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Abstract

Linear time series models such as ARMA models have been widely used
in many fields. An important assumption is that the structure of the series can be
described by a linear model. However, this assumption of linearity is often a dubious
one. In some particular situations one may ask if there exist other models which
can provide a better fit. A particular class of non-linear models which has received
a great deal of attentions is bilinear models. In this paper we investigates some
properties of the bilinear model: stationarity and invertibility. Estimation of the
parameters are obtained by minimum least squares method. The forecasting of certain
bilinear models are also considered.

Keywords: Time series analysis; ARMA models; Bilinear models; Markovian
representation, Stationarity; Invertibility; Forecasting.

1. Introduction

Linear time series models such as autoregressive moving average (ARMA)
models have been widely and successfully used in many fields during the past two
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decades. An important assumption that is made in those models is that the structure
of the series can be described by a linear model. However, this assumption of linearity
is often a dubious one. In some particular situations one may ask if there exist other
models which can provide a better fit. In view of this, several authors (Ozaki, 1978;
Tong and Lim, 1980; Subba Rao, 1981; Priestley, 1988) have discussed certain more
specific types of non-linear models.

A particular class of non-linear models which has received a great deal of
attentions is bilinear models. The interesting feature of a bilinear system is that though
it is non-linear, its structuraltheory is analogous to that of linear system. In its most
general form a bilinear time series {X,} with discrete time parameter is defined by

P q m k
Xt — ,E, X, = j‘:‘o b, + El j}z:l b; X, €, (1.1
where 60 = 1 and {e} is a strict white noise process, i.e. a sequence of

independent zero mean and finite variance aél random variables. It is apparent that
if we set bij = 0 for all i,j, then (1.1) reduces to ARMA models, and thus the
bilinear models includes as a special case the standard ARMA models.

In fact, Brockett (1976) has shown that, with suitable choice of the
modelparameters, the bilinear model can approximate to an arbitrary degree of
accuracy any ‘well behaved’ Votterra series relationship over a finite time interval.
To some extent this parallels the corresponding property of ARMA models, namely
that they can approximate to an arbitrary degree of accuracy any general linear
relationship between {X,} and {e¢}. In this case the bilinear models may be
regarded as a natural non-linear extension of the ARMA models.

A simple two-stage procedure to investigate whether or not a bilinear model
might be appropriate is to fit an ARMA model and then to consider the
autocorrelations of the squared residuals. Maravall (1982) applied this approach to
some Spanish monetary data, found evidence of bilinearity, and achieved a modest
10% or so improvement in mean squared forecast error.

Specific results are available for the properties of a number of bilinear models,
but the best results are for orders (p,q,r,1). Models of order (1,0,1,1) were considered
by Granger and Andersen (1978), of order (p,0,p,1) by Subba Rao (1981, 1984),
and of order (p,q.1,2) by Liu and Brockwell (1988).
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2. Bilinear time series models

To study some features of bilinear time series, we have generated time series
{X,} from the models

(@ X, = 03X, + 0.6X_ e, + € .

®) X, = 07X, + 0.2X,, + 0.7 X, e, + 0.8X ¢, + & -
© X, = 0.8X,, — 0.2X,, + 0.8 X1, + 0.8X,¢, + &
@ X, = —0.7X,, + 02X, — 0.7 X, ¢, + 08X e, + & .

The series (a), (b), (c) and (d) are ploted in Fig. 2.1, Fig. 2.2, Fig. 2.3 and
Fig. 2.4 respectively. In each case the {¢} are independent N(O,1) random
variables, and each realization consists of 150 data points. An examination of the
series (a), for which the coefficient of the bilinear term is mediate, has a more or
less conventional form. Whereas series (b), with a further AR terms, exhibits a number
of ‘bursts’ of large-amplitude excursions. Series (c) shows that at certain time period,
there are high amplitude oscillations. In contrast to the series (a), (b) and (c), the
behavior of the series (d) is very remarkable. This type of behavior is a well-known
feature of certain types of seismological data, particularly in series relating to
earthquakes and underground explosions.

We will denote the general bilinear models by BL(p,q,m,k), the integer p,q,m,k
clearly denoting the orders of the various terms in (1.1). It is known that the
representation {X,} given by (1.1) is not a Markovian representation. Tuan and
Tran (1981) point out that, for the BL(p,0,p,1) models, namely

P p
X, — '21 X, = ¢+ 'EO X € o 2.n
j= i=
a Markovian representation can be derived via the state vector Z, = (2+Be)X,,
where
-1 —¢P2 ... —¢, b ba ... bpp
e, = |1 0 0 , B, =10 0 0 ,
0 0 o1 0 O 1
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Fig. 2.1 X, = 0.3X,, + 0.6X_¢, + ¢ .
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Fig. 22 X = 07X, + 0.2X,, + 0.7 X, ¢, + 0.8X_ ¢, + ¢
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Fig. 23 X, = 0.8X,, — 02X, + 0.8 X, ¢, + 08X e, + € .
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Fig. 2.4 X, = —0.7X,, + 02X, — 0.7 X_ &, + 0.8X,6, + € .
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C. = (,0,..,0) and X, = X Xopp o5 X,_pH)’. Then, we can rewrite (2.1) as

pxl

Z = (@ + Be)Z,, + (@ + Be)Ce,

t

2.2)

X, = Z, + Ce

t

Tuan (1985) has used this Markovian representation to obtain the moments of Z
in the case of first-order models, i.e. when Z, is a scalar process.

3. Asymptotic stationarity and covariance

In this section we obtain the conditions for asymptotic stationarity of the time
series X, satisfying the model (2.1); where we assume {€} are i.i.d. N(0,1) random
 variables.
Let Hlxp = (1,0,...0), from (2.1) we have ,

EX) = H EX)
Cov(X,.X,,9) = H{E[(X—-EX) X.,,—EX_,)I}H ,
and thus it suffices to consider the second-order properties of the vector process X,.

Write u, = EX), V, = EXX)), S, = E(XX'€). Taking expectations of both
sides of

X = ®X, + BX ¢, + Ce,
and using E(X¢e) = C, we get
u,, = ¢u + BC
t S
= #u + [ T & |5C 3.1)
I¢ B =0, and wi = 0, then u = 0, for all t = 1, and the process is then

stationary to order 1 without any conditions on . Otherwise, let p (®) be the
spectral radius of a matrix &, i.e.

p(®) = max I\ (P, 3.2)
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where {I\p (®)I} are the i" eigenvalue of & and it is known that lp (®) <l
. . . lim el
where Il is any norm. A sufficient condition for . oo ‘Q‘m + [ re® ] BC }
— i=1

to be finite is the p(®) < 1. When this condition holds the process is asymptotically
stationary to order 1, and the limiting mean value u is then given by

Proposition 3.1. EX) — u = (I-®)'BC. (3.3)

As for the second-order moments, Subba Rao (1981) obtained a sufficient
condition for stationarity, i.e.

Proposition 3.2. The bilinear the process X, defined in (2.2) is asymptotically
stationary if

plPod+BoByi] ) 1. 3.9

The condition (3.4) is a somewhat weaker form of the stationarity condition
originally derived by Subba Rao (1981), namely

eiz + IBI2 < 1,

where I®l2 = is the largest eigenvalue of ®&’, and IBIl is similarly defined.
From the model (2.2), we can write

X, = ®X,, + BX_¢, + Ce, (3.5)
It follows
EX,X) = ¥EXX) + BEXXg) (3.6)
and for k > 1,
k-1 k2
EX,X) = & EX,X) + | £ $BC | v’ 3.7)

Let Ck) = E[X,, ~wX~—w)’] be the autocorvariance matrix of lag k for X,. we
have
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Proposition 3.3.

C() = #C(0)d' + BCOB' + £, (3.8)
C(1) = #C©) + 1, (.9)
Ck) = #Ck-1)d' = &"'C(), (3.10)

where
§ = Buw'B’ + duu'd’ + $SB’ + BS'® + 2BCC'B’ + CC' — uu’,
n = duw’ + BS — wuv'.

Example 3.1. Consider the first order BL(1,0,1,1) model given by

X, — #X,

t-1

= ¢ + bX ¢,.

Then, by (3.4), the sufficient condition for the asymptotic stationarity of the process
X, is ¢* + b2< 1, and from Proposition (3.1)

b
EXt - = m
1+2b2 + 4¢b?
1=¢2=b2  (1+¢)(1-¢*~b?)
2b?

B, X) = 6B + (=

EX}) —

4 Order selection and parameter estimation

A major problem with bilinear series modeling is the problem of model selection.
This problem is far more difficult that the ARMA models, In the linear ARMA case,
a preliminary identification on the orders of p and g can be done using sample ACF
and PACF as in Box-Jenkings procedure. With the presence of bilinear terms in
(1.1) the ordinary Box-Jenkings procedure of identification cannot be applied.
Therefore, many authors resort to the use of the Akaike Information Criterion (AIC),
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see Akaike (1974), in selecting the right combination of p, q, m and 1. The AIC
is defined by

AIC = (N-n)log 8% + 2Xindependent number of parameters,

here 02 = N
WHere 9% = N—r £ e and
t=r-1

N—r is the number of observations used for calculating the likelihood function. The
model with smallest AIC value will be picked as the adequate model. Note that in
using the AIC criterion we are trying to strike a balance between reducing the
magnitude of the residual variance and increasing the number of model parameters.

To obtain a good set of estimates it is necessary that we should have a good
set of initial values to start the iteration. The algorithm for choosing the order of
the bilinear model BL(p,0,m,k) is described as follows:

(1) Fit an AR(p) model to the data.

(2) Take the AR(p) coefficients obtained from (1) as ‘initial estimates for the
autoregregressive part of the BL(p,0,1,1). Using the Newton-Raphson iteration
method to fit this BL(p,0,1,1) model.

(3) Fit the BL(p,0,1,2) and BL(p,0,2,1) models using the coefficients obtained from
(2) as initial values of the parameters. Of the two models fitted, choose the model
which has the small residual variance and AIC values and use its parameters
as starting values of fitting a BL(p,0,2,2) model.

(4) The procedure is continued until the residual variance frg and AIC starts to increase
as m, k increase. The final choice of model is then made by comparing the
AIC values for each fitted model, and choose that model which had the minimum
AIC value.

5. Analysis of the sunspot series

The Wolf sunspot series has attracted the attention of many time series analysts.
Scientists believe that the sunspot numbers affect the weather of the earth and hence
human activities such agriculture, telecommunications, war, and others. It is generally
accepted that the earliest recorded date of a sunspot event was 10 May 28 BC during
the reign of Emperor Liu Ao (Cheng Di) of the Western Han Dynasty in China.
(see Needham (1959) p. 435). However, data on the Wolf annual sunspot index are
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available from 1700 onwards. In the year 1843 the sunspot cycle was apparently
first noted by the German pharmaceutical chemist and amateur astronomer, Samuel
Heinrich Schwabe (1789-1875), after 17 years of painstaking daily observations. For
an interesting account of the history of the series see Izenmann (1985).

The data are shown in Fig. 5.1 and it can be seen that the main feature of
this series is a cycle of activity varying in duration from about 9 to 14 years (about
an average period of 11 years). Another feature of the series is its different gradients
of ascensions and descensions. This suggests that a non-linear model might be
appropriate. Subba Rao (1981) fitted various linear and bilinear models and compared
their relative fit. The results of their analyses, for 246 observations with mean 43.53,
are summarized below. The orders of the models were selected according to the
AIC criterion.

‘Fig. 5.1. Annual sunspot numbers (1700 — 1988)
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(I) AR Models. The best AR model is AR(9) with coefficients:

0.12, ¢« = —0.14, ¢s = 0.16,

o = —121, 2 = 0.47, $3
o6 = —0.09, &7 = 0.08, ¢s = —0.09, s = —0.10;
o = 194.43, AIC = 1316.44.

() Subset AR models. The best subset AR model includes lags 1,2,9, with coefficients

1 = —1.24, &2 = 0.54, ¢ = —0.15;
o2 = 199.20, AIC = 1310.39.

(IIl) ARMA models. The best ARMA model is ARMA(6,6) with AR coefficients

d1 = 0.52, g2 = —0.47, $s = —0.51, ¢+ = —1.09,
és = 0.07, ¢ = —0.65,
b = 0.71, 62 = —0.07, 3 = —1.09, b« = —0.08,
fs = 0.04, 8 = —0.42,

a2 = 185.27, AIC = 1309.8.

(IV) Bilinear models. Applying the procedures described at the end of section 4,
a BL(p,0,m,k) of the form (2.1), with the constant ¢, was chosen with p =
3, m = 3, k = 4. The estimated parameters are:

c = 1091, $, = —1.93, & = —051, ¢ = —1.09,

and the 5;,' values ( = 1,2,3,j =1,2,3, 4) are:

by = —0.0055, b2 = 0.0032, bis = —0.0018, bia = 0.0008,
b = —0.0057, bz = 0.0056, b3 = —0.0082, bia = 0.0058,
by = —0.0017, bz = 0.0071, bz = —0.0110, bis = 0.0008;

62 = 143.86, AIC = 1214.58.
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We have to indicate that a different class of non-linear models, call threshold
models was introduced by Tong and Lim (1980). They fited a threshold autoregressive
model TAR(2;3,11) model to 221 observations on the Wolf sunspot series (from the
year 1700 to 1920). The ‘‘best”” model model is

12 + 17X, — 13X, + 04X, + ¢, if X, < 36.6

X, =78 + 07X, — 0.04X,, + 0.2X., + 0.2X_, — 0.2X,,

— 0.02X,, + 02X, — 0.2X,, + 0.3X,, + 0.4X_,,

+ 04X, + e? if X,, > 36.6

t 9’
where az(ei”) = 254.64, Gz(eiz)) = 66.8, and pooled residual variance = 153.7.

6. Forecasting from bilinear models

Given observations on a series up to time ¢, it is known that minimum mean-
square error (MSE) predictor of a future value X,,, s step ahead of X, is given

t+s?

by the conditional expectation X(s) = E [X,,, IB], B, being the o-algebra generated
by X,, r < t. For linear models the conditional expectations can be evaluated by
a set of recursive equations. While for bilinear models we need to find out those
terms eX,. Tong (1990) present the following facts concerning €X;:
(1) For t > s :
E[eX, IB)] = 0, if ¢+ > 0, because ¢, and X, are independent.
EleX; IB)] = ex,, if t = 0, by invertibility.
Q2) Fort = s :
EleX, IB)] = o » if t > 0, because X, = ¢ + f(e,, €, -..)
by stationarity.
EleX, IB)] = ex,, if t < 0, by invertibility.

— 440 —



Bilinear Time Series Models and Its Applications
(3) Fort < s :

We use the bilinear model to express X, in terms of X, ;, X ,, ... and ¢, €,
... . We may repeat this process until the the subscripts of the X terms are < t
and then appeal to (1) and (2), the independence of the e term, and marginal
distribution of ¢,

Example 6.1. Consider the bilinear model
X, = ¢oX,, + bX e, t ¢
iid
where ¢, ~ N(0,¢%) and the model is assumed stationary and invertible. Thus, the
one step ahead forecast is
E[Xi 1B)] = ¢X, + bXe,.

And the 2", 34 gtep ahead forecasts are

EIX: IB,] = ¢EIX, 1B + bE[Xe, IB]

I

oXX, + obXye, + bo?, using (2) above.
E[X3 IB)] = ¢E[X, IB,] + bE[Xye, 1By
= ¢X, + Xy, + dbo> + bo’.

Higher-step predictions can be obtained similarly.
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