \in \underline{F}$. Let T be any fixed element of \underline{T} . Note that $Hom_{R}(T, F) = Hom_{R}(T, \prod_{i} F_{i}) = \prod_{i} Hom_{R}(T, F_{i})$. Thus if each F_{i} is in \underline{F} , then $Hom_{R}(T, F_{i}) = 0$, $\forall i$, and hence $Hom_{R}(T, F) = 0$. Therefore $F \in \underline{F}$.

Q. E. D.

Let C be any given class of modules in ModR. Then C generates a torsion theory for MorR in the following way:

 $\underline{\underline{F}} = \{ F \in ModR \mid Hom_R(C, F) = 0, \ \forall C \in \underline{\underline{C}} \} \text{ and }$ $\underline{\underline{T}} = \{ T \in ModR \mid Hom_R(T, F) = 0, \ \forall F \in \underline{\underline{F}} \}$

Clearly, $o \in \underline{T}$ and $o \in \underline{F}$, and hence $\underline{T} \neq \emptyset$, $\underline{F} \neq \emptyset$. Moreover, this pair $(\underline{T}, \underline{F})$ is a torsion theory for ModR.

Theorem 1.6 Let \underline{T} . \underline{F} be nonempty classes ofm odules in ModR. Then $(\underline{T},\underline{F})$ is a torsion theory for ModR if and only if \underline{T} is closed under (T1), (T2), (T3), and (T4).

Proof: (⇒) This follows from Theorem 1.5. (⇐) Let $\underline{\mathbb{C}}$ be a class of torsion modules satisfying the conditions (T1), (T2), (T3), and (T4). Let the pair ($\underline{\mathbb{T}}$, $\underline{\mathbb{F}}$) be the torsion theory generated by $\underline{\mathbb{C}}$. By our construction, it is easily seen that $\underline{\mathbb{C}} \subset \underline{\mathbb{T}}$. It suffices to prove the reverse inclusion. If $\underline{\mathbb{M}} \in \underline{\mathbb{T}}$ is such that $\underline{\mathbb{M}} \in \underline{\mathbb{C}}$. Let $\underline{\mathbb{C}} \in \underline{\mathbb{C}}$ Let $\underline{\mathbb{C}} \in \underline{\mathbb{C}}$ Let $\underline{\mathbb{C}} \in \underline{\mathbb{C}}$ Let $\underline{\mathbb{C}} \in \underline{\mathbb{C}}$ Since $\underline{\mathbb{C}} \in \underline{\mathbb{C}}$ is closed under direct sums, it follows that $\underline{\mathbb{C}} \in \underline{\mathbb{C}}$. Since $\underline{\mathbb{C}} \in \underline{\mathbb{C}}$ is a homomorphic image of $\underline{\mathbb{C}} \in \underline{\mathbb{C}}$ and $\underline{\mathbb{C}} \in \underline{\mathbb{C}} \in \underline{\mathbb{C}}$ and $\underline{\mathbb{C}} \in \underline{\mathbb{C}} = \underline{\mathbb{C}} \in \underline{\mathbb{C}} \in \underline{\mathbb{C}} = \underline{\mathbb{C}} \in \underline{\mathbb{C}} = \underline{\mathbb{C}} = \underline{\mathbb{C}} \in \underline{\mathbb{C}} = \underline{\mathbb{C}} = \underline{\mathbb{C}} = \underline{\mathbb{C}} = \underline{\mathbb{C}} = \underline{\mathbb{C}} = \underline{\mathbb$

Corollary 1.1. Let \underline{T} , \underline{F} be a given torsion theory for ModR, then every module has a largest torsion submodule T(M) and $\underline{T} = \{M \in ModR \mid T(M) = M\}$.

Theorem 1.7. Let \underline{T} , \underline{F} be nonempty classes of modules in ModR, Then $(\underline{T},\underline{F})$ is a torsion theory for ModR if and only if \underline{F} is closed under (F1), (F2), (F3), and (F4).

Proof: One can prove this by duality.

2. Torsion Theories for ModR over a general ring R.

Let ModR denote the category of all right unitary R-modules and let H(M)

denote the injective hull of the R-module M.

Lemma 2.1. Let B and C be any two R-modules such that $\operatorname{Hom}_R(B, H(C))$ =0, then $\operatorname{Hom}_R(B,C)$ =0.

Proof: For any $f \in Hom_R(B,C)$, we have $f \in Hom_R(B,H(C)) = 0$. Q. E. D. The converse of Lemma 2.1. is not always true, in fact, we have the following lemma.

Lemma 2.2. Let B and C be any two R-modules, then the following statements are equivalent:

(a) $\operatorname{Hom}_R(B,H(C))=0$, (b) $\operatorname{Hom}_R(B,E(c))=0$ for any essential extension E(c) of C, (c) $\operatorname{Hom}_R(S(b),C)=0$ for any submodule S(b) of B.

Proof: (a) \Longrightarrow (b): Let E(c) be an arbitary but fixed essential extension of C and let $f \in Hom_R(B, E(c))$. Since $C \subset E(c) \subset H(C)$, it follows that $f \in Hom_R(B, H(C))$ = 0. Hence f = 0 by (a).

- (b) \Longrightarrow (c): Let S(b) be any submodule of B, and let $f \in Hom_R(S(b),C)$, then the mapping f^* : $B \longrightarrow C$ defined by $f^*(x) = 0$, if $x \notin S(b)$ and $f^*(x) = f(x)$, if $x \in S(b)$. Clearly, $f^* \in Hom_R(B,C)$. Since C is an essential extension of itself, it follows that $f^* = 0$ and hence f = 0.
- (c) \Longrightarrow (a): Let $f \in Hom_R(B,H(C))$ be such that $f \neq o$. Since f(B) is a nonzero submodule of H(C), we get $f(B) \cap C \neq o$. Thus $\exists o \neq b \in B \ni o \neq f(b) = c \in C$. Let $B^* = bR$ be the submodule of B generated by b. Clearly, $f|_{B^*} \in Hom_R(B^*,C)$ and $f|_{B^*} \neq o$ a contradiction. Q. E. D.

It is well known that any module has an injective hull which is unique up to isomorplism.

Definition 2.1. A Lambek torsion theory for ModR is a pair(\underline{T} , \underline{F}) of nonempty classes of right R-modules satisfying the following conditions:

- $(1) \ \underline{\underline{T}} = \{ T \in ModR \mid Hom_R(T, H(F)) = 0, \forall F \in \underline{\underline{F}} \}$
- (2) $\underline{\underline{F}} = \{\underline{F} \in ModR \mid Hom_R(T, H(F)) = 0, \forall T \in \underline{\underline{T}}\}$

The elements of \underline{T} are called torsion modules and the class \underline{T} is called torsion class for the torsion theory. The elements of \underline{F} are called torsion-free and the class \underline{F} is called torsion-free class.

Theorem 2.1. Let (T,F) be a given Lambek torsion theory for McdR, then

- (a) $\operatorname{Hom}_{\mathbb{R}}(T,F)=0$, $\forall T \in T$, $\forall F \in F$.
- (b) $T \cap F = 0$.

Proof: (a) Follows from Lemma 2.1.

(b) Assume that $\underline{T} \cap \underline{F} \neq 0$, then $\exists 0 \neq M \in \underline{T} \cap \underline{F}$.

This implies that $\operatorname{Hom}_R(M, M) = o$ by (a). On the other hand, since $M \neq o$, the identity mapping i_M on M is an element of $\operatorname{Hom}_R(M, M) \neq o$. Hence $\underline{T} \cap \underline{F} = o$.

Q. E. D.

Let $T_1 = (\underline{T}, \underline{F})$ and $T_2 = (\underline{T}^*, \underline{F}^*)$ be two Lambek torsion theories for ModR. We say that T_1 is smaller than T_2 if $\underline{T} \subset \underline{T}^*$ (or $\underline{F}^* \subset \underline{F}$).

Let \underline{C} be a given nonempty class of R-modules, then \underline{C} generates a Lambek torsion theory for ModR in the following way:

$$\begin{array}{ll} \text{let } \underline{F} = & \{F \in ModR \mid Hom_R(C, H(F)) = 0, \forall C \in \underline{C}\} \\ \underline{T} = & \{T \in ModR \mid Hom_R(T, H(F)) = 0, \forall F \in F\} \end{array}$$

Clearly the pair $(\underline{T},\underline{F})$ is a Lambek torsion theory for ModR and is called the torsion theory generated by the class \underline{C} . This is the smallest torsion theory in which all elements of \underline{C} are torsion modules; that is, \underline{T} is the smallest class of torsion modules containing the given class \underline{C} .

If we let
$$\underline{T} = \{T \in ModR \mid Hom_R(T, H(C)) = 0, \forall C \in \underline{C}\}$$
 and $\underline{F} = \{F \in ModR \mid Hom_R(T, H(F)) = 0, \forall T \in \underline{T}\}.$

Then the pair $(\underline{T},\underline{F})$ is a Lambek torsion theory for ModR and is the largest Lambek torsion theory in which all elements of \underline{C} are torsion-free.

Theorem 2.2. Let \underline{T} , \underline{F} be nonempty classes of modules, then the following statements are equivalent:

- (a) The pair $(\underline{T},\underline{F})$ is a Lambek torsion theory for ModR.
- (b) \underline{T} is closed under isomorphic images, factor modules, extensions, direct sums and submodules.
- (c) $\underline{\underline{F}}$ is closed under isomorphic images, submodules, direct products, and injective hulls.
- (d) There is an idempotent radical t on ModR such that $M \subset N$ implies $M \cap t(N) = t(M)$; moreover, $\underline{T} = \{M \in ModR \mid t(M) = M\}$, $\underline{F} = \{M \in ModR \mid t(M) = 0\}$.

 Proof:
- (a) \Longrightarrow (b): i) Let $T \in \underline{T}$ and let T^* be the isomorphic image of T under f. Suppose that $g \in Hom_R(T^*, H(F))$, $F \in \underline{F}$, then $g \circ f \in Hom_R(T, H(F)) = 0$; that is, $g \circ f = 0$. But then g = 0. Hence $T^* \in \underline{T}$.

- ii) Let $\underline{T} \in T$ and let M be any submodule of T. We want to show that $T/M \in \underline{T}$. For any $f \in Hom_R(T/M, H(F))$, $\forall F \in \underline{F}$ is such that $f \neq o$. Let $g \in Hom_R(T,T/M)$ be the canonical epimorphism, then $f \circ g \neq o$ because $f \neq o$, but then $f \circ g \in Hom_R(T,H(F)) = o$, a contradiction. Hence f = o and $T/M \in \underline{T}$.
- (iii) Let M be a submodule of T such that $M,T/M \in \underline{T}$. Claim: $T \in \underline{T}$. Since the sequence $o \longrightarrow M \longrightarrow T \longrightarrow T/M \longrightarrow o$ is exact, we have the sequence $o \longrightarrow Hom_R(T/M,H(F)) \longrightarrow Hom_R(T,H(F)) \longrightarrow Hom_R(M,H(F))$ is also exact. Since $Hom_R(T/M,H(F)) = Hom_R(M,H(F)) = o$, $\forall F \in \underline{F}$, we must have $Hom_R(T,H(F)) = o$. $\forall F \in \underline{F}$. Hence $T \in \underline{T}$.
- (iv) Let $T = \sum_{i} \oplus T_{i}$, where each $T_{i} \in \underline{T}$. Since $Hom_{R}(T, H(F)) = Hom_{R}(\sum_{i} \oplus T_{i}, H(F)) = \prod_{i} Hom_{R}(T_{i}, H(F)) = 0$, it follows that $T \in \underline{T}$.
- (v) Let $T \in T$, and let M be a submodule of T. We want to show that $M \in T$. For any $f \in Hom_R(M, H(F))$. Since H(F) is injective, there exists an $g \in Hom_R(T, H(F)) = 0$ such that $g|_{M} = f$. But then f = 0 since g = 0.
- (a) \Longrightarrow (c): The same as in the proof of (a) implies (b).
- (b) \Longrightarrow (a): Let \subseteq be a class of modules which is closed under isomorphic images, factor modules, extensions, direct sums and submodules. Let $(\underline{T},\underline{F})$ be the Lambek torsion theory generated by the class \subseteq , where

 $\underline{\underline{F}} = \{ F \in ModR \mid Hom_R(C, H(F)) = 0, \forall C \in \underline{\underline{C}} \}, \\ \underline{\underline{T}} = \{ T \in ModR \mid Hom_R(T, H(F)) = 0, \forall F \in \underline{\underline{F}} \}.$

Claim: C = T. Since C = T by construction, it suffices to show that T = C. To do this, let C = T and C = T and C = T. Let C = T. Let C = T be the sum of all submodules of C = T which are in C = T. Let C = T be the direct sum of all torsion submodules of C = T in C = T. Let C = T be the direct sum. Since C = T is a homomorphic image of C = T in follows that C = T and hence C = T in C = T. To show that C = T and hence C = T in C = T in suffices to show that C = T in C = T in any C = T and C = T in C = T and C = T in any C = T and C = T in any C = T in any C = T and C = T in any C = T in any

(c) \Longrightarrow (a): The same as the proof in (b) \Longrightarrow (a).

(b) \Longrightarrow (d): As in the proof of (a) \Longrightarrow (b) it is easily seen that every module M

has a largest submodule t(M) belonging to \underline{T} , (t(M)) is called the torsion submodule of M). Moreover, (i) $M \in \underline{T}$ if and only if t(M) = M. In this case, $\underline{T} = \{M \in ModR \mid t(M) = M\}$. (ii) $M \in \underline{F}$ if and only if t(M) = 0. In this case, $\underline{F} = \{M \in ModR \mid t(M) = 0\}$.

Note that t: ModR \rightarrow ModR is an objection function.

 $M \subset N \Longrightarrow t(M) \subset t(N)$ and $t(M) \subset M$. Hence $t(M) \subset M \cap t(N)$.

Let $x \in M \cap t(N) \Longrightarrow x \in M$ and $x \in t(N) \Longrightarrow xR \subset t(N) \in \underline{T}$. Since \underline{T} is closed under submodules, we have $xR \in \underline{T}$ and $xR \subset M$. Hence $xR \subset t(M)$. This implies that $x \in t(M)$. Hence $M \cap t(N) = t(M)$. Clearly, the object function t has the following properties:

- (i) $t(M) \subset M$, (ii) For any $f \in Hom_R(M,N) \Longrightarrow f(t(M)) \subset N \Longrightarrow f(t(M)) \in \underline{T}$ because $t(M) \in \underline{T}$ and hence $f(t(M)) \subset t(N)$, (iii) Since $t(M) \subset M$ we have $t(t(M)) = M \cap t(M) = t(M)$. Consequently t is an idempotent radical on ModR.
- $(d)\Longrightarrow(a)$: Suppose there exists an idempotent radical t on ModR such that $M\subset N\Longrightarrow M\cap t(N)=t(M)$. Then $\underline{T}=\{M\in ModR\mid t(M)=M\}$, $\underline{F}=\{M\in ModR\mid t(M)=o\}$. Clearly the pair $(\underline{T},\underline{F})$ is a torsion theory for ModR. For if $M\in\underline{T}^c$ and $f\in Hom_R(M,H(F))$, $F\in\underline{F}$, then t(M)=M and t(F)=o. Since t is an idempotent radical, it follows that $f(M)=f(t(M))\subset t(H(F))$. Since $F\subset H(F)$, we have $o=t(F)=F\cap t(H(F))$. Since H(F) is an essential extension of F, it follows that t(H(F))=o. This implies that f(M)=o. Hence f=o.

Next for any $F \in \underline{F}$, t(F) = o. If $g \in Hom_R(T, H(F))$, $T \in \underline{T}$, Since $T \in \underline{T}$, t(T) = T. Since t is an idempotent radical, it follows that $g(T) = g(t(T)) \subset t(H(F))$ and $o = t(F) = F \cap t(H(F))$. But then t(H(F)) = o and hence g(T) = o. Thus g = o

Corollary 2.1. Let $(\underline{T},\underline{F})$ be a given Lambek torsion theory for ModR, then every module has a unique torsion submodule t(M).

Corollary 2.2. There is a one-one correspondence between torsion theories and torsion radicals (that is, an idempotent t satisfying the condition (d) in Theorem 2.2).

Remark: Let $(\underline{T}, \underline{F})$ be a given Lambek torsion theory for ModR, then \underline{F} is a reflective subcategory of ModR and \underline{T} is a coreflective subcategory of ModR. Thus the inclusion functor $\underline{F} \longrightarrow \text{ModR}$ has a left adjoint ModR $\longrightarrow \underline{F}$ which maps M to M/t(M).

3. Filters (or, Pretopology)

Definition 3.1. An idempotent filter $\underline{\mathbf{p}}$ on \mathbf{R} is a nonempty class of right ideals of \mathbf{R} satisfying the following conditions:

- (1) $D \in D$ and $D \subset K$ (K is a right ideal of R) $\Longrightarrow K \in D$.
- (2) $D \in D$ and $a \in R \implies a^{-1}D = \{r \in R \mid ar \in D\} \in D$.
- (3) If D, $K \in \underline{\mathbb{D}}$, then $D \cap K \in \underline{\mathbb{D}}$. Clearly, $R \in \underline{\mathbb{D}}$ follows from (1) and $\underline{\mathbb{D}} \neq \emptyset$.

Lemma 3.1. Let $(\underline{T},\underline{F})$ be a given Lambek torsion theory for ModR and let \underline{D} be the class of all dense right ideals (*) of R, then \underline{D} is an idempotent filter on R.

Proof: Clearly, $R \in \mathbb{D}$ and hence $\mathbb{D} \neq \emptyset$.

- i) $\forall D \in \mathbb{D}$ and \forall right ideal K of R with $D \subset K$. Since $R/K \cong R/D/D/K$ (as modules) and $R/D \in \mathbb{T}$, and \mathbb{T} is closed under isomorphic images and factor modules, we have $R/K \in \mathbb{T}$. Hence $K \in \mathbb{D}$.
- ii) $\forall D \in \underline{\mathbb{D}}$ and $\forall a \in R$, then $a^{-1}D$ is a right ideal of R. By i) $D + a^{-1}D \in \underline{\mathbb{D}}$ and hence $R/D + a^{-1}D \in \underline{\mathbb{T}}$. Since $R/a^{-1}D \cong R/(D + a^{-1}D)/(D + a^{-1}D)/(a^{-1}D)$, we have $R/a^{-1}D \in \underline{\mathbb{T}}$. Hence $a^{-1}D \in \underline{\mathbb{D}}$.
- iii) $\forall D$, $K \in \underline{\mathbb{D}}$, then R/D, $R/K \in \underline{\mathbb{T}}$. Since $D \cap K \subset D \subset R$, it follows that $R/D \cap K \cong (R/D)/(D/D \cap K) \in \underline{\mathbb{T}}$ since $\underline{\mathbb{T}}$ is closed under isomorphic images and factor modules. Hence $R/D \cap K \in \underline{\mathbb{T}}$. and $D \cap K \in \underline{\mathbb{D}}$.

Theorem 3.1. There is a one-one correspondence between torsion theories and idempotent filters.

Proof: By Lemma 3.1. we know that given any Lambek torsion theory $(\underline{T},\underline{F})$, there correspondence an idempotent filter D of dense right ideals of R relative to $(\underline{T},\underline{F})$.

Conversely, if \underline{D} is a given idempotent filter. Let

 $\underline{T} = \{M \in ModR \mid Ann_R(m) \in \underline{D}, \ \forall m \in M\}$ and

 $F = \{F \in ModR \mid Hom_R(T, H(F)) = 0, \forall T \in T\}.$

Then the pair $(\underline{T},\underline{F})$ is a torsion theory for ModR.

Q. E. D.

Definition 3.2. Let $(\underline{T},\underline{F})$ be a given torsion theory for ModR and let $M \in$

^{*:} c.f. Definition 3.2. (a)

ModR. Then

- (a) A submodule N of M is said to be dense in M relative to $(\underline{T},\underline{F})$ if $M/N \in \underline{T}$.
- (b) A submodule N of M is said to be closed in M relative to $(\underline{T},\underline{F})$ if $M/N \in \underline{F}$.
- (c) The closure of the submodule N in M is the intersection of all closed submodules of M containing N.

Let $(\underline{T},\underline{F})$ be a given Lambek torsion theory for ModR and let $M \in ModR$. If D(M) denotes the closure of M in H(M), then it is not difficult to verify the following things:

- (i) D(M) is an essential extension of M and $M \subset D(M) \subset H(M)$.
- (ii) D(M)/M is a torsion module; that is, M is dense in D(M).

Definition 3.3. Let $(\underline{T},\underline{F})$ be a given Lambek torsion theory for McdR. Then a module $M \in ModR$ is said to be divisible relative to $(\underline{T},\underline{F})$ if $H(M)/M \in \underline{F}$.

Theorem 3.2. Let $(\underline{T},\underline{F})$ be a given Lambek torsion theory for McdR and let $M \in ModR$, then the following statements are equivalent:

- (a) M is divisible relative to (T,F).
- (b) For any dense right ideal D of R and any $f \in Hom_R(D,M)$, \exists an $m \in M$ such that f(d) = md, $\forall d \in D$.
- (c) If module N is dense in the module K, then any $f \in Hom_R(N, M)$ can be extended to an element $f * \in Hom_R(K, M)$.

Proof:

(a) \Longrightarrow (b): Suppose that M is divisible, then $H(M)/M \in F$. Let D be any dense $o \longrightarrow D \longrightarrow R$ right ideal of R and let $f \in Hom_R(D,M)$, then $f \in Hom_R(D,H(M))$. Since H(M) is injective, R. Baer's theorem assures that an element $x \in H(M)$ such that f(d) = xd, $\forall d \in D$.

Claim: $x \in M$.

Note that $f(d) = xd \in M$, $\forall d \in D$, we have $D \subset x^{-1}M$. Since D is dense, it follows that $x^{-1}M$ is also dense in R. Hence $R/x^{-1}M \in \underline{T}$. Note that $xR + M/M \cong R/x^{-1}M \in \underline{T}$. But $H(M)/M \in \underline{F}$. This implies that xR + M = M and hence $x \in M$.

 $(b) \Longrightarrow (c) \text{: Consider the following diagram: } \forall f \in Hom_R(N,M). \text{ Let } C \text{ be the collection of all couples } (D, h) \text{ where } N \subset D \subset K \text{ and } h \in O \longrightarrow N \longrightarrow K(exact) \\ f \downarrow \qquad \qquad \text{Hom}_R(D,M) \text{ such that } h|_N = f. \text{ Define a partial ordering } \text{``s'' on } C \text{ as follows:} \\ M \qquad \qquad (D_1,h_1) \leqslant (D_2,\ h_2) \text{ if and only if } D_1 \subset D_2 \text{ and } h_2|_{D_1} = h_1.$

Then (C, \leq) is a poset. By Zorn's Lemma, there is a maximal element, say, (K*,g), in C. We shall show that K*=K. If K* \neq K, then $\exists x_{\circ} \in K-K*$. Consider the right ideal $D=x_{\circ}^{-1}K*=\{r\in R\mid x_{\circ}r\in K*\}=\{r\in R\mid (x_{\circ}+K*)r=K*\}=Ann_{R}(x_{\circ}+K*), x_{\circ}+K*\in K/K*$. Since

 $K/K*\cong (K/N)/(N/K*)$ and $K/N\in \underline{T}$, it follows that $K/K*\in \underline{T}$. This implies that D is dense in R. Now consider the mapping $f^*: D\longrightarrow M$ defined by $f^*(d)=f(x_\circ d)$, $\forall d\in D$, is an R-homomorphism. By (b), $\exists m\in M$ such that $f(x_\circ d)=md$, $\forall d\in D$. Thus we may extend g to $h: K*+x_\circ R\longrightarrow M$ defined by $h(k+x_\circ r)=g(k)+mr$ (note that $f(x_\circ r)=mr$, $\forall r\in R$ and $x_\circ r\in K*$), a contradiction. Hence K=K*.

(c) \Longrightarrow (a): Let D(M) be the closure of M in H(M), then $D(M)/M \in \underline{T}$. Thus, by (c) the identity mapping i_M on M can be extended to f: $D(M) \longrightarrow M$. Since D(M) is an essential extension of M, it follows that f must be a monomorphism. Hence the injection from $M \longrightarrow D(M)$ must be onto. Thus M is closed in H(M).

Corollary 3.1. Any injective module is divisible and hence the injective hull of a module is divisible.

Remark: The closure D(M) of the module M in H(M) is called the divisible hull of M. Note that D(M) is divisible.

Let $(\underline{T},\underline{F})$ be a given torsion theory for ModR in which all modules are torsion, then $D(M) = \cap \{C \in ModR \mid C \text{ is closed in } H(M) \text{ and } M \subset C\} = \cap \{C \in ModR \mid H(M)/C \in F = 0 \text{ and } M \subset C\} = H(M), \text{ the injective hull of } M.$

4. Construction of Rings and Modules of Quotients.

Given a Lambek torsion theory $(\underline{T},\underline{F})$ for ModR and given $M \in ModR$. Then the divisible hull of M,D(M), is an object function D from ModR to ModR. It is not, in general, a functor $M \longrightarrow D(M)$ natural in M, but the restriction of D to the category F of torsionfree modules is a functor, in fact, it is the left adjoint of the inclusion functor $\underline{A} \longrightarrow \underline{F}$, where \underline{A} is the category of torsionfree divisible modules. To prove this, let $F \in \underline{F}$. Since $D(F)/F \in \underline{T}$, it follows that F is dense in D(F). Thus any $f \in Hom_R(F,A)$ can be extended to $f \in Hom_R(D(F),A)$, $A \in \underline{A}$. Since $D(F)/F \in \underline{T}$ and $A \in \underline{F}$, it follows that $Hom_R(D(F)/F,A) = 0$. Hence the extension $f \in F$ of $f \in F$ is uniquely determined by $f \in F$. Since $D(F) \in F$ is divisible and $D(F) \in F$ because D(F) is an essential extension of F. and H(D(F)) = H(F).

Hence $\operatorname{Hom}_{\mathbb{R}}(T,H(D(F))) = \operatorname{Hom}_{\mathbb{R}}(T,H(F)) = o$ since $F \in \underline{F}$. Thus $D(F) \in \underline{\Lambda}$. Hence $D: F \longrightarrow D(F)$ from \underline{F} to \underline{A} is the left adjoint of the inclusion functor from \underline{A} to \underline{F} .

Recall that the inclusion functor from \underline{F} to ModR has a left adjoint. Then the composite of the left adjoints $\underline{A} \longrightarrow \underline{F}$ and $\underline{F} \longrightarrow \text{ModR}$ has a left adjoint, say Q, whose object function is defined by Q(M) = D(M/t(M)).

Remark: Q(M) is called the module of quotients of M, and Q the quotient functor relative to the given Lambek torsion theory (T,F).

Another construction of Q is as follows:

Let \underline{P} be the class of the dense right ideals of R. We define a partial ordering on \underline{P} as follows:

 $I_1 \leqslant I_2$ if and only if $I_1 \supset I_2$. Then the pair (D,\leqslant) is a poset. If I_1 , $I_2 \in \underline{\mathbb{D}}$, then the intersection $I_1 \cap I_2$ of I_1 and I_2 is a dense right ideal of R and hence $I_1 \cap I_2 \in \underline{\mathbb{D}}$. Moreover, $I_1 \leqslant I_1 \cap I_2$ and $I_2 \leqslant I_1 \cap I_2$. Hence D is a directed set. Let $M \in ModR$. Then foreach element $D \in \underline{\mathbb{D}}$, there corresponds a $Hom_R(D,M) \in Mod Z$. If $D_1 \leqslant D_2$, we let $f(D_2,D_1)$: $Hom_R(D_1,M) \longrightarrow Hom_R(D_2,M)$ by letting $f(D_2,D_1)(g) = g|_{D_2}$. $\forall g \in Hom_R(D_1,M)$. It is easily seen that $f(D,D) = Hom_R(D,M)$, $\forall D \in \underline{\mathbb{D}}$ and if $D_1 \leqslant D_2 \leqslant D_3$, then $f(D_3,D_2) \circ f(D_2,D_1) = f(D_3,D_1)$. Thus $(\{Hom_R(D,M)\} \ D \in \underline{\mathbb{D}}, \{f_D\} \ D \in \underline{\mathbb{D}})$ forms a direct system. The direct limit lim $Hom_R(D,M)$ of this system

exists and is denoted by L(M); that is, $L(M)\!=\!\lim\limits_{D\in\underline{\mathbb{D}}}$ $Hom_{\mathtt{R}}(D,M).$ L(M) can

be easily made into an R-module. Moreover, $L(M) = \bigcup_{D \in \underline{D}} f_D(Hom_R(D,M))$, where f_D : $Hom_R(D,M) \longrightarrow L(M)$ is the canonical injection.

Theorem 4.1. Let $(\underline{T}, \underline{F})$ be a given torsion theory for ModR and let F be any torsionfree module, then D(F)=L(F).

Proof: For each $D \in \mathbb{D}$, let f_D : $Hom_R(D,F) \longrightarrow L(F)$ be the canonical injection. Now $\forall f \in Hom_R(D,F) \Longrightarrow f \in Hom_R(D,D(F))$. Since D(F) is divisible and D is dense, it follows that \exists an $x_D(f) \in D(F)$ such that $f(d) = x_D(f)d$, $\forall d \in D \cdots (A)$.

Then x_D : Hom_R(D,F) \longrightarrow D(F). Since L(F)=lim Hom_R(D,F), it follows that \exists D \in D

 $x \in Hom_R(L(F), D(F))$ such that xo $f_D = x_D$, $\forall D \in \underline{D} \cdots (B)$.

Claim: x is an isomorphism.

i) show that x is one-one:

Let $m \in L(F)$ be such that x(m) = o. Since $L(F) = \bigcup_D f_D(Hom_R(D,F))$, there $D \in \underline{D}$ exists a dense right ideal of R, $D \in \underline{D}$ and an $f \in Hom_R(D,F)$ such that $m = f_D(f)$. Thus, by (A), $o = x(m) = x(f_D(f)) = x_D(f)$. Hence for any $d \in D$, $f(d) = x_D(f)d = o$. That is, f = o and hence $m = f_D(f) = o$. This shows that x is one-one.

ii) show that x is onto:

For any $n \in D(F)$, since F is dense in D(F), it follows that $\exists D \in D$ such that $nD \subset F$. We define the mapping f: $D \longrightarrow F$ by letting f(d) = nd, $\forall d \in D$. Then $\forall d \in D$, $x_D(f)d = f(d) = nd \implies x_D(f) = n$. From i) and ii) we conclude that $D(F) \cong L(F)$.

Corollary 4.1. If M is a torsion-free divisible module, then $Q(M) = D(M/t(M)) \cong L(M/t(M))$ since M/t(M) is torsionfree.

Theorem 4.2. Let $(\underline{T},\underline{F})$ be a given Lambek torsion theory for ModR, then the category \underline{A} of torsion-free divisible modules is Abelian and the inclusion functor $\underline{A} \longrightarrow \text{ModR}$ has a left adjoint Q which is exact.

Proof: For any $M,N \in \underline{A}$, $Hom_R (M,N)$ is an aditive abdelian group. Moreover, the associative laws of homomorphisms hold in \underline{A} : (g+h) f=gf+hf and f(g+h)=fg+fh. Thus \underline{A} is an additive category. Clearly, the zero module \underline{O} is in \underline{A} . Let $M,N\in \underline{A}$, then the direct sum $\underline{M}\oplus N$ is torsionfree and $\underline{H}(\underline{M}\oplus N)=\underline{H}(\underline{M})\oplus \underline{H}(N)$, so $\underline{H}(\underline{M}\oplus N)/\underline{M}\oplus N=\underline{H}(\underline{M})/\underline{M}\oplus \underline{H}(N)/\underline{N}$. Since \underline{M} , $\underline{N}\in \underline{A}$, it follows that $\underline{H}(\underline{M})/\underline{M}\in \underline{F}$ and $\underline{H}(\underline{N})/\underline{N}\in \underline{F}$. Hence $\underline{H}(\underline{M})/\underline{M}\oplus \underline{H}(\underline{N})/\underline{N}$ \underline{C} . Thus, \underline{A} is closed under finite direct sums (= products). For any $\underline{M},\underline{N}\in \underline{A}$ and $\underline{V}\in \underline{H}om_R(\underline{M},\underline{N})$, since ker \underline{f} is a submodule of \underline{M} and $\underline{M}\in \underline{F}$, it follows that ker $\underline{f}\in \underline{F}$. Also if $\underline{f}:\underline{M}\longrightarrow N$ is a monomorphism, then ker $\underline{f}=\underline{O}$ and hence it is a kernel in \underline{A} . The cokernel of $\underline{f}:\underline{M}\longrightarrow N$ in \underline{A} is $\underline{N}\longrightarrow F\longrightarrow Q(F)$, where $\underline{N}\longrightarrow F$ is the cokernel of $\underline{f}:\underline{M}\longrightarrow N$ in \underline{A} map $\underline{f}:\underline{M}\longrightarrow N$ is an epimorphism if and only if its cokernel in \underline{M} . Note that a map $\underline{f}:\underline{M}\longrightarrow N$ is an epimorphism if and only if its cokernel of ker \underline{f} in \underline{A} .

Consequently, \underline{A} is an Abelian category. Note that in an Abelian category \underline{A} , the following things concerning the left adjoint Q of the inclusion functor U: $A \longrightarrow ModR$ are equivalent:

(i) Q preserves monomorphisms, (ii) Q is left exact, (iii) Q is exact, (iv) UoQ preserves monomorphisms, (v) UoQ is left exact. Thus it is easily seen that the functor $M \mapsto M/t(M)$ and the functor $F \longrightarrow D(F)$ for $F \in F$ preserve monomorphisms. Hence Q is exact.

Q. E. D.

Definition 4.1. Let \underline{A} be any category and let \underline{U} : $\underline{A} \longrightarrow S$, where S is the cate gory of sets. A universal element for \underline{U} is a pair (s_{\circ}, A_{\circ}) consisting of an object A_{\circ} of \underline{A} and an element $s_{\circ} \in U(A_{\circ})$ satisfying the following property:

For any object $A \in \underline{A}$ and for any $s \in U(A)$, there exists a unique mapping $f: A_{\circ} \longrightarrow A$ such that $U(f)(s_{\circ}) = s$.

If (s_o, A_o) is a universal element for the functor U, then for each object $A \in \underline{A}$, the assignment $f \mapsto U(f)(s_o)$ is a bijection ϕ_A : $hom(A_o, A) \cong U(A)$ of sets.

Definition 4.2. Let U: $\underline{A} \longrightarrow S$ be any functor from the category \underline{A} to the category of sets. A representation of U is a pair (A_o, ϕ) consisting of an object $A_o \in \underline{A}$ and a family of bijections ϕ_A : $hom(A_o, A) \cong U(A)$ given by $\phi_A(f) = U(f)(s_o)$ where $s_o = \phi_{A_o}(1A_o)$ natural in A. A functor U with such a representation is said to be representable.

Lemma 4.1. For each functor U: $\underline{A} \longrightarrow S$, the formula $s_o = \phi_{A_o}$ (1A_o) and $\phi_A(f) = U(f)(s_o)$ for 1A_o: A_o \longrightarrow A_o the identity and f: A_o \longrightarrow A any morphism, establish a bijection from representations (A_o, ϕ) of U to universal elements (s_o, A_o) for U.

Proof: Let (A_{\circ}, ϕ) be a representation of U. Since ϕ is natural, the following diagram commutes for each $f: A_{\circ} \longrightarrow A$.

$$1A_{\circ} \in hom(A_{\circ}, A_{\circ}) \xrightarrow{\phi_{A_{\circ}}} U(A_{\circ})$$

$$\downarrow f_{*} \quad \phi_{A} \qquad \downarrow U(f)$$

$$f_{*}(1A_{\circ}) = f \in hom(A_{\circ}, A) \longrightarrow U(A)$$
where $f_{*}(g) = f \circ g$.

Let $s_{\circ} = \phi_{A_{\circ}}(1A_{\circ})$. Since the above diagram commutes we have $\phi_{A}(f) = U(f)(s_{\circ})$ But ϕ_{A} is a bijection, so each element $s \in U(A)$, \exists a $f \in \text{hom}(A_{\circ}, A)$ such that $\phi_{A}(f) = s$, and so $U(f)(s_{\circ}) = s$. Thus (s_{\circ}, A_{\circ}) is a universal element for U. Conversely, let (s_{\circ}, A_{\circ}) be a universal element for the functor U. For each object $A \in A$, define ϕ_{A} : hom $(A_{\circ}, A) \longrightarrow U(A)$ by $\phi_{A}(f) = U(f)(s_{\circ})$. Since (s_{\circ}, A_{\circ}) is a

universal element for U, any $s \in U(A)$, $f \in hom(A_{\circ}, A)$, $U(f)(s_{\circ}) = s$. Hence ϕ_A is a bijection. It is natural in A, for any g: $A \longrightarrow B$ gives $U(g)\phi_A(f) = U(g)U(f)(s_{\circ}) = U(g \circ f)(s_{\circ}) = \phi_B(g \circ f) = \phi_B g_*(f)$. Hence (A_{\circ}, ϕ) is a representation of U.

Q. E. D.

Theorem 4.3. Let \underline{A} be an additive category and U: $\underline{A} \longrightarrow ModR$ be an additive representable functor with representation (A_0, ϕ) ; then

- (a) U(A_o) can be made into a ring, with unity element s_o, where $s_o = \phi A_o (1A_o)$.
- (b) For each object $A \in \underline{A}$, U(A) is a right $U(A_o)$ -module.

Proof: (a) Since U is representable by (A_{\circ}, ϕ) , we see that $\phi_{A_{\circ}}$: Hom (A_{\circ}, A_{\circ}) \cong U (A_{\circ}) , a bijection. The proof of the remaining part is just the same as in the proof of the *Lemma 4.1*. except the operations preserving.

Note that (s_o, A_o) is a universal element for U, then for each $s \in U(A_o)$, \exists map $s^*: A_o \longrightarrow A_o \ni U(s^*)(s_o) = s$. Now we define $s_1 s_2 = U(s_1 * s_2 *) (s_o) = U(s_1 *) U(s_2 *) (s_o) = U(s_1 *)(s_2)$. Clearly, $(s_1 s_2) * = s_1 * s_2 *$ and $s_1 s_o = U(s_1 *)(s_o) = s_1$. Since $U(s_o *)(s_o) = s_o$, we see that $s_o * = 1A_o$, and hence

 $s_o s_i = U(s_o *)(s_i) = s_i$. Hence $U(A_o) \cong Hom_R(A_o, A_o)$ as rings. (b) $\forall a \in U(A)$, $\forall s \in U(A_o)$, we define

 $as=U(a*s*)(s_o)=U(a*)$ $U(s*)(s_o)=U(a*)(s)$. It is easily checked that U(A) becomes a right $U(A_o)$ -module. Q. E. D.

Finally, let $(\underline{T},\underline{F})$ be a given torsion theory for ModR and let \underline{A} be the full subcategory of ModR consisting of all torsion-free divisible modules. It is an additive category.

By Theorem 4.2. the inclusion functor U: $A \longrightarrow ModR$ has a left adjoint Q which is exact. Theorem 4.3. assures that Q(R) is a ring and is called the ring of right quotients of R with respect to the given torsion theory.

In particular, if we take the Lambek torsion theory $(\underline{T}, \underline{F})$ to be the largest torsion theory for which R_R is torsion-free, then we obtain the Utumi's maximal ring of right quotients of R.

REFERENCES

- 1. L. Levy, Torsion-free and divisible modules over non-integral domains, Canad. Math, Bull., Vol. 15 (1963), pp. 132-151.
 - 2. J. Lambek, Lectures on Rings and Modules, Blaisdell, Waltham, 1966.
 - 3. J. Lambek, Torsion Theories, Additive Semantics and Rings of Quotients, Springer

Lecture Notes 177, 1971.

- 4. C. Faith, Lectures on injective Modules and Quotient Rings, Springer Lecture Notes 49, 1967.
 - 5. B. Stenström, Rings and Modules of Quotients, Springer Lecture Notes 237, 1971.
 - 6. I. Kaplansky, Infinite Abelian Groups, Univ. of Michigan Press, Ann Arber, 1954.
- 7. S. C. Dickson, A torsion Theory for Abelian Categories, Trans. Amer. Math. Soc., 21 (1966), 223-235.