TORSION THEORY AND QUOTIENT RINGSC

Chiu-wen Leu

Introduction: Any ring in this paper means a ring with identity and any mod-
ule means unitary right R-module.

In this paper we introduce the construction of the ring of right quotients
Q(R) of the ring R with respect to a given torsion theory for the category
ModR of modules.

It is well known that any module has an injective hull which is unique up
to isomorphism and is divisible.

A torsion theory (T,F) for ModR is a pair of nonempty classes of modules
satisfying the following conditions:

T={TeModR | Homs(T,H(F))=0, \/F&F} and
F={FeModR | Homx(T,H(F))=0, ¥TeT}

A module M is divisible with respect to a given torsion theory (T, F) if
HM)/MeF. A submodule N of M is closed in M with respect to a given tor-
sion theory (T, F) if M/NeF, and the closure of N is the intersection of all
closed submodules containing N. Every module M has a divisible hull D(M)
which is just the closure of M in H(M)

Let A be the full subcategory of ModR consisting of torsion-free divisible
modules, then the inclusion functor U: A — ModR has a left adjoint Q whose
object function Q(M)=D(M/t(M)) which is exact. Moreover, if U is represen-
table, then Q(R) becomes a ring. This ring is called the ring of right quotients
of R with respect to the torsion theory (T,F).

1. Torsion Theory for Category of R-modules over integral domain R.

In the elementary algebra course one is familiar with the torsion and the
torsion-free groups. Let G be an additive abelian group. An element x&G has
finite order if there exists an neN such that n x=o0, the identity element of G.
It is easily seen that the annihilator of x in Z, Annz(x)={neZ | nx=o0}, is an
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ideal of Z, the ring of integers. Suppose now that the order of x is n, then nx
=0 and hence n€Annz(x). Consequently Annz(x)>0. Conversely, if Annz(x)
2:0, then there exists a nonzero integer m=20 such that mx=o. This implies
that there is an n€N which is the order of x. Thus an element x=G has finite
order if and only if its annihilator Annz(X)=c0.

An element xeG is said to be torsioin if Annz(x)=0; if x is not a torsion
element, it is said to be torsion-free.

Note that any additive abelian group is an Z-module. This concept can be
extended to the R-modules over integral domain R.

Definition 1.1. (Levy (1)) Let R be an integral domain, and let Mz be an
Rmodule. Then
(i) an element x&M is said to be a torsion element if Anng (x)={reR |xr=o0}
=c0; otherwise, x is said to be a torsion-free element.
(ii) Mg is said to be a torsion module if all its elements are torsion.; it is said
to be torsion-free module if every nonzero element of it is torsion-free.
From the definition, it is obvious that the zero module is both torsion and tor-
sion-free.

Since R is an integral domain, it has a quotient field Q. Note that any field
is a vector space over itself, Thus Qs is both projective and injective, and hence
Q= is torsion-free and injective as R-module. (2) (3).

We can state the torsion module in the following equivalent form:

Theorem 1.1. The module Mz is torsion if and only if Homs(Mg,Qr)=o0.

Proof: (==>) Suppose that Mr is torsion. For any feHomzs(M:,Qr). If x&
M, then x is a torsion element and hence Annz (x) 0. Thus there exists a
nonzero element r&R such that xr=o0. Hence f(xr)=f(0o)=o0. This implies that
f(x)r=o in the field Q. Hence {(x)=o0, \/x&M. That is, f=0 and Homz(Mz, Qr)
=o.
(&) Suppose that Homr (Mr,Qr)=0. Assume, on the contrary, that Mz is not
torsion, then there is an nonzero element x&M which is torsion-free. Thus Anns(x)
=o0. Let the mapping f: xR —-> Q be the homomorphism defined by f(xr)=
r, /rER. Clearly, f2co. Since Qr is injective, there is an f*<Homz(Ms,Qr)such
that f*|  =f. Hence f* 2co. Therefore Homr(Mzr,Qzr) c0, a contradiction.

Q. E. D.

— 72 —



Proposition 1.1. Le Mgz, Ne be modules, and let f: Mz — N& be R-homeo-
morphism from Mg onto Nk. Suppose that Mz is torsion, then so is Nr.

Proof: For any ge&Homr(Nr,Qs), the composite function gof is an element
of Homg(Mz,Qr). Since Mz is torsion, we have Homr (Mr,Qr)=o0. This implies
that gof=o0. Thus \“/x&N, there exists an a € M such that f(a)=x. Hence g(x)
=g(f(a))=gf(a)=o0. That is g=o0. Hence Homz(Ng,Qr)=o0. Q. E. D.

We can also state the torsion-free module in the following equivalent form:

Theorem 1.2. A nonzero module Mz is torsion-free if and only if it contains
no nonzero torsion submodules.

Proof: (=) Suppose that Mz is torsion-free. Let Nrz be any nonzero sub-

module of Mz, then there exists a nonzero torsion element x&N. Hence Annr(x)
2c0. On the other hand, since xM and M is torsion-free, we must have
Anngr(x)=o0, a contradiction.
(&=) Suppose that Mz contains no nonzero torsion submodules. Assume that
Mz is not torsion-free, then there is a nonzero torsion element xeM, and hence
Anng(x)2c0. But then the cyclic submodule xR is a nonzero torsion submodule
of Mg, a contradiction. Q. E. D.

Proposition 1.2. Any submodule of a torsion-free module is torsion-free.

Proof: Let F be a given torsion-free module and let Mz be submodule of F.
Assume that Mg is not torsion-free, then there is a nonzero torsion submodule
Ng of Mz. Thus Nz is also a nonzero torsion submodule of F, contradicting the
fact that F is torsion-free. Q. E. D.

Theorem 1.3. Let F be a given module. Then F is torsion-free if and only
if Homs(T,F)=o0 for all torsion modules T.

Proof: (&=) Suppose that Homg(T,F)=o0 for all torsion modules T. Assume
that F is not torsion-free, then there is a nonzero torsion submodule Nz of F.
Thus the canonical injection j: N——F is an element of Homg(Ng, F)=o0. Hence
j=o, a contradiction.

(=) Suppose that F is torsion-free. Let T be any torsion module. For any fe
Homg (T, F). Since T is torsion, the homomorphic image f(T) is also torsion
submodule of F. On the other hand, since F is torsion-free, f(T) is a torsion-
free submodule of F. Hence f(T)=o0 and hence f=o0. Therefore Homr (T, F)=0
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for: all torsion modules. Q. E. D

- Theorem 1.4. Let T be a given module. Then T is torsion if and only if
Home(T,F)=o0 for all torsion-free modules F. _

- :Proof: (=) Suppose that T is torsion. Let F be any fixed torsion-free
module and let fe Home(T,F). Since T is torsion, then f(T) is a torsion sub-
module of F. On the other hand, since F is torsion-free, it follows that f(T)
must be torsion-free. Hence f(T)=o0 and hence f=o0. Therefore Homz(T,F)=o0.
(&=) Suppose that Home(T,F)=o0 for all torsion-free modules F. Note that Qr
is torsion-free. We have Homz(T,Qr)=o0, and hence T is torsion. Q. E. D.

Let ModR denote the category of all modules over the integral domain R.

Definition 1.1. Let T and F be nonempty classes of modules in ModR satis-
fying the following conditions:
T={TeModR | Homs(T,F)=0, \/FeF} and
F={FeModR | Home(T,F)=0, T<T}.
Then the pair (T,F) is called a torsion theory for ModR.

Theorem 1.5. Let T be the class of all torsion modules in ModR, and let F
be the class of all torsion-free modules in Mod R. Then the pair (T, F) is a
torsion theory for ModR. (This is called the usual torsion theory for ModR).

Proof: Clearly o€T and oF and hence Tac¢, F=¢$. The result follows
from Theorems 1.3. and 1.4. Q. E. D.

Let the pair (T,F) be a torsion theory for ModR. Then we have the follo-
wing properties: ‘
(T1). T is closed under isomorphic images.

Proof. For any Te€T. Let f: T — > T* be an isomorphism from T onto T*.
For any fixed FeF and for any geHoms (T*, F), then the composite function
gefeHomr (T, F) =o0 because TeT. This implies that gof=0 and hence g=o,
Therefore Homg(T*,F)=0. Hence T*<T. Q. E. D.

(T2). T is closed under factor modules.

Proof: Let TeT and let S be any submodule of T. For any fixed FeF and
YieHomr (T/S, F). If II: T —— T/S is the canonical epimorphism, then the
composite function foIT is an element of Homg (T, F) =0 since TeT. This



implies that foIT=0 dand hence f=o0. Hence Homs' (T/S, F)=o0 and T/SeT.
(T3). T is closed under extensions.

Proof: Suppose that the sequence o0—M—>T—>T/M—o0 is exact, where
Mz is a submodule of Tz and Mz and T/M are in T. We want to show TeT.
Since the exact sequence 0——M—T—T/M-—0 implies that the sequence
0o —> Homw(T/M,F) —— Homxz(T,F) > Home(M, F) is exact. Since Mz and
T/M are in T, we have Homg(M,F)=Homz(T/M,F)=o0. This implies that
Homz(T,F) =0, \/F&F. Hence T€T. Q. E. D.

(T4). T is closed under direct sums.
Proof: Let T= Z@Tl, where each TieT. We want to show TeT. Since

Homa(T F)= HomR(Z(@Tl, F)= HHoma(Tl, F), it follows that Homs(T:, F) o,
\/i. Hence Home(T,F)=o0. Hence TEeT.

(F1) F is closed under isomorphic images. :
Proof: Let f: F —— F* be the isomorphism from F onto F* and FeF. Let
T be-any fixed module in T, and let geHomz(T, F¥), then the composite fun-
ction f-logeHoms(T,F)=o0. This implies that f-leg=0. and hence g=o0." Hence
Homg(T,F*)=0 and F* is in F. Q. E. D.

(F2). F is closed under submodules.

Proof: Let F be any element of F, and let H be any submodule of F. Since
any element of Homg(T, H) is an element of Homs(T,F), we see that H must
be torsion-free, and hence HeF. Q. E. D

(F3) F is closed under extensions.
Proof: Let F be an module and let H be submodule of F such that H and
F/H are in F. Assume that F is torsion, then so are H and F/H, a contradiction.

(F4). F is closed under direct products.
Proof: Let F=TIF,, where each F:€F, we want to show FeF. Let T be any
i

fixed element of T. Note that Homr (T, F)=Homa(T,FF1)=lIH0mR(T,F;). Thus
i

if each F: is in F, then Home(T, Fi)=o0, /i, and hence Homgr(T, F)=o. There-

fore FeE. Q. E. D
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Let C be any given class of modules in ModR. Then C generates a torsion
theory for MorR in the following way:
F={FeModR | Homs(C,F)=0, ¥Ce&C} and
T={TeModR | Home(T,F)=0, \YFEF}
~Clearly, o€T and oeF, and hence Tacg, EF=c¢. Moreover, this pair (T,F) is

a torsion theory for ModR.

Theorem 1.6 Let T. F be nonempty classes ofm odules in ModR. Then (T
is a torsion theory for ModR if and only if T is closed under (T1), (T2),
(T3), and (T4).

Proof: (=) This follows from Theorem 1.5. (&) Let C be a class of
torsion modules satisfying the conditions (T1), (T2), (T3), and (T4). Let the
pair (T, F) be the torsion theory generated by C. By our construction, it is
easily seen that CcT. It suffices to prove the reverse inclusion. If MeT is such
that Home(M,F)=0, \/F&F. Let T (M) denote the sum of all submodules of M
in C. Let S be the direct sum of all submodules of M in C. Since C is closed
under direct sums, it follows that SeC. Since T(M) is a homomorphic image
of S and C is closed under factor modules, we see that T(M)C and T(M)
is a submodule of M. We now show that M=T(M). To prove this, it suffices
to show M/T(M)eF. If feHome(C, M/T(M)), VCeC. Assume that f2co0, then
£(C) is a nonzero torsion submodule of M/T(M). Thus f(C)eC. Hence there is
a submodule K of M such that T(M) cKcM and f(C)=K/T(M). Since C is
closed under extensions, we see that K< C. But then this contradicts the max-
imality of T(M). Hence f=o0. Therefore M/T(M)eF. Q. E. D.

Corollary 1.1. Let T, F be a given torsion theory for ModR, then every
module has a largest torsion submodule T(M) and T={M&ModR | T(M)=M}.

Theorem 1.7. Let T, T be nonempty classes of modules in ModR, Then (T.F)
is a torsion theory for ModR if and only if F is closed under (F1), (F2), (F3),
and (F4).

Proof: One can prove this by duality.

2. Torsion Theories for ModR over a general ring R.
Let ModR denote the category of all right unitary R-modules and let HM)



denote the }‘injective hull of the R-module M.

Lemma 2.1. Let B and C be any two R-modules such that Homs (B, H(C))
=0, then Home(B,C) =o. ‘ :

Proof: For any f=Homs(B,C), we have fe Homa(B,H(C))=o. Q. E. D.
The converse of Lemma 2.1. is not always true, in fact, we have the following
lemma.

Lemma 2.2. Let B and C be any two R-modules, then the following state-
ments are equivalent:

(a) Homer(B,H(C)) =0, (b) Homz (B, E(c))=o0 for any essential extension E(c)
of C, (¢) Homr(S(b),C)=o0 for any submodule S(b) of B.

Proof:. (a)==>(b): Let E(c) be an arbitary but fixed essential extension of C
and let feHoms(B,E(c)). Since CcE(c)cH(C), it follows that f&Home(B,H(C))
=o0. Hence f=o0 by (a).

(b)==>(c): Let S(b) be any submodule of B, and let feHoms(S(b),C), then
the mapping f* B —— C defined by f*(x)=o, if xS (b) and f*(x)=f(x), if
x&S(b). Clearly, f*=Homs(B,C). Since C is an essential extension of itself, it
follows that f¥=o0 and hence f=o.

(c)==>(a): Let feHomz(B,H(C)) be such that f2co0. Since f(B) is a nonzero
submodule of H(C), we get £{(B) NC=so. Thus JoxbeB 3 ox:f(b)=ceC. Let B¥
—bR be the submodule of B generated by bh. Clearly, f|gxeHome(B*,C) and

f|g#30 a contradiction. Q E. D.

It is well known that any module has an injective hull which is unique up
to isomorplism.
Definition 2.1. A Lambek torsion theory for ModR is a pair(T, F) of none-
mpty classes of right R-modules satisfying the following conditions:
(1) T={TeModR | Homx(T, H(F)) =0, YF&E}
(2) F={F€ModR | Homx(T, H(F))=o0, VT€T}
The elements of T are called torsion modules and the class T is called tor-
sion class for the torsion theory. The elements of F are called torsion-free ana
the class F is called torsion-free class.
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Theorem 2.1. Let (T,F) be a given Lambek torsion theory for McdR, then
(a) Home(T,F) =0, /TeT, \*Fe&F.
(b) TnE=o.
Proof: (a) Follows from Lemma 2.1.
(b) Assume that TnF-=co, then JoxMeTnF.
This implies that Homs (M, M)=0 by (a). On the other ‘hand, since M=o, the
identity mapping ix on M is an element of Homa(M, M)=co. Hence TNF=o.
' Q. E. D.
Let T,=(T,F) and T,=(T*,F*) be two Lambek torsion theories for ModR.
We say that T, is smaller than T, if TcT*(or F*CF).
"~ Let C be a given nonempty class of R-modules, then C generates a Lambek
torsion theory for ModR in the following way: ‘
o let F={FeModR | Homx(C,H(F))=0,/CeC}
T={T=ModR | Home(T,H(F))=0,\/F&F}
Clearly the pair (T,F) is a Lambek torsion theory for ModR and is called the
torsion theory generated by the class C. This is the smallest torsion theory in
which all elements of C are torsion modules; that is, T is the smallest class of
torsion modules containing the given class C.
If we let T={TeModR | Home (T ,H(C))=0,\/C&C} and
F={F=ModR | Home(T,H(F))=0,/T&T}.
Then the pair (T,F) is a Lambek torsion theory for ModR and is the largest
Lambek torsion theory in which all elements of C are torsion-free.

Theorem 2.2. Let T, F be nonempty classes of modules, then the following
statements are equivalent:

(a) The pair (T,F) is a Lambek torsion theory for ModR.
(b) T is closed under isomorphic images, factor modules, extensions, direct sums
and submodules.

(¢) E is closed under isomorphic images, submodules, direct products, and inje-

ctive hulls.

(d) There is an idempotent radical t on ModR such that McN implies Mnt(N)

=t(M); moreover, T={MeModR [ t(M)=M}, F={MeModR | t(M)=o0}.
Proof: ‘

(a)=>(b): i) Let T&T and let T* be the isomorphic image of T under f. Sup-

pose that geHomr(T* H(F)), FeF, then gefeHome(T,H(F))=0; that is, gef=

0. But then g=o. Hence T*<T. |
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ii) Let TeT and let’M be any submodule of T. We want to show that
T/MeT. For any feHomx(T/M, H(F)), YFeF is such 'that fxo. Let ‘ge
Hom=:(T,T/M)be the canonical epimorphism, then fegaxo because f2co, but then
fogeHoms(T,H(F))=o0, a contradiction. Hence f=o0 and T/Me&T. v’

(iii) Let M be a submodule of T such that M, T/MeT. Claim: TEI. Since
the sequence o—M—T T/M o is exact, we have the sequence o0 —
Homg(T/M,H(F)) — Homz(T,H(F)) — Homs(M,H(F)) is also exact. Since
Homz(T/M,H(F))=Home(M, H(F)) =0, YF&F, we must have Homeg (T ,H(F))
=o0. \/FeF. Hence TeT.

(iv) Let T :ZiC'BTi, where each T:eT. Since Home(T, H(F)) =

Homn(‘Z(-DTx,H(F)):I;IHomR(Ti,H(F)):o, it follows that T<T.

(v) Let TeT, and let M be a submodule of T. We want to show that Me
T. For any feHomz(M,H(F)). Since H(F) is injective, there exists an ge&
Home(T,H(F))=o0 such that g|y=£. But then f=o0 since g=o.

(a)=>(c): The same as in the proof of (a) implies (b).
(b)==(a): Let C be a class of modules which is closed under isomorphic im-
ages, factor modules, extensions, direct sums and submodules. Let (T,F) be the
Lambek torsion theory generated by the class C, where

F={FeModR | Hom:(C,H(F))=0,/CeC}.

T={TeModR | Homs(T ,H(F))=0,/F&F}.

Claim: C=T. Since CcT by construction, it suffices to show that TcC. To
do this, let MeT and Homz(M,H(F))=0\/F&F. Let t(M) be the sum of all
submodules of M which are in C. Let S be the direct sum of all torsion sub-
modules of M in C,then SeC since C is closed under direct sum. Since t(M)

is a homomorphic image of S, it follows that t(M)eC. Since t(M) is a sub-
- module of M and t(M)eC, we have t(M)eT and hence Mit(M)eT. To show
that t(M)=M, it suffices to show that M/t(M)eF. For any C*eC and fe
Homz(C*,H(M/t(M)). Since C is closed under isomorphic images and factor
modules, it follows that f(C*)=C. Assume that f=xo0, then f(C*) is a nonzero
sumodule of H(M/t(M)). Thus f(C*)nM/t(M)=co. Hence 32 module K with
t(M)CI§CM such that f(C¥)=K/t(M)T. Since C is closed under extensions,

we must have KeC. But then K=t(M) by construction. This is a contradiction.
Hence f=o, that is, M/t(M)<F. Hence M=t(M)eC and T=C.
(c¢)==(a): The same as the proof in (b)= (a). A
(b)==>(d): As in the proof of (a)==(b) it is easily seen that every module M
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has a largest submodule t(M) belonging to T,(t(M) is called the torsion subme-
dule of M). Moreover, (i) MeT if and only if t(M)=M. In this case, T={Me
ModR [t(M)=M}. (ii) MeF if and only if t(M)=o. In this case, F={Me&ModR |
t(M) =o0}.

Note that t: ModR —— ModR is an objection function.

McN=t(M)Ct(N) and t(M)cM. Hence t(M)cMnt(N).

Let xeMnt(N)=xM and xet(N)==xRct(N)eT. gince T is closed under
submodules, we have xReT and xRcM. Hence xRct(M). This implies that
xet(M). Hence MNt(N)=t(M). Clearly, the object function t has the following
properties:

(i) t(M)cM, (ii) For any feHomR(M,N)—_ﬁA»f(t(M))cN=>f(t(M))eI because
t(M)eT and hence f(t(M)) ct(N),(iii) Since t(M)cM we have taM))=Mnt(M)
=t(M). Consequently t is an idempotent radical on ModR.

(d)==(a): Suppose there exists an idempotent radical t on ModR such that
McN = Mnt(N)=t(M). Then T={M&ModR | t(M)= M}, F={M&ModR |
t(M)=o}. Clearly the pair (T, F) is a torsion theory for ModR For if MeT-
and feHome(M,H(F)), F€F, then t(M)=M and t(F)=o. Since t is an idempotent
radical, it follows that f(M)= f(t(M)) ct(H(F)). Since FcH(F), we have o=t(F)
=FNt(H(F)). Since H(F) is an essential extension of F, it follows that
t(H(F))=o. This implies that f(M)=0. Hence f=o.

Next for any FeF, t(F)=o0. If geHomr(T,H(F)), TeT, Since TeT, t(T)
=T. Since t is an idempotent radical, it follows that g(T)= =g(t(T)) ct(HF))
and o=t(F)=F Nt(H(F)). But then t(H(F))=o0 and hence g(T)=o0. Thus g=o0

Q. E. D.

Corollary 2.1. Let (T,F) be a given Lambek torsion theory for ModR, then

every module has a unique torsion submodule t(M).

Corollary 2.2. There is a one-one correspondence between torsion theories
and torsion radicals (that is, an idempotent t satisfying the condition (d) in
Theorem 2.2).

Remark: Let (T, F) be a given Lambek torsion theory for ModR, then F is
a reflective subcategory of ModR and T is a coreflective subcategory of ModR.
Thus the inclusion functor F > ModR has a left adjoint ModR —— F which
maps M to M/t(M).
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3. Filters (or, Pretopology)

Definition 3.1. An idempotent filter D on R is a nonempty class of right
ideals of R satisfying the following conditions:
(1) DeD and DcK (K is a right ideal of R) = Ke&D.
(2) DeD and asR = a"'D={reR | areD}eD.
(3) If D, KeD, then DNKeD.
Clearly, ReD follows from (1) and D=<4.

Lemma 3.1. Let (T,F) be a given Lambek torsion theory for ModR and let
D be the class of all dense right ideals (*) of R, then D is an idempotent filter
on R.

Proof: Clearly, ReD and hence D=x¢.
i) \/DeD and \/ right ideal K of R with DCK. Since R/K=R/D 'D/K (as mod-
ules) and R/DeT, and T is closed under isomorphic images and factor modules,
we have R/KeT. Hence KeD.
ii) DeD and VYaeR, then a™'D is a right ideal of R. By i) D+a'DeD and
hence R/D +a~'D €T. Since R/a™'D = R/(D+a~'D) ’,/(D—i-a‘lD)/(a‘lD), we have
R/a~'DeT. Hence a~'De&D.
iii) \/D, KD, then R/D, R/KeT. Since DNKcDCR, it follows that R/DNK=
(R/D)/(D/I)QK) eT since T is closed under isomorphic images and factor
modules. Hence R/DNKeT. and DNnKeD.

Theorem 3.1. There is a one-one correspondence between torsion theories
and idempotent filters.

Proof: By Lemma 3.1. we know that given any Lambek torsion theory (T,F),
there correspondence an idempotent filter D of dense right ideals of R relative
to (T,ED.

Conversely, if D is a given idempotent filter. Let

T={M&ModR | Annz(m)eD, ¥meM} and
i ={FeModR | Homx(T ,H(F))=0, ¥T€eT}
Then the pair (T,F) is a torsion theory for ModR. Q. E. D.

Definition 3.2. Let (T,F) be a given torsion theory for ModR and let Me

*. ¢ f. Definition 3.2. (a)
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ModR. Then
(a) A submodule N of M is said to be dense in M relative to (T,B) if M/NeT.
(b) A submodule N of M is said to be closed in M relative to (T,F) if M/NeF.
(¢) The closure of the submodule N in M is the intersection of all closed sub-
modules of M containing N.

Let (T,F) be a given Lambek torsion theory for ModR and let MeModR.
If D(M) denotes the closure of M in H(M), then it is not difficult to verify the
following things:
(i) D(M) is an essential extension of M and McD(M)cH(M).
(ii) D(M)/M is a torsion module; that is, M is dense in D(M).

Definition 3.3. Let (T,F) be a given Lambek torsion thecry for McdR,.
Then a module MeModR is said to be divisible relative to (T, F) if HM);M
eF.

Theorem 3.2. Let (T,F) be a given Lambek torsion theory for McdR and.
let M eModR, then the following statements are equivalent:
(a) M is divisible relative to (T,F). '
(b) For any dense right ideal D of R and any feHomr(D,M), 3 an meM such
that f(d) =md, \4deD.
(¢) If module N is dense in the module K, then any feHomr (N, M) can be
extended to an element f*<Homs(K,M).

Proof:
(a) ==5(b): Suppose that M is divisible, then H(M)/Me&F. Let D be any dense
0—>D— R right ideal of R and let feHomzr(D,M), then
P | feHome(D, H(M)). Since H(M) is injective, R. Baer’s
l\jICH(M) theorem assures that an element x€H(M) such that f(d)
=xd, \deD.

Claim: xeM.
Note that f(d)=xdeM, \VdeD, we have Dcx-!M. Since D is dense, it follows
that x~*M is also dense in R. Hence R/x*MeT. Note that xR+M/M-’:;‘R/x‘1M
€T. But H(M)/Me&FE. This implies that xR+M=M and hence xeM.
(b)==(c): Consider the following diagram: \/feHomx(N,M). Let C be the
j collection of all couples (D, h) where NcDcK and he
0—>N——K(exact) Homg(D,M) such that hiy=f. Define a partial ordering
f l “<”on C as follows:
M (D, h))(D;, hy,) if and only if D,cD, and h2JD1=h1-



Then (C, <) is a poset. By Zorn’s Lemma, there is a maximal element, say,
(K*,g), in C. We shall show that K¥=K. If K*xK, then 3 x,cK—K*. Consider
the right ideal D=x,"'K*¥*={reR|x.reK*}- {reR(x,+K¥)r=K*}=Anne(x.+K¥),
X.+K*¥eK/K*. Since

K/K*E(K/N)/(N/K*) and K/NeT, it follows that K/K*¥<T. This implies that D
is dense in R. Now consider the mapping f* D——> M defined by f*(d)=1f(x.d),
\#/deD, is an R-homomorphism. By (b), 3 meM such that f(x.d)=md, ‘»deD.
Thus we may extend g to h: K*+x,R —> M defined by h(k+x.r) =g(k)+mr
(note that f(x.r)=mr,\/reR and x.oreK¥*), a contradiction. Hence K=K*
(c)=>(a): Let D(M) be the closure of M in H(M), then D(IM)/M&T. Thus, by
> M. Since
D(M) is an essential extension of M, it follows that f must be a monomorphism.
Hence the injection from M ——> D(M) must be onto. Thus M is closed in
H(M). Q. E. D.

(¢) the identity mapping ix on M can be extended to f: D(M)

Corollary 3.1. Any injective module is divisible and hence the injective hull
of a module is divisible.

Remark: The closure D(M) of the module M in H(M) is called the divisible
hull of M. Note that D(M) is divisible.

Let (T,F) be a given torsion theory for ModR in which all modules are
torsion, then D(M)=n {C&ModR | C is closed in H(M) and McC} =n {Ce
ModR | H'M)/CeF=0and McC}=H(M), the injective hull of M.

4. Construction of Rings and Modules of Quotients.

Given a Lambek torsion theory (T,F) for ModR and given MeModR. Then
the divisible hull of M,D(M), is an object function D from ModR to ModR. It
is not, in general, a functor M - D(M) natural in M, but the restriction of
D to the category F of torsionfree modules is a functor, in fact, it is the left
adjoint of the inclusion functor A —-» F, where A is the category of torsion-
free divisible modules. To prove this, let FeF. Since D(F),FeT, it follows that F
is dense in D(F). Thus any fe Homz(F,A) can be extened to f*Homr(D(F),A),
AcA. Since D(F)/FeT and A€E, it follows that Home (D(F)/F,A)=o0. Hence
the extension f* of f is uniquely determined by f. Since D(F) is divisible and
D(F)eF because D(F) is an essential extension of F. and H(D(¥F))=H(F).
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Hence Home(T,H(D(F)))=Homz(T,H(F))=0 since FeF. Thus D(F)e A. Hence
D: F > D(F) from F to A is the left adjoint of the inclusion functor from A
to F,

Recall that the inclusion functor from F to ModR has a left adjoint. Then
the composite of the left adjoints A — > F and F —-> ModR has a left adjoint,
say Q, whose object function is defined by Q(M)=D(M/t(M)).

Remark: Q(M) is called the module of quotients of M, and Q the quotient
functor relative to the given Lambek torsion theory (T,F).

Another construction of Q is as follows:

Let D be the class of the dense right ideals of R. We define a partial ordering
on D as follows:

L<I, if and only if I,51,. Then the pair (D, <) isa poset. If I,, I,eD, then
the intersection I, NI, of I, and I, is a dense right ideal of R and hence ILnkLe
D. Moreover, I,<I; NI, and I,<I,NI,. Hence D is a directed set. Let MeModR.
Then foreach element DeD, there corresponds a Home(D,M)eMod Z. I1f D.<D..
we let f(D,, D;): Homr(D;, M) —— Homz(D,, M) by letting £(D,,D,)(g)=g|D..
VgeHomr(D,,M). It is easily seen that f(D,D)='Homs (D,M), V/DeD and if
D, <D,<(D;, then £(D,,D,)o f(D,,D;)=£(D,,D,). Thus ({Home(D,M)} DeD, {fs}
DeD) forms a direct system. The direct limit lim Home(D, M) of this system

——

DeD
exists and is denoted by L(M); that is, L(M)=lim Home(D,M). L(M) can

—

D=D

be easily made into an R-module. Moreover, LM)= U fo(Hom:(D,M)), where
DeD

fp: Home(D,M)——L(M) is the canonical injection.

Theorem 4.1. Let (T, F) bea given torsion theory for ModR and let F he
any torsionfree module, then D(F)=L(F).

Proof: For each DeD, let fr: Homg (D,F) —» L(F) be the canonical inje-
ction. Now ie Homr(D,F)==f=Homs(D,D(F)). Since D(F) is divisible and D
is dense, it follows that 3 an xp(f)€D (F) such that f (d)=xo(f)d, YdeD...... (A).
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Then xp: Homs(D,F) — D(F). Since L(F)=Ilim Homs (D,F), it follows that 3

—

DeD
xeHome(L(F), D(¥F)) such that xo fp=xp, \¥DeD ----- (B).
Claim: x is an isomorphism,.
1) show that x is one-one:
Let meL(F) be such that x(m)=o0. Since L(F) =DUDfD(HomR(D,F)), there
=

exists a dense right ideal of R, DD and an feHoms(D,F) such that m=£5(f).
Thus, by (A), o=x(m)=xp(f))=xp(f). Hence for any deD, f(d)=xo(f)d =o.
That is, f=0 and hence m=fs(f)=0. This shows that x is one-one.

ii) show that x is onto:

For any neD(F), since F is dense in D(F), it follows that 3 DeD such that
nDcF. We define the mapping f: D — F by letting f(d)=nd, \*deD. Then
deD, xp(f)d=f(d)=nd = xo(f)=n. From i) and ii) we conclude that D(F)
=L(F). Q. E. D.

Corollary 4.1. If M is a torsion-free divisible module, then Q (M)=
DM/t(M))=L(M/t(M)) since M/t(M) is torsionfree.

Theorem 4.2. Let (T,F) be a given Lambek torsion theory for ModR, then
the category A of torsion-free divisible modules is Abelian and the inclusion
functor A —— ModR has a left adjoint Q which is exact.

Proof: For any M,N A, Homz (M,N)is an aditive abdelian group. Moreo-
ver, the associative laws of homomorphisms hold in A: (g+ h) f = gf + hf and
f(g+h)=fg+fh. Thus A is an additive category. Clearly, the zero module o is
in A. Let M, NeA, then the direct sum M®N is ‘torsionfree and H(M®N) =

HM)®H(N), so HM®N)/MEAN =HM)PHN)/M@®N =H(M)/y @ H(N)/N. Since

M, NeA, it follows that HM)/MeF and H(N)/NE. Hence HM) M@HN)/N
=F. Hence MON=MxNeA. Thus, A is closed under finite direct sums (=
products). For any M,Ne A and ‘*f=Homs(M,N), since ker f is a submodule
of M and MeF, it follows that ker f&F. Also if f: M——N is a monomorphism,
then ker f=o0 and hence it is a kernel in A. The cokernel of : M — N in A
is N——>F-—>Q(F), where N —— F is the cokernel of f in ModR. Note that a
map f: M——N is an epimorphism if and only if its cokernel in MordR is

torsion; that is, f(M) is dense in N. Hence f is the cokernel of ker f in A.
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Consequently, A is an Abelian category. Note that in' an Abelian category A,
the following things concerning the left adjoint Q of the inclusion functor
U: A—— ModR are equivalent:

(1) Q preserves monomorphisms, (ii) Q is left exact, (iii) Q is exact, (iv) UoQ
preserves monomorphisms, (v) UoQ is left exact. Thus it is easily seen thatjthe

functor M ~ M/t(M) and the functor F > D(F) for FeF preserve mono-
morphisms. Hence Q is exact. Q. E. D.

Definition 4.1. Let A be any category and let U: A-———S, where S is the cate
gory of sets. A universal element for U is a pair (s.,A.) consisting of an object
A. of A and an element s,=U(A,) satisfying the following property:

For any object A=A and for any s€U(A), there exists a unique mapping
f: A, » A such that U(f)(s,)=s.

If (s,, A.) is a universal element for the functor U, then for each object
A€ A, the assignment f ~ U(f)(s.) is a bijection $a: hom (A.,A)==U(A) of sets.

Definition 4.2. Let U: A —> S be any functor from the category A to the
category of sets. A representation of U is a pair (A., 6 ) consisting of an object
A.€A and a family of bijections ¢i: hom(A,,A)=U(A) given by ¢a(H)=U)(s0)
where s.=¢$4,(1A.) natural in A. A functor U with such a representation is said
to be representable.

Lemma 4.1. For each functor U: A —— S, the formula So=¢,, (1A,) and
eaE)=U)(s.) for 1A.: A, » A, the identity and f: A, ——A any morphism,
establish a bijection from representations (A., ¢) of U to universal elements
(S.,Ao0) for U.

Proof: Let (A,, ¢) be a representation of U. Since ¢ is natural, the follo-
wing diagram commutes for each f: A, —— A.

¢ o
1A.€hom(A., A~ SU(AL)

|8 sa U

fx(1A.) =fehom(A,,A)——U(A)
Let so=¢, (1A.). Since the above diagram commutes we have A =U)(s.)
But ¢, is a bijection, so each element seU(A), 3 a fehom(A,, A) such that
$a(f)=s, and so U(f)(s.)=s. Thus (s,, A.) is a universal element for U. Con-
versely, let (s.,A,) be a universal element for the functor U. For each object
A€A, define $5: hom(A.,A) ——> U(A) by $a(£) =U(f)(s.). Since (s.,A.) is a
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universal element for U, any s€U(A), fehom(A.,A), U(f)(s.)=s. Hence $a is
a bijection. It is natural in A, for any g: A—— B gives U(g)ga(f) =U(g)U)(s.)
=U(gef) (s.) =¢s(gof) =@agy(f). Hence (A.,9$) is a representation of U. ‘

‘ Q. E. D.

Theorem 4.3. Let A be an additive category and U: A —— ModR be an
additive representable functor with representation (A., ¢); then
(a) U(A.) can be made into a ring, with unity element s,, where so=¢A.(1A.).
(b) For each object A=A, U(A) is a right U(A,)-module.

Proof: (a) Since U is representable by (A., ¢), we see that ¢a.: Hom(A.,6A.)

=U(A.), a bijection. The proof of the remaining part is just the same as in
the proof of the Lemma 4.1. except the operations preserving.
Note that (s.,A.) is a universal element for U, then for each seU(A.), 3 map
s*: Ac—>A,FU(s*)(s.) =s. Now we define s, s, =U (s;%8,%) (8,) =U(s,%)U(8,%) (S.)
=U(s*)(sy). Clearly, (s;8;)¥=s,*s,* and s,;8.=U(s,;*)(s.) =s,. Since U(S.*)(S,) =S,
we see that so¥=1A,, and hence

SoS; = U (So*) (8;) =s;. Hence U(A.)z==Homr(A,,A.) as rings. (b)\acU(A), \/s
eU(A.), we define

as=U(a*s*)(so) =U(a*) U(s*)(so)=U(a*)(s). It is easily checked that U(A)
becomes a right U(A.)-module. Q. E. D.

Finally, let (T,F)be a given torsion theory for ModR and let A be the full
subcategory of ModR consisting of all torsion-free divisible modules. It is an
additive category.

By Theorem 4.2. the inclusion functor U: A -———> ModR has a left adjoint Q
which is exact. Theorem 4.3. assures that Q(R) is a ring and is called the ring
of right quotients of R with respect to the given torsion theory.

In particular, if we take the Lambek torsion theory (T, F) to be the largest
torsion theory for which Rz is torsion-free, then we obtain the Utumi’s maximal
ring of right quotients of R.
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