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GENERALIZATIONS OF BROWDER'S DEGREE THEORY 

SHOUCHUAN HU AND NIKOLAOS S. PAPAGEORGIOU 

ABSTRACT. The starting point of this paper is the recent important work of 
F. E. Browder, who extended degree theory to operators of monotone type. The 
degree function of Browder is generalized to maps of the form T+f+G, where 
T is maximal monotone, f is of class (S)+ bounded, and G(*) is an u.s.c. 
compact multifunction. It is also generalized to maps of the form f + NG , with 
f of class (S)+ and NG the Nemitsky operator of a multifunction G(x, r) 
satisfying various types of sign conditions. Some examples are also included to 
illustrate the abstract results. 

1. INTRODUCTION 

The resolution of a large variety of problems in nonlinear analysis depends 
on the study of equations of the form Tx = y, where T is an operator de- 
fined on an appropriate space X and y E X. The Leray-Schauder degree has 
proven to be a very powerful tool in such investigations. The most important 
property of this degree is, of course, the homotopy invariance property, which 
forms the basis for the continuation method, which was originally developed 
by Poincare and which consists of embedding the problem in a parametrized 
family of problems and considering its solvability as the parameter varies. Ever 
since the introduction of the Leray-Schauder degree theory in 1934 (which is 
an infinite-dimensional extension of Brouwer's degree theory), there have been 
various extensions and generalizations in different directions. By far the most 
important of these generalizations is due to F. E. Browder. In a series of impor- 
tant papers [7-12], Browder developed a degree theory, which is a generalization 
of the Leray-Schauder degree theory, for maps from a bounded open subset of 
a reflexive Banach space X into its dual X*. Browder's breakthrough work 
paved the way for the application of degree-theoretic techniques to large classes 
of nonlinear partial differential equations. 

Browder's degree theory is defined primarily for (S)+ mappings (see ?2) and 
(S)+ mappings with maximal monotone perturbations, which cover a substan- 
tially large class of nonlinear partial differential operators. Browder demon- 
strated that the (S)+ maps are the right class to consider and he proved the 
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existence of his degree through ingenious arguments involving Galerkin approx- 
imations. Specifically he proved 

Theorem A [11]. Let X be a reflexive Banach space. Then there exists one 
and only one degree function on the class of maps T + f, with T maximal 
monotone and f bounded and of class (S)+, which satisfies the additivity on 
domain property, is normalized by J, the duality map of X into X* corre- 
sponding to an equivalent norm on X with respect to which both X and X* are 
locally uniformly convex, and is invariant under affine homotopies of the form 
(1 - t)(T + f) + tf1 with T maximal monotone, f and fi of class (S)+ 

Remark. In fact, Browder showed that the unique degree function is invariant 
under a much broader class of homotopies, namely homotopies of the form 
Tt + f, t e [0, 1], where Tt is a pseudomonotone homotopy for T and ft is 
a homotopy of class (S)+ for f (cf. Browder [11, Theorem 10]). 

When applied to partial differential operators, we can have X = WOmP(Z) 
and X* = W-m q(Z) with 1 < p, q < oo and p + i = 1, T: D C X 

2x*\{z} and f: U -* X* where U is a bounded open set of X. As will 
be clear from the definitions (cf. ?2), a compact perturbation of (S)+ maps is 
still an (S)+ map. Therefore compact maps from X into X* are harmless, in 
the sense that they can alwavs be absorbed in the original (S)+ operator. But 
if such a compact map originates from a Nemitsky (superposition) operator 
Ng(u)(x) = g(x, u(x)), x e Z, u E WomYP(Z) with g: Z x R - R, it is clear 
that g(x, r) has to satisfy certain growth conditions. To avoid such restrictions 
which are not always satisfied in applications, Browder [ 12] proved the following 
theorem. Let Z C Rn be a domain in Rn (bounded or unbounded), X = 
Wom P(Z), and U C X open and bounded. We will say that g: Z x IR -*R 

satisfies the sign condition provided it has the following two properties: 
(i) for each fixed r E ]R, x -- g(x, r) is measurable, for each fixed x E Z, 

r -- g(x, r) is continuous, and for each integer s > 0, there exists a 
function h, E L c(Z) such that Ig(x, r)j < h,(x) a.e. on Z, Irj I s. 

(ii) For all (x, r) E Z x R, we have g(x, r)r > 0. 
Then the theorem of Browder [12, Theorem 7] reads as follows: 

Theorem B [12]. Assume that f is a bounded mapping of class (S)+ of U into 
X*, and Ng : X -- X* is the Nemitsky operator corresponding to a function 
g(z, r) satisfying the sign condition. Assume that yo E X* is a target point such 
that yo ? (f + Ng)(OU). Then the degree d(f + Ng, U, yo) is well defined. 
Furthermore, this degree function is the unique one satisfying the additivity on 
domain property, is normalized by the duality map J, and is invariant under 
permissible homotopies. 

In this paper we present the following generalizations of Browder's degree 
theory, contained in Theorems A and B above. First we prove that the degree 
function stipulated by Theorem A can be extended uniquely to the case where 
f is allowed to have a multivalued compact perturbation (i.e. for operators of 
the form T + f + G with G( - ) being the multivalued compact perturbation). 
Second, we establish the existence of a unique degree function for maps of the 
form f + NG, where NG is the multivalued Nemitsky operator corresponding 
to a multifunction G(x, r) satisfying a sign condition. This extends Theorem 
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B, since the function g: Z x R -1 IR is replaced by a multifunction G: Z x R -- 
2R\{0}. These two extensions are presented in ??3 and 4. In ?5, we present 
some examples illustrating the applicability of our abstract results. 

2. PRELIMINARIES 

Let X be a Banach space and consider the family F of all continuous map- 
pings f: U -- X, with U a bounded open subset of X (we consider all 
possible such sets U) and with (I - f ) (U) relatively compact in X, where 
I is the identity map on X. Let H be the family of continuous homotopies 
{f: t E [0, 1]} in F, with a common domain U such that (I - ft)(U) C K 
for all t E [0, 1] and K C X is compact. Then the Leray-Schauder degree 
theory states that there is an integer-valued degree function d(*, *, *) on the 
triples (f, U, yo), with f E F, yo E X\f(a U) such that 

(a) Normalization: If yo E U, then d(I, U, yo) = 1. 
(b) Additivity on domain: If U1 and U2 are disjoint open subsets of U 

such that yo S f(U\(U1 U U2)), then 

d(f , U, yo) = d(f , U1, yo) + d(f , U2, yo)- 

(c) Homotopy invariance: If the homotopy {ft : t E [0, 1]} belongs in H, 
y : [0, 1] -- X is continuous, and y(t) S f (&U) for any t E [0, 1], 
then d(f , U, y(t)) is independent of t E [O, 1]. 

By a result proved independently by Fuhrer [16] and Amann-Weiss [1], prop- 
erties (a), (b), and (c) above determine uniquely the Leray-Schauder degree 
function. 

In order to discuss a degree theory for maps from X into X*, where X is 
a reflexive Banach space, we need to introduce the type of mappings we will be 
dealing with. 

Definition 1. (i) A map T: D C X -, 2x \{0} is said to be "monotone" if 

(x* -*, x-y) > 0 

for all [x, x*], [y, y*] E GrT. Here GrT denotes the graph of T(-) and 
( , *) the duality brackets for the pair (X*, X). 

(ii) We say that T( - ) is "maximal monotone" if it is monotone and for any 
[u, u*] E X x X* for which (u* - x*, u - x) > 0 for all [x, x*] E GrT we 
have [u, u*] E Gr T. 

Following Browder, we will be concentrating on maps of type (S)+ as the 
primary class to define a degree function. The class (S)+ of operators was first 
introduced by Browder [3, 4]. 

Definition 2. Let B C X and f: B -X* . We say that f( * ) is of class (S)+ 
if (i) f(*) is demicontinuous (i.e. x, -- x in B implies f(xn) I+ f(x) in X*) 
and (ii) if {x,n},> 1 C B and x, 

w x for some x E X and lim(f(x ), x, -x) < 
0, then x -+x in X. 

Finally let us introduce the kind of multivalued perturbations that we will be 
considering: 
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Definition 3. A multifunction G: B C X -- 2x* \{0} is said to belong to class 
(P) if it maps bounded sets to relatively compact sets, for every x E B G(x) 
is a closed and convex subset of X*, and G(.) is u.s.c. in the sense that for 
every closed set C C X* G-(C) = {x E B: G(x) n C #z o} is closed in X. 

By a well-known renorming theorem due to Troyanski [20], given a reflexive 
Banach space, we can always renorm it equivalently so that both X and X* are 
locally uniformly convex. Thus without loss of generality we may assume from 
the beginning that both X and X* are locally uniformly convex. Recall that a 
locally uniformly convex Banach space has the Kadec-property; i.e. if x, w- x 
and llxnll -llxll, then xn -x in X. 

Define J: X -* X*, the duality map, by 

J(x) = {x* E X*: (x*, x) = 11X112 = IIX*II2}. 

Then from Browder [1 1, Proposition 8], we have the following result: 

Lemma 4 [11]. J(-) is a well-defined, single-valued map from X onto X* , 
which is a homeomorphism and is also monotone and of class (S)+. 
Remark. It is not difficult to show that J(-) is uniformly continuous on a 
bounded subset of X. 

Using the duality map J(.), we have the following criterion for maximal 
monotonicity (cf. Browder [5]). 

Lemma 5. A monotone operator T : D C X -- 2x \{0} is maximal monotone 
if and only iffor every A > 0 (equivalently for 3ome A > 0) R(T + AJ) = X*. 

The following approximate selection theorem due to Cellina [13] will be im- 
portant in our extension of Browder's degree theory to a multivalued context. 

Lemma 6 [13]. If Y, V are Banach spaces, B C Y, and G: B -+ 2V\{0} is 
an u.s.c. multifunction with closed and convex values, then given e > 0, there 
exists a continuous map g, : B -- V such that 

ge(y) E G((y+Be)fnB)+Be 

for all y E B and gE(B) C convG(B), with BE = {Y E Y: IIYIIY < e} and 

BE = {v E V: IVIlv <E}- 

Remark. In particular, if G(*) is compact, then so is the approximate selector 

3. THE DEGREE FOR THE MAPPINGS OF THE FORM T + f + G 

Let X be a reflexive Banach space, equivalently renormed so that both X 
and X* are locally, uniformly convex and let J(*) be the duality map corre- 
sponding to this locally uniformly convex norm. Assume that U is a bounded 
open set in X, T: D C X -- 2x*\{0} is maximal monotone, f: U -- X* is 
a map of class (S)+, and G : U -- 2X* \{0} is a multifunction of class (P). 
In this section we will define a degree function d(T + f + G, U, yo) for all 
Yo E X*\(T + f + G)(O U) and prove that such a degree function is unique 
among all possible degree functions satisfying the three characteristic proper- 
ties of normalization, additivity on domain, and homotopy invariance, to be 
defined precisely in the present context in the sequel. 
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Recall that homotopy invariance is with respect to a certain class of permis- 
sible homotopies. We will now introduce those permissible homotopies for the 
maps T, f, and G. The permissible homotopies for T and f (see Definitions 
6 and 7) are due to Browder [1 1, 12], while the permissible homotopies for G 
(see Definition 8) are a natural extension to multifunctions of the permissible 
homotopies for compact maps used in the Leray-Schauder degree theory. 

Definition 7 [1 1]. A family of maximal monotone maps {Tt: t E [0, 1]} is said 
to be a "pseudomonotone homotopy" of maximal monotone maps if it satisfies 
the mutually equivalent conditions: 

(i) Suppose that t, -n t in [0, 1], [xn, x,*] E GrTt, with x, 
w x in 

X, xn* I x* in X*, and lim(xn*, xn) < (x*, x). Then [x, x*] E GrTt 
and (xn*, xn) -- (x*, x). 

(ii) ip(t x*) = (Tt + J)-I (x*) is continuous from [0, 1] x X* into X, with 
both X* and X furnished with their norm topologies. 

(iii) For each x* E X*, t -- (o(t, x*) = (Tt + J)-I(x*) is continuous from 
[0, 1] into X endowed with the norm topology. 

(iv) Given [x, x*] E GrTt and tn -+ t in [0, 1], then there exists a se- 
quence [xn, xn*] E GrTt, such that xn -- x in X and xn* - x* in 
X* (i.e. Gr Tt C lim Gr Tt, which is of course equivalent to saying that 
t -+ GrTt is l.s.c. from [0, 1] into 2xxx* \{0}). 

The admissible homotopies for f are given in the next definition. 

Definition 8 [12]. Let {ft : t E [0, 1]} be a parameter family of maps from 
U into X*. Then {ft} is said to be a "homotopy of class (S)+", if for any 
Vxn}n>l C U for which we have xn - x in X and for any {tn}n>l C [0, 1] 

such that tn -- t for which 

lim(ftn(xn) Xn -X) < 0 

we have that xn - x in X and ftn (xn) w ft(x) in X* . 

Finally we introduce the family of admissible homotopies for the multivalued 
perturbation G( * ) . 
Definition 9. A one-parameter family of multifunctions Gt : U - 2x*\} 
t E [0, 1], is said to be a "homotopy class (P)" if (t, x) -- Gt(x) is u.s.c. from 
[0, 1] x U into 2x*\{0}, for every [t, x] E T x U Gt(x) is a closed and 
convex subset of X*, and {U Gt(x) : t E [0, 1], x E U} is compact in X* . 

The next proposition paves the way for the eventual definition of the degree 
function on maps of the form T + f + G by producing a crucial approximation 
to it on which Browder's degree function can be defined. From Lemma 6, we 
know that if G: U - 2x \{0} is a multifunction of class (P) and e > 0, then 
we can find gE U) X* a continuous function such that g, (U) C conv G(U) 
and for all x E U ge(X) E G((x +BE) n U) +B* where BE = {X E X :IIXII <E} 

and BE = {X E X* : IIX*II* < E}. In what follows gE(.) will denote this 

approximate selector of G( ). 

Proposition 10. Let U be a bounded open set in X, T: D C X -- 2x \{z} a 
maximal monotone map with 0 E T(O), f: U -+ X* a bounded map of class 
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(S)+, G: U - 2x*\,' J a multifunction of class (P). Let yo* E X* such that 
y* 0 (T+f+G)(QU). Then 

(i) y* 0 (T+f+ge)(&U) for alle>0 small; 
(ii) f + g, is a mapping of class (S)+ and so by Theorem A, the Browder 

degree d(T + f + ge, U, y*) is defined for all e > 0 small; 
(iii) there is el > 0 such that for all 0 < e < el and all approximations 

g(-), d(T + f + g6, U, y*) has the same value (that is, 
{d(T + f + gE, U, y*) E > 0 small } stabilizes). 

Proof. From the remark following Lemma 6, we know that g, (*) is compact 
and so f + g, is of class (S)+. Now suppose that (i) were not true. Then we 
could find a sequence en 1 0 and {un}n>i C AU with un -- u in X such that 

y* E (T+f+gen)(un), n > 1. 
Let v* = yo - (f(un) + 

gan(un)) 
* Then v,* E T(un). By passing to a sub- 

sequence if necessary, we may assume that g6, (un) --. g*, f(un) 
w f *, and 

vn* . v* in X*. Thus v* =Ay -(f * + g*). We have 

lim(v* + f(un), un - u) = lim(y* - gA (un), Un - u) = 0 - 
Since by hypothesis f is of class (S)+ (thus demicontinuous), it is pseu- 

domonotone and so lim(f(un), un - u) > 0. Thus 

lim(vn*, un - u) < 0 

?* v E T(u) and (vn*, un) (v*, u) (since T is maximal monotone). 
Therefore (f(un), un - u) -p 0 as n -- ox and so un - u in X and 

f(u) = f** Hence u E AU. Since geA(un) r G((un+B6n)nU)+BE*, un -- u in 
X, and G is of class (P), by standard arguments we can check that g* E G(u). 
So finally we get that yO E (T + f + G)(u) with u E A U, a contradiction. 
Therefore we have established (i) and (ii). 

To prove (iii), we proceed again by contradiction. So suppose that there 
exists 0 < en < an -+ 0 such that 

d(T+f +gEn U, yO ) : d (T + f + ga,n a U, yo ). 

Then from the homotopy invariance property of Browder's degree function 
(cf. Theorem A), we get tn -+ t in [0, 1] and un E AU such that 

y* = (T + f + tngEc + (1-tn)ga6)(un) . 

Note that (tng6n(X) + (1- tn5)g6 (X)) E G((x + B5") n U) + B* for all x E U 
and so arguing as in the proof of part (i), we get y* E (T + f + G)Q( U), a 
contradiction. So the proof is complete. Q.E.D. 

In the light of this proposition, the following definition makes sense: 

Definition 11. We define d(T + f + G, U, y*) to be the common value for 
E > 0 sufficiently small of d(T + f + ge, U, y*) (this last degree being the 
Browder degree). 

The next theorem shows that the degree function just defined has the three 
characteristic properties of normalization (with normalizing map the duality 
map J), of additivity on domain, and of homotopy invariance (with admissible 
homotopies being given by Definitions 7, 8, and 9). 
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Theorem 12. The degree function defined by Definition 10 has the following prop- 
erties: 

(i) Normalization: d(J, U, y*) = 1 for all y* E J(U). 
(ii) Additivity on domain: If U1, U2 are disjoint open subsets of U and 

y* 0 (T+ f + G)(U\(U1 u U2)), then 

d(T+ f + G, U, y)= d(T+ f + G, Ui, y*) +d(T+ f + G, U2, y*). 

(iii) Homotopy invariance: Let {Tt}tE[o, ] be a pseudomonotone homotopy 
of maximal monotone maps from X into 2X with 0 E Tt (0) for all 
te[0, 1], {ft}tE[o,l] isahomotopy of class (S)+ of mapsfrom U into 
a bounded subset of X*, and {Gt}tE[o, 1] is a homotopy of class (P) of 
multifunctions from U into the nonempty, closed, and convex subsets 
of X*. Let y* : [0, 1] -+ X* be a continuous map such that y*(t) 0 
(Tt + f + Gt)(aU) for all t e [0,1]. Then d(Tt + f + Gt, U, y(t)) is 
independent of t E [0, 1]. 

Proof. (i) This property follows immediately from Theorem A. 
(ii) This property too follows from Theorem A, since by Definition 10, 

d(T + f + G, U, y*) = d(T + f + ge, U, y*) for all e > 0 sufficiently 
small and f + gE is of class (S)+ since it is a compact perturbation of 
a (S)+ map. 

(iii) Let G(t, x) = Gt(x). Recalling (cf. Definition 8) that (t, x) -) G(t, x) 
is u.s.c., we can apply Lemma 6 with B = [0, 1] x U and, for any e > 
0, get a continuous function ge(t, x) from B into conv G([O, 1], U) 
such that 

g,(t, x) E G(([t - , t + E], X + BE) n B) + BEfor all (t, x) E B . 

We claim that for e > 0 small enough, y*(t) ? (Tt + ft + gt,e)(aU) for 
all t E [0, 1], with gt,e(x) = ge(t, x). Assume the contrary. We then have 
tn-+ t in [0, 1], En I 0, {un},n> C aU with un 

w u in X, and y*(tn) E 
(Ttn + ft. + gtn ten) (Un) . Let v=y* (tn )-(ftn (un) + gtn, C,(Un)) * SO v,* E Ttn (un) 
for all n > 1. By passing to a subsequence if necessary, we may assume that 
y*(tn) - y*(t), vn* * v*, ftn(un) wf*, and gt,,(un) - g*. Hence 

lim(vn* + A, (un) X Un -U) = O- 

Also since {ft} is a homotopy of class (S)+, we have 

!i_m(f,, (Un ) Un -U) > O 

So we get 
lim(vn*, un - u) < 0 

and this by Definition 7 implies that v* E Tt(u) and (v, un) - (v*, u). Thus 

lim(ft,,(Un) , Un -U) = O 

and so we have un -) u in X and ft(un) 
w f (u) in X* (cf. Definition 8). 

Also it is easy to check that g* E Gt(u). All these facts combined tell us that 

y* (t) E (Tt + ft + Gt) ( >) 
with u E C9 U , which is a contradiction. So indeed for E > O small enough, we 
haeta y. .t 0 ,T 

. 
ft 

, 
g,, (c U)fraltE , I.. 
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It is routine to verify that {ft+g9,C}1E(O, 1] is a homotopy of class (S)+. So by 
Theorem A, we have that d (Tt+ ft +gt, , U, y*(t)) is independent of t e [0, 1] 
for e > 0 small enough. It only remains to show that for e > 0 sufficiently 
small and for each t E [0, 1] fixed, we have d(Tt +ft + gt U,y*(t))U= 
d(Tt + ft +Gt s U 5y*(t)). 

Fix t E [0, 1]. Then by hypothesis Gt: U --* 2X' \{} is a multifunction 
of class (P). Apply Lemma 5 to Gt(*) with B = U, to get g: U -- X* a 
compact map which satisfies 

ge(x) E Gt((x + B) n U) + Bs 

for all x E U. Consider the affine homotopy sg, + (1 - s)gt,, with variable 
s E [0, 1]. The same arguments used before show that 

y*(t) 0 (T1 + ft + sge + ( - s)gte)(aU) 

for s E [0, 1] and e > 0 small enough. Then Theorem A tells us that 

d(Tt + ft +gt^,c U,~y*(t)) = d(Tt + ft + ge IU, y*(t)) 

for e > 0 sufficiently small. But for a > 0 sufficiently small the last degree 
equals d( Tt + ft + Gt, U, y* (t)) (cf. Definition 1 1). Consequently for every 
fixed t E [O, 1] 

d(Tt + ft + Gt,~ U,~ y*(t)) = d'Tt + ft + gt,c I U y*(t)) 

for small e > 0. Since t e [0, 1] was arbitrary, we have proved the homotopy 
invariance property of the degree function and so the proof of Theorem 12 is 
complete. Q.E.D. 

Next we establish the uniqueness of the degree defined above with respect to 
the three properties of Theorem 12. 

Theorem 13. There exists exactly one degree function on the class of maps T + 
f + G, with T maximal monotone, f bounded and of class (S)+, and G a 
multifunction of class (P), which satisfies the normalization and additivity prop- 
erties of Theorem 12 and is also invariant under all affine homotopies of the form 
(I - t) (T ? f + G) + tf1 with t E [0, 1 ], T maximal monotone, fI, f bounded 
and of class (S)+, and G a multifunction of class (P). 
Proof. Let d1 be such a degree function. By setting G 0, from Theorem A, 
we have that d1 coincides with Browder's degree function, which is uniquely 
defined on maps of the form T + f . Using the above affine homotopy we will 
show that this unique identification carries on to the broader class (T + f + G). 
Suppose yO* (T + f + G) (& U) . Consider the affine homotopy 

(1 -t)(T+ f +G)+t(T+ f +ge) 

with Te = (T-1 +eJ'1)-I and ge( - ) is as always the compact selector of G( ) 
guaranteed by Lemma 6 such that g,(x) E G((x + Be) n U) + Be, for all x E U. 
Using Definition 7 we can easily check that (T, + f ) is of class (S+); hence 
(T, + f + g6) is of class (S)+ (recall the class (S)+ is closed under compact 
perturbations). Since we have 

d(Te+ f +ge, U,y*) =d1(Te+ f +ge, U,yo) 
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then d(T+ f +G, U, y ) ? d1(T+ f +G, U, y ) would imply that there exist 
n I O, {un}n>1 C aU with un n u, and tn - t in [0, 1] such that 

y0 E (1-tn)T(Un) + tnTn(Un) + (1 -tn)G(Un) + tnge (Un) + f(un). 

Assume that v* E T(un) and gn* E G(un) are such that 
= (1 - tn)v* + tnTen(Un) + (1 - tn)gn* + 

tng,,(Un) 
+ f(Un), 

by passing to a subsequence if necessary, we may assume that f(un) w f * and 
(1 - tn)gn* + tngen(un) - h* in X* . In what follows, we use the arguments of 
Browder [11] (see the proof of Theorem 12). Let w * = Te(Un) ,then w * E 
T(un -enJ(wn*)). This and v * E T(un) imply that en Iw *112 < (w,*, un) and 
0 < (vn*, un). Thus we obtain 

tn gn IIWn*112 < (Yo -( 1-tn)gn* -tngzn (Un)- f (un) X Un) < M M > O - 
Hence {tnCen wn* I2}n>l is bounded and so tnen,IIw*II -+ 0 as n -+ xo. Let 

[x, x*I E Gr T. Then 

(W*- X*, Un -EnJ1 (W*)-X) > 0, (V*- X*, Un -X) > 0 

Thus (w* - x*, un - x) > (w* - x*, enJ-1(w*)) > -,en,Iw*II*IIx*II* * Conse- 
quently, we have 

(yO - (1 - tn)gn- tngen(un) -f(un) - X%, un - x) -tn6n||Wn*|I*|X* II* 0. 

Hence if we let zn = -[(1- tn)gn* + tngen(un) + f(un)], then Zn w z* with 
z*=yo*-(h*+f*) and 

lim(z*- x*, Un -X) > 0 

and the latter means that lim(zn, un) > (x*, u - x) + (z*, x) . 
On the other hand, since (1 - tn)gn* + tnge9(un) - h* in X*, we have 

lim(z* + f(un), un-U) = 0- 

Also lim(f(un), un - u) > 0, since f(.) is of class (S)+. Therefore we get 

lim(zn*, Un -U) < O =E- lim(zn*, Un) < (Z U) - 

Thus (z*, u) > lim(zn, Un) ? (zn, un) > (x*, u-x) + (z*, x) . It follows 
that 0 < (z* _ x*, u - x) for all [x, x*] E GrT. Because of the maximal 
monotonicity of T, z* E T(u). Then, by replacing [x, x*] by [u, z*], we get 
(zn, Un) -- (z*, u). Hence 

lim(f(un), un-u) =0- 

So we conclude that un -- u in X; hence u E 9U and f(un) w- f(u) = f 
in X* (since f(.) is demicontinuous being of class (S)+; cf. Definition 2). 
Also it is straightforward to show that h* E G(u). Thus y* E (T + f + G)(u), 
with u E 0U, a contradiction. Therefore the two degrees coincide and so we 
have established the uniqueness of the degree function on maps of the form 
(T+f+G). Q.E.D. 

Remarks. (1) It is clear that the degree function of Definition 11 can be ex- 
tended to the broader class of maps of the form T + f + G, with f being 
pseudomonotone and bounded by defining 

d(T + f + G, U, yO*) = lim d(T + f + eJ + G, U, y*). 0 c40 
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Note that for any e > 0, f+eJ is of class (S)+. This extended degree function 
has properties similar to the degree function for pseudomonotone maps defined 
by Browder [ 1 1 ]. 

(2) The condition 0 E T(O) can always be satisfied by appropriately trans- 
lating the domain and the operator. More precisely if [xo, x0*] E Gr T, define 
T1: (D -xo) 5 X -* 2x \{0} by T1(x) = T(x +xo) -xo*. Clearly T1(.) 
is still maximal monotone (if T(-) is) and 0 E T(O). For the permissible 
maximal monotone homotopies the condition 0 E Tt(O) can be replaced by the 
requirement that [xo, x *] E Gr Tt for every t E [0, 1]. 

4. DEGREE FOR MAPS OF THE FORM f + NG 

As we already pointed out in the introduction, the condition that G: U 
2x* \{o} is compact translates into some growth condition on G when applied 
to partial differential inclusions. In Theorem B, this restriction was replaced by 
a sign condition. In this section, we pursue this idea and achieve a two-fold 
extension of Theorem B. On the one hand, we allow a multivalued function 
G(x, r) in place of g(x, r) and on the other hand, we relax the sign condition. 

Let ZC Rn beanopensetandfor m > 1, 1 <p < o,let X= W- l(Z). 
Then its dual is X* = W-m,q(Z) with I + I = 1. Let G: Z x Rt 
2R'\{o} be a multifunction with compact, convex values such that (x, r) - 

G(x, r) is measurable and r -- G(x, r) is u.s.c. It is well-known that un- 
der these assumptions we can write G(x, r) = [(o(x, r), ,v(x, r)] = {h E R: 
Vo(x, r) < h < V/(x, r)} and (x, r) -* (o(x, r), y,(x, r) are both measurable 
while r -k -(p(x, r), V(x, r) are both u.s.c. We want to impose sign conditions 
on G(x, r) and so we make the following definition: 

Definition 14. A multifunction G(x, r) is said to satisfy the "sign condition" 
if the following properties hold: 

(i) G(x, r) = [g(x, r), ,v(x, r)] is measurable in (x, r) and u.s.c. in r 
and for each s > 0, there exists hs (* ) E L1 (Z) such that for In < s 

jo(x, r)j, jj(x, r)j < hs(x) a.e. on Z; 

(ii) for all x E Z, (o(x, r)r > 0 for r < 0 and qi(x, r)r > 0 for r > 0. 

If G(x, r) is single valued, this definition coincides with the sign condition 
of Browder [12] (cf. Definition 5). As we already indicated earlier, we want to 
relax this condition. So we introduce 

Definition 15. A multifunction G(x, r) is said to satisfy the "generalized sign 
condition" if the following properties hold: 

(i) G(x, r) = [(p(x, r), u(x, r)] is measurable in (x, r), u.s.c. in r, and 
for each s > 0 there exists hs E L1(Z) such that for Irj < s 

ko(x, r)I IV1(x, r)l < h5(x) a.e. on Z; 

(ii) there is an ro > 0 such that for all x E Z 

o(x, r)r>Oifr< -ro and qi(x, r)r>0 ifr> r0. 
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Let G: Z x R -- 2R\{z} be a multifunction satisfying Definition 14 or 15. 
We formally define the Nemitsky operator NG from D C X = Wo P(Z) into 
2x*\{0} by 

NG(U) = IV E W-m q(Z) n 4lc(Z) :V(X) E G(x, u(x)) a.e. on Z}, 

with D = {u E WOm'P(Z): NG(U) $ 0}- 

A multifunction G(x, r) which is only measurable in x and u.s.c. in r is not 
in general jointly measurable (cf. [18]). That is why we need to assume joint 
measurability of G(x, r). Note that if G(x, r) = g(x, r) is single-valued, 
then this joint measurability is automatically satisfied by the Caratheodory con- 
ditions; i.e. g(x, r) is measurable in x, continuous in r. This is the case in 
Browder [12]. Also note that our joint measurability hypothesis implies that for 
every u Z -- R measurable, x -- G(x, u(x)) is measurable and so it has a 
measurable selector. 

Let U be a bounded open set in X = W0m'P(Z), f: U e(Z) 
a bounded map of class (S)+, and yO E X*\(f + NG)(O U) . In this section 
we will define a degree for the triples (f + NG, U, y*) and prove that it has 
the three characteristic properties of normalization, additivity on domain, and 
homotopy invariance. Since the case when G(x, r) satisfies the generalized sign 
condition is more complicated and the other case can be treated in a similar 
fashion, we only present a detailed analysis of the former. 

The following proposition which will be needed in the sequel is due to Brezis 
and Browder [2]. 

Proposition 16. Let u be an element of W0m'P(Z), T an element of W-m,q(Z) 
n L4lr(Z) such that T(x)u(x) > h(x) for some h summable function on Z. 
Let (T, u) denote the distribution action of T on u (i.e. the duality brackets 
for [T, u] E X* x X). Then T(.)u(.) is summable on Z and 

(T, u) = T(x)u(x) dx. 

A critical step in defining d(f + NG, U, y*) is to approximate G(x, r) by 
single-valued, Caratheodory functions g, (x, r) which satisfy the corresponding 
sign conditions. This is done in the next proposition. 

Proposition 17. If G: Z x R -- 2R\{1} is a multifunction which satisfies the 
generalized sign condition and e > O, then there exists g: Z x JR - R., a 
Caratheodory function satisfying: 

(i) g,(x, r) E G(x, r + B) + Be for all (x, r) E Z x R and with Be - 

(-X, e); 
(ii) for each s > O, there exists hs E LI (Z) such that for Irn < s 

Ig8(x, r)j < hs(x) 
and hs(*) can be chosen independent of e > 0; 

(iii) for all x E Z and all Irl > rO + 1, g6(x, r)r > 0. 
Proof. Let ,u: Z -- R be a continuous function such that 0 < u(x) < 1 for all 
x E Z and fzu(x) dx < xo. 

Step 1: Define (0*, y,*: Z x R -- R by 

*(x.r) = I 9(x, r), r < ro, 
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and 
Yl*(x, r) ={min[0, y/(x, r)], rC< -rO, 

YIkx~r)~y,(x,r), r?>-ro, 

and G*: Z x R -- 2R\{z} by G*(x, r) = [p*(x, r), y/ *(x, r)]. It is clear that 
G* (x, r) C G(x, r) and that G* (x, r) is measurable in (x, r) and u.s.c. in r. 

Fix x E Z and apply Lemma 6 on G* (x, *) with 3 > 0 to get iq6: R- *R R 
a continuous map such that 

tq5(r) E G*(x, r+B)+Ba 

for all r ER (recall B' = (-3,3)). Take 3 < min[I, eu(x)]. We then have 

max{y E R:y E G*(x, r+ B)} <O for r < -(ro+ -) 

and 
min{y ER:y E G*(x, r+B)} ?>0 for r> rO+ 2. 

Define 1* : Rt R by 

min[0, ?qa (r)], r < - (rO + ), 

i7j* (r) = 7 g (r) , - (rO + I2) < r < (rO +2- 
max[O, ?tj5(r)], r > ro + 1, 

and on the intervals -(ro + 1) < r < -(ro + 2) and (ro + 1) < r < (ro + ),use 
line segments to make continuous connections. It is easy to see that t(*) is 
continuous, t1(r)r > 0 for Irl > ro + 1, and 

?1* (r) EiG* (x, r + B') + ,u(x)h' 

Hence t*(r) E G(x, r + B') + yu(x)BI. 
Step 2. Define a multifunction F, Z 2C(R, R) by 

J76(X) = {ti E C(R, R): I(r) E G(x, r+Bh)+,#(x)Bh, ?I(r)r > 0 for Irl > rO+l}. 

From Step 1 above, we know that for every x E Z, Fe(X) $ 0. 
Let G(x, r) =G(x, r + B,) + #(x)B,, Be = [-a, a]. Since r - G(x, r) is 

u.s.c. so is r -- G(x, r) and G(x, r) is a bounded closed interval in R. For 
any v ER, a(v, G(x, r)) = sup[a(v, G(x, r + u)): u EB,] + eu(x), where a 
is the support function. Thus x a(v, G(x, r)) is Lebesgue measurable and 
hence so is x -- G(x, r). 

Let G(IF) be the graph of (). We have 

G(J7) = {[x, ?J] E Z x C(R, R): d(?I(r), G(x, r)) = 0 
for all rER, and ?(r)r > O for Irl > ro + 1}. 

Assume that {r, }?I,> is an enumeration of the rationals in R and {Sm }m>i 

an enumeration of the rationals in irl > ro + 1. Note that since G(x, *) is 
u.s.c., r -+ d (i(r), G(x, r)) is l.s.c. for any ? E C(R, R). So we can write 

G()= n n {[x, 1E Z x C(R, R):d(?1(rn) G(x, rn)) = 0, 1(sm)sm > 0} 
n>1 m>1 
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For each n > 1, (x, t1) -* d(ti(rn), G(x, rn)) is a Caratheodory function 
from Z x C(R, R) into R+ (recall C (R, R) is a Frechet space). So it is jointly 
measurable and therefore {(x, ?7) E Z x C(R, R) : d(77(rn), G(x, rn)) = 0} E 
2'(Z) x B(C(R, R)) for every n > 1 with Y(Z) being the Lebesgue a-field 
of Z and B(C(R, R)) the Borel a-field of C(R, R). Consequently, G(I,) E 
Y (Z) x B(C(R, R)). Applying Aumann's selection theorem (cf. Wagner [21, 
Theorem 5.10]) we get y,: Z -- C(R, R) a Lebesgue measurable map such 
that YB(X) E Fe(X) for all x E Z. 

Set ge(x, r) = (ye(x))(r) . Then g: Z x R -* R is a Caratheodory function 
which satisfies conditions (i) and (iii) of the proposition. It is easy to see that 
condition (ii) is also satisfied and in fact h,(.) can be chosen independent of 
E > 0 small, since u(*) E L1 (Z). Q.E.D. 

Let gg(x, r) be the Caratheodory approximate selector obtained in the above 
proposition. We need yet another approximation method, namely the trunca- 
tion procedure on g(x, r). 

Definition 18. Let {Zk}k>1 be an increasing sequence of relatively compact, 
open subsets of Z such that Z = U=I1 Zk . Let &k(*) be the characteristic 
function of Zk . Consider the truncation of g, at level k; i.e. 

g,k(x r) g= I x E r) if 1ge(x, r)l < k, 
ksign(g8(x, r)) if Ige(x, r) I> k. 

We define the kth-approximant Nk = Nk(g8) of the Nemitsky operator Ng8, 
as a map from X into X*, by 

Nk (U)(X) - =kgk(X, U(X)). 

It is then clear that each Nk is a compact map of X into X* n L*(Z). 
In what follows, g8(x, r) will be the Caratheodory approximate selector of 

G guaranteed by Proposition 17 and gk(x, r) the corresponding truncation 
and Nk its Nemitsky operator. Also by A(.) we denote the Lebesgue measure 
on the set Z. 

Theorem 19. If U is a bounded open set of X = WJPm'(Z), f a bounded 
map of class (S)+ from U into X* = W-mq (Z), G: Z x R -- 2R\{0} is a 
multifunction satisfying the generalized sign condition, and y* E X* such that 
Yo 0 (f +NG)(a U), then 

(i) y * 0 (f + Nk )( U) for k > 1 sufficiently large and E sufficiently small. 
Since (f + Nk) is of class (S)?, the Browder degree d(f + Nk, U, y*) 
is well defined; 

(ii) for k > 1 sufficiently large and E > 0 sufficiently small, d(f+NNk, U, y*) 
is independent of k, 6, and the selector g (.) from Proposition 17. 
So we can define this ultimate common value to be the degree 
d(f +NG, U, yO). 

Proof. (i) Suppose that the conclusion was false. Then we can find {Uk}k>1 C 

a U and 6k l 0 such that 

f(Uk) + Nk (Uk) = yA. 
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As before, by passing to a subsequence if necessary, we may assume that Uk W 

u in X, f(uk) w f*, and. Nkk(Uk) `* V in X*. For any bounded subdomain 

Z' of Z, by Sobolev's embedding theorem we know that W? 'P(Z') embeds 
compactly in LI(Z') . Hence we may assume that Uk(X) --+ u(x) a.e. on Z. 

Contrary to the single-valued situation considered by Browder [12] (cf. Theo- 
rem B), where Nk (Uk) - Ng(u) in LI (Z'), in the present multivalued context, 
Nk (Uk)(*) is not pointwise convergent in general. It is only weakly convergent 
in L '(Z) as we will show next. Nevertheless, using this weak convergence of 
{Nk (Uk)( )}k>l in L1(Z) we will arrive at a contradiction, establishing part 
(i) of our theorem. 

First we will show that 

SUp IN k (Uk)(x)l dx < 00. 
k>I Z 

e 

To this end, let Z(k) = {x E Z: IUk(Z)I < rO + 1}. Observe that for every 
k > 1 and every x E Z\Z(k), we have 0 < Nk'k(uk)(x)uk(X) . Then we have 

M> jN kek (Uk)(X)Uk(x) dx 

| Lk NNk(Uk)(X)Uk(x) dx + N k(Uk)(X)Uk(x)dx 

> -(ro? 1)L hro+i(x)dx + (ro+ 1)L INekk(uk)(x)Idx 
Z(k) Z\Z(k) 

JZ\Z(k) Nek (Uk)(x)l dx < rM + j hro+I (x) dx 

IN (Uk)(x)l dx < M + 2 hr0+1 (x) dx. 
JZk r0 +1 J +lJ 

Now let Z C Z be measurable with A (Z) < o and I > ro + 1. Let Z' - 

{X E Z: lUk(X)I?< } and Zk+ = X E Z: IUkI(Z)IL > 1 We have 

ek (Uk) (X) I dx = !k IN(uk)(x) I dx + Ne(uk) (x) I dx 

<fhi(x)dx+ (M +(ro+1)jhro+I(x)dx). 

Since I > ro + 1 was arbitrary and h1(*) E L1 (Z), it is immediate from the 
above inequality that SUPk>I fZ, INkk(uk)(x)I dx -- 0 as A(Z') -- 0, and for 

every E > O there is a Z C Z, A(Z) < 0 such that fz,z, INekk(uk)(x)ldx < 

E. So finally invoking the Dunford-Pettis theorem (see Dunford-Schwartz [15, 
p. 347]), we get that {Nkk(Uk)( )}k>I is relatively sequentially weakly compact 

in LI(Z). Hence we may assume that Nkk (Uk) w Vl in L1(Z). 
Now we will show that v u E L1 (Z) and that the following inequality holds: 

L v*(x)u(x) dx < limL Nk(uk)(X)k Uk(x) dx. 

Define Z_ = {x E Z: ju(x)I < rO + i} and Z+ = {x E Z: Iu(x)I > 

ro + 1}. Since vl E L1(Z), it is clear then that v u E LI(Z-) . We claim that 
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v*(x)u(x) > 0 a.e. on Z+. In fact for any Z1 C Z+ with A(Z1) < xc and 
any 3 > 0 by Egorov's and Lusin's theorems we can find a closed set Zj 6 Z, 
with A(Z1\Z,) < 3 such that Uk(Z) ` u(z) uniformly on Zj and u(.) is 
continuous on Zj. Hence Uk ` u in L??(Z,) and so since Ne(uk) - ' vl in 
L1 (Z,) we get that for any B C Zj measurable 

jv*(x)u(x)dx = lim Nek(uk)(X)Uk(x) dx > 0 

? O<v (x)u(x) a.e. onZ,. 

Since Xz6 (x)v (x)u(x) converges to Xz, (x)v (x)u(x) in A-measure we get 
that 0 < v (x)u(x) a.e. on Z1 . Finally recall that Z1 c Z+ with A(Z1) < oo 
was arbitrary and Z+ is a-finite to conclude that 0 < v* (x)u(x) a.e. on Z+. 

Next we prove that fz v(x)u(x) dx < limfUz Ik(uk)(X)Uk(x) dx . For any 
6 > 0, there exists Z1 C Z+ such that A(Z1) < x and 

SUp IN |k(Uk) (X) I dx < xo . 
k>1 Z\Z le 

If Zj C Z1 is as above, we define 

Z(J) ={x EZ+ n nZ6: IUk(X)I <ro+ 1} 
and 

Z+k(3) = {X E Z+ n Z,: IUk(X)I > rO+ 1}. 

Then IN(ekk(Uk)(x)uk(x)I < (ro+1)hro+1(x) on ZL (3) and Nekk(uk)(X)uk(x) > 

0 on Z+k(3). Clearly A(Z1 n Zk (j)) < A(Z1 n Zf) < 3. Since hro+ (*) E L1 (Z), 
we have 

sup [(ro + 1) ] hro+(x)dx = p(3) 0 
k> 1 Z Z 

as 3 10. Thus 

lim +Nkk (Uk) (X)Uk(x) dx 

=lim [IN~(k)()k d?_ Nk (Uk)(X) Uk(x) dx 
_ | ek (Uk) (X) Uk (X) d x + k j Nek k)()U(Xdx 

+ j Nek(Uk)(X)Uk(x) dx] 

> iimj Nk(Uk)(X)Uk(x) dx - (ro + 1) 1 hro+I (x) dx 
lgk~ ~~~~~~~Z nZk (j) 

- SUp J I ek(kk)(X)I dx 
k> 1 Z\Zj 

> I|v*(x)u(x) dx - p(J) - J . 

Since J > 0 was arbitrary, vj*(x)u(x) > 0 a.e. on Z+ and p(3) , 0 as 
I O, we get that v u E LI(Z+) and 

v*(x)u(x)dx < limj N kk(Uk)(X)Uk(x) dx. 
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Now we will show that the same inequality holds also over Z_. For any 
3 > 0, find a measurable set Z1 C Z_ with A(Z1) < oo such that 

J lv*(x)u(x)l dx < 3 
Z_nZc 

and 

(ro+1)j hro+I(x)dx<36. 

Recall that v u E Ll (Z_) and hro+i(*) E L' (Z) and so the above choice is 

possible. Let Z C Z1 with A(Z1\Z6) < 3 such that Uk(x) - u(x) uniformly 

on Z and u(-) is continuous on Z . Define 

ZL(3) ={X E Z- n Zg: IUk(X) <?ro+ 1} 

and 

Z+k() ={x E ZfnZ": IUk(xX)I > ro+ }. 

Hence since fz v (x)u(x) dx = lim fi N,kk (Uk) (X)Uk(X) dx, we have 

jv*(x)u(x) dx < lim f N(Uk) (X)Uk)(x) dx + j Ivl(x)u(x)| dx 
z ~ ~ ~ ~~z-6 znz-, 

< lim Nk (Uk) (X)Uk (x) dx + p(3) + |v*(x)u(x) |dx 

where p(3) = supk>1 [(ro + 1) fik (6) hro+I (x) dx]. Recalling our initial choice of 

Z1 C Z, we see that p(3) - O and fz nz lv*(x)u(x)l dx - O as 3 IO. So 

we have 

j v*(x)u(x)dx < limf N (uk)(x)uk(x)dx- 

Therefore, we finally have that v u E L' (Z) and 

L vj*(x)u(x)dx < limj Nkk(Uk)(X)Uk(x) dx. 

Recapitulating, we have that Ngkk(Uk) 
w- v* in L'(Z) and Ngkk(Uk) 

w v in 

X* = W-m q(Z). Since both modes of convergence imply weak convergence 
in the space of distributions O(Z)', we get that v* = v* = y* - f* and so 
V1*E W-m,q() 

Define h: Z , R by 

h(x) = I if lu(x)l > ro + 1, 
h v*(x)u(x) if lu(x)l < rO + 1, 

Then h E L'(Z) and v*(x)u(x) > h(x) a.e. on Z. So by Proposition 16, 
we have that 

(v*, u)= jvi(x)u(x)dx. 
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Hence, since yA = f(uk) + N (uk), we have 

lim(f(uk), Uk-u) = (yo-f*, u) -limj Nk(Uk)(X)Uk(x)dx 

< (YO* -f* u)_ -|vl*(x)u(x) dx 

= (Yo -f*, u) - (v*, u) = 0. 

Since f is a map of class (S)+, we get that Uk ` u in W0m'P(Z) and 
so u E OU. Furthermore, f(uk) -y f(u) in X* and so f* = f(u). Also 
it is straightforward to check that v* E NG(U). Thus we have shown that 
y* E (f + NG)(U) with u E 8 U, a contradiction. This completes the proof of 
part (i) of the theorem. 

(ii) Again we proceed by contradiction. Then we can find sequences nk > 1, 
ek > 0, 3k > 0 such that nk ` cc e k 0, and 3k l 0 as k - X and 
furthermore 

d(f +N , U, y*) 0 d(f + N , U, y*)- 

By the homotopy invariance property of the degree function for affine homo- 
topies of class (S)+, we know that we can find Sk = [0, 1] and Uk E 8 U such 
that 

f(Uk) + ( -sk)N k (Uk) + skNkJ(Uk) = y0. 

Without loss of generality, we may assume that the above equation holds for 
all k > l. Let V* = (1 -sk)Nk (Uk) + SkN kk (Uk) . We may assume that Sk -- S 

in [0, lI,Uk-4U in X and f(Uk).wfVf*, vwV* in X*. Wehave 

Jv*(x)uk(x) dx = (yO-f(uk), Uk) < M 

Let 4k(x, r) = (1 - sk)k(x)g k (x, r) + skXk(x)g nk (x, r). Then vZ*(x) = 

g k(x, Uk (x)). It is easy to see that g (x, r) satisfies (i)-(iii) of Proposition 16, 
with g,(x, r) replaced by kk(x, r) and e replaced by max[ek, 3k]d 

With the same argument as in part (i), we can show that vk w- v* in 
L1(Z), v*(x)u(x) 0> a.e. on the set {x E Z: Iu(x)l > ro + 1}, v U E L1(Z), 
and 

L vj*(x)u(x) dx < lim Vk*(X)Uk(x) dx 

(recall that because of the compact embedding of Wom P (Z') into L1 (Z') for 
any Z' C Z bounded, we may assume that Uk(X) -- u(x) a.e. on Z) . As before 
weget v =v* and (v*,u)=fzv (x)u(x)dx and v E NG(u). Finallysince 
f is of class (S)+ and lim(f(uk), Uk - u) < 0, we have Uk ` U in X; hence 
u E AU and f(Uk) w- f(u) = f Thus we get yo* E (f + NG)(u) with u E AU, 
which is a contradiction. 

Therefore, we have proved part (ii) and the proof of the theorem is com- 
plete. Q.E.D. 

For the degree function established with the previous theorem, we will prove 
the three characteristic properties. For this we need to introduce the permissible 
homotopies for the multifunction G(x, r). 
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Definition 20. Let {Gt(x, r)}tE[O, 1] be a family of multifunctions from Z x R 
into 2R\{0}. Such a family is said to be a "permissible homotopy of multi- 
functions" satisfying the generalized sign condition, if the following conditions 
are satisfied: 

(i) Gt(x, r) = [(o(x, r, t), V(x, r, t)] is measurable in (x, r, t) and u.s.c. 
in (r, t); for each s > 0, there exists hs E LI (Z) such that for Iri ? s 
and all t E [0, 1] 

max[l(px . r, t)J, I (x, r, t)J] < hs(x). 
(ii) There is an ro > 0 such that for all (x, t) E Z x [0, 1] we have 

(o(x, r, t)r > 0 for r < -ro, vt(x, r, t)r > 0 for r > ro. 

Having defined the permissible homotopies for the multifunction G(x, r) we 
can now introduce the permissible homotopies for the degree function defined 
by Theorem 19. 

Definition 21. The class H of permissible homotopies of maps of the form 
f + NG consists of all homotopies ht = (f + NGt), t E [0, 1], with {f }tE[O, 1 
a bounded homotopy of class (S)+ and {Gt}tEro, I a permissible homotopy of 
multifunctions satisfying the generalized sign condition. 

Theorem 22. The degree function defined in Theorem 18 has the following prop- 
erties: 

(i) Normalization: d(J, U, y*) = 1 if yo e J(U). 
(ii) Additivity on domain: If Ul, U2 are disjoint open subsets of U such 

that y* 0 (f + NG)(U\(UI U U2)), then 

d(f +NG l U, y5) = d(f +NG, U1ly0)+d(f+NG, U2, y0). 

(iii) Homotopy invariance: Let {ht = ft + NG,}tE[o, I] be a homotopy in the 
class H and let y* : [0, 1] -* X* a continuous map such that yt * 

(ft + NG,)(9 U) for all t E [0, 1]. Then d (ft + NG, U, y*) is indepen- 
dent of te[0, 1]. 

Proof. Properties (i) and (ii) are obvious. To establish property (iii), first we 
obtain a single-valued approximate selector g6(x, r, t) of Gt(x, r) which is 
measurable in x and continuous in (r, t) (cf. Proposition 17) and satisfies 
all conditions of Proposition 17 uniformly in t E [0, 1], and then repeat the 
arguments employed in the proof of Theorem 19, using the fact that Browder's 
degree function on maps of class (S)+ is homotopy invariant. Q.E.D. 

Remark. The degree function defined by Theorem 19 on triples (f? NG, U, y*) 
is not unique in general, since not every approximate continuous selector 
g, (x, r) of G(x, r) necessarily satisfies the same sign condition as G. 

A careful reading of the proof of Theorem 19 shows that in the definition 
of the generalized sign condition, we had to assume that the control function 
hs(-) E L1(Z). If G(x, r) satisfies the sign condition of Definition 14, then 
we only need to assume that hs(*) E Lll c(Z) (see also Browder [12]). 

Definition 23. The class HI of permissible homotopies of maps of the form 
f + NG with G(x, r) satisfying the sign condition (cf. Definition 14) consists 
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of all homotopies {ff + NG,}tE[o,lJ with {f to,II a bounded homotopy of 
class (S)+ and {Gt}toE[o, 1 a family of multifunctions such that GI(x, r) = 

[1(x, r, t), V(x, r, t)] is measurable in (x, r, t), u.s.c. in (r, t), and 
(i) for every s > 0, there is hs e Lll c(Z) such that for all x E Z, Ir n sK, 

and t E [0, 1] 
max [o(x , r , t), y/ (x , r,. t)] < hs (x) , 

(ii) q(x, r, t)r > O for all r < O, q,(x, r, t)r > 0 for all r > 0. 

Theorem 24. The same approach as in Theorem 19 will define a degree function 
d(f + NG, U, y0) with f of class (S)+, G a multifunction which satisfies the 
sign condition (cf: Definition 14). In addition, this degree function has the three 
characteristic properties of normalization, additivity on domain, and invariance 
under homotopies of class H1. 
Proof. As in Proposition 17, we can obtain a Caratheodory approximate selector 
g6(x, r) of G(x, r) satisfying the sign condition; i.e. g6(x, r)r > 0 for all 
r E R. Then we use this selector in the process of constructing the degree 
function. Q.E.D. 

To have uniqueness of the degree function, we need to restrict the class of 
multifunctions G(x, r). 

Definition 25. G: Z x IR -* 2R\{z} is a multifunction satisfying the "strict sign 
condition" if the following hold: 

(i) G(x, r) = [o(x, r), yi(x, r)] and is measurable in (x, r) and u.s.c. in 
r; 

(ii) y/(x, r)r > 0 for r < 0 and (x, r)r > 0 for r > O; 
(iii) for any s > 0, there exists h, E LI (Z) such that for Irl < s 

max[j(o(x, r)j, kI (x, r)jJ < h,(x). 

As in Definition 23, we can define the class H2 of all permissible homotopies 
of maps of the form f + NG with G(x, r) satisfying the strict sign condition. 

Theorem 26. Restricted to multifunctions G(x, r) satisfying the strict sign con- 
dition and to the corresponding homotopy class H2, the degree function defined 
by Theorem 24 is the only one having the three characteristic properties of nor- 
malization, additvity on domain, and homotopy invariance. 
Proof. Suppose that there were another degree function d1 different from d 
obtained in Theorem 24; i.e. dl(f + NG, U, yO) # d(f +NG, U, yO) on an 
admissible triple (f+ NG, U, yO). Take a qualified Caratheodory approximate 
selector g,(x, r) of G(x, r). Then from the definition of d (cf. Theorem 19), 
we know that 

d(f +NG, U, yO) = d(f + NEk, U, y*) 
for k > 1 large enough and e > 0 small enough. Recalling that Browder's 
degree function is unique on maps of class (S)+ (cf. Browder [11, Proposi- 
tion 14]), we have d(f + Nk , U, y*) = d1 (f + Nk, U, ye). Consequently, 
d1(f + Nek , U, y*) # d1(f + NG, U, yO). Because di is homotopy invariant, 
wecan find Sk s in [0, 1], Ek ` 0, uke 9U, and uk - u in X,suchthat 

yo E (f + ( -sk)Nk + Sk NG )(Uk) 
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So there exists gk* E NG(uk) such that if vk = (1 - Sk)Nek(Uk) + skgk, 
we have yo* = f(uk) + vZ. Since G(x, r) satisfies the sign condition and 
gk*(x, r) E G(x, uk(x)) a.e. on Z, we have VZ*(X)Uk(X) > 0 a.e. on Z and 
since gZ E LlLc(Z) (cf. Definition 25(iii)), we have V* E Lloc(Z). Apply 
Proposition 16 to get that 

V* (x)Uk (x) dx = (vZ, Uk) = (y* -f(uk), Uk) 2< M- 

By slight modifications of the arguments in the proof of Theorem 19, we can 
prove that there exists v0* E L10.(Z) such that vk* w v * in L I(Z') for any 
Z' C Z bounded (since {V*}k>l S L1(Z') is uniformly integrable). Also as 
always, we assume that Uk(X) u(x) a.e. on Z, and f(uk) w- f* in X*. 
Then we can proceed and show that 

0 ? v0v(x)u(x) a.e. on Z 

and 

L vo(x)u(x) dx < limj VZ(x)Uk(x) dx. 
Z 

k 

Only the second inequality requires some work. Let Z' C Z with A(Z') < 
00. Given a > 0 find Zj C Z' closed with A(Z'\Z6) < a such that on Zj, 
Uk(X) ` u(x) uniformly and u(*) is continuous. Thus we get 

v*(x)u(x) dx = limj V,*(X)Uk(X) dx < limj VZ(X)Uk(x) dx < M. 

Since 5 > 0 and Z' C Z were arbitrary, using the monotonicity of the 
measure m(Z) = fA v (x)u(x) dx, A C Z measurable, and the a-finiteness of 
Z we finally get that 

L v*(x)u(x) dx < lim VZ*(X)Uk(x) dx. 
Z 

k 

Using this inequality and the fact that v* = y* - f * (cf. Proposition 16) we 
then can show that 

lim(f(Uk), Uk-U) < 0 

Hence, since f is of class (S)+, Uk -- u in X and f(Uk) WE f(U) = f * in 
X*. Thus x E A U. Also by standard arguments, we can show that v0*(x) E 
G(x, u(x)) a.e. on Z and so v* E NG(U). So finally we have y* E (f+ NG)(u) 
with u E 0 U, a contradiction. Therefore d = d1 . Q.E.D. 

Remark. The degree function defined in this section can be extended further in 
the weak sense (see Browder [11, Definition 6]), to the larger class f +NG where 
G(x, r) is a multifunction as before, but f is a bounded pseudomonotone map 
instead of a map of class (S)+ (since we have included the demicontinuity 
condition in the definition of class (S)+-cf. Definition 2-we see that this 
new class is indeed broader). Then the degree function is defined by 

d(f + NG, U, y*) = lim(f +eJ + NG, U, y*), 0 
i10O 
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where the degrees in the limit are defined as in this section since f + eJ is of 
class (S)+. 

5. EXAMPLES 

In this section we present some examples of multivalued elliptic and parabolic 
partial differential equations, where our abstract results apply. 

(I) Let Z be a bounded domain in RN with smooth boundary IF. We 
consider the following nonlinear multivalued partial differential equation in 
divergence form: 

E (_1)1a1DaAa(x, ?I(u(x))) + G(x, ((u(x))) 3 h(x) on Z, 
(*) 1 IaI<m 

t ~~~~Dflxlr=, = lIfl <m - I 

where t1(u) = {Dau: Ical < m}, 4(u) = {Dau: cal < m - 1} and the function 

A,,(x, ) maps Z x RNm into R (with Nm = (N+m)! In what folows, we 
split the ti-variable into two parts t1 = (4, C), with 4 = (4: lal < m - 1) and 

= (4a: IcaI = m) and impose separate conditions on them. 
Our hypotheses on the data of (*)i are the following: 

H(A): A: Z x RNm -D R is a function such that 

(1) x - A,(x, t1) is measurable, t --+ Ac,(x, t1) is continuous, and 

IA(X, # 1)I < aI(x) +cIItiIIjP-1 a.e. on Z 

with a,(-) EL1(Z), p > 2, 
(2) E Ice,=m[Act(x, X,~ C) -Act(x, , 4' C)] (C,-4 ) > O for all 4 &4,x E Z, 

and 4 E RNm-1 (i.e. we have monotonicity only on the principal part 
term; this condition is known as the Leray-Lions condition); 

(3) there exist constant c > 0 and f,( * ) E L1 (Z)+ such that 

E: Ac(x,~ n1)nc > cll?1llP - ,B(x) a.e. on Z, E1 RNm. 

Ial<m 

H(G): G: Z x RNmm-1 , 2R\{z} is a multifunction such that 

(1) (x, .) - G(x, [((x, (x is measurable and G(x, 
is u.s.c., and 

(2) IG(x, )I = max[li(x, )j, IV(x, )J] < a2(x)+ c2IIXII a.e. on Z and 
a2(*) E Lq(Z). 

In this case X = W0m,P(Z), which is separable, reflexive, and uniformly 
convex. Let A: = (Z) be defined by 

(A(u), v) = J E Aci(x, n1(u(x)))Dav(x) dx 
ZIaI?m 

with (*, *) being the duality brackets for the pair (J0J''(Z) 

Proposition 27. If hypothesis H(A) holds, then A(*) is of class (S)+. 

Proof. Demicontinuity (in fact continuity) of A(*) follows from hypothesis 
H(A)(1) and Krasnosel'skii's theorem on the continuity of the Nemitsky oper- 
ator. 
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Now let u, I+ u in X and assume that 

lim(A(u,), u - u) = lim(A(u,) -A(u), u - u) 

= lim |E (Act(x , ( (Un (x)), 4(Un (x))) 
lal<m 

- A,(x, (u(x)), C(u(x)))Dc(un(x) - u(x)) dx < 0. 

Since Wo0m P(Z) embeds compactly into Wom 1 1P(Z), by passing to a sub- 
sequence if necessary, we may assume that ((un(*)) - (u(*)) in LP(Z)Nm--. 
So the above inequality becomes 

limj E (A,(x, (u(x)), (un(x))) - At(x, (u(x)), C(u(x)))) 
ZIal=m 

* D2(un(X)- u(x)) dx < Q. 

But note that hypothesis H(A)(2) implies that -- EZIalr=m A,(x, (, C) is 
strictly increasing, while hypothesis H(A)(3) implies that 

Z Ac(x, , )c > clIC11P - y(x) a.e. on Z 
jal=m 

with y(*) e L1 (Z). So we can apply a result of Browder [6] and get that the 
principal part defines an operator of class (S)+ and so Dcun Dclu in LP(Z) 
for lalI = m. Thus A(.) is of class (S)+. Q.E.D. 

Next let NG: X -- 2X \{0} be defined by 

NG(U) = {g E X*: g(x) E G(x, ,(u(x))) a.e.} 

Observe that because of hypothesis H(G)(2) we have 

ING(u)l = sup{IIlgIq, g E NG(U)} < a2 + C211U11 
(here I denotes the norm in Wom' P(Z) and III q the norm in Lq(Z)). Since 
Lq(Z) embeds into W-m m(Z) compactly, we have that NG(.) is compact 
with closed and convex values, and it is easy to see that it is u.s.c. (cf. hypothesis 
H(G)(1))* 

Therefore we can state the following existence theorem for (*)I - 

Theorem 28. If hypotheses H(A) and H(G) hold and h E W-m,q(Z), then 
problem (*)I admits a generalized solution u E WOM P'(Z) . 

Proof. To use degree-theoretic techniques, we need to establish an a priori 
bound for the solutions of tJ(u) + (1 - t)A(u) + (1 - t)NG(u) = h, t E [0, 1] 
and J: X -- X* the duality map. So suppose u E Wom P (Z) is such a solution. 
Then there exists g E NG(U) such that 

tJ(u)+(1 -t)A(u)+(1 -t)g=h 

= t(J(u), u) + (1 - t)(A(u), u) + (1 - t)(g, u) = (h, u). 

Because of hypothesis H(A)(3), we have for some e, ,B > 0 
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(with jj j1*denoting the norm of W-, q (Z)) . So 

tIluII2 + (1 - t)IIuIIlp < [IIhIJ* + a2 + (1 - t)3I11UII]IIUII + 

Using Young's inequality (recall p > 2), we deduce that there exists M1 > 0 
such that Ilull < M1 for all such solutions u( * ) . Take M2 > M1 and define 

U = {u E Wom'P(Z): llU < M2}. 

We choose M2 so that h E J(U). Then clearly 

h 0 (tJ + (1- t)A + (1- t)NG) (aU) 

and so d(tJ + (1 - t)A + (1 - t)NG, U, h) is well defined for all t E [0, 1] (cf. 
?3). Thus by the homotopy invariance we have 

d(tJ + (1 - t)A + (1 - t)NG, U, h) = d(J, U, h) = 1. 

So (*) admits a generalized solution. Q.E.D. 

If G(x, * ) depends only on u and not on any of its derivatives, then to have 
the compactness of the multivalued Nemitsky operator NG(.), we can allow 
a more general growth condition than the sublinear one. Indeed we have the 
following proposition: 

Proposition 29. If hypothesis H(G)(1) holds and IG(x, r)I < a2(x) + c2lrl a.e. 
with 

H < NP - N+ mp ifN>mp and 6<ooifN<mp 
N -mp 

then NG: X -2X Io is compact. 
Proof. By Sobolev's embedding theorem, we know that Wom P'(Z) embeds into 
Lr(Z) continuously and densely provided that 1 > - I Furthermore, the r p N rteror, h 
embedding is compact provided the inequality is strict. We have r < p* - 

Np 
N-mp 

Let r' > 1 be the conjugate exponent of r (i.e. l + r=1). If 0 = , then 
NG(U) C W-m q(Z). So to have the supremum of all possible exponents, we 
need to maximize ', , hence minimize l . But this last infimum is pl, . So the 
supremum of 0 is 

p ( Np-N + mp P P*JF N- mp 

Therefore if 6 < Np-N+mp we have the compactness of NG. Q.E.D. N-mpI 

Remarks. (1) This critical exponent is consistent with the one established by 
Pohozaev [19] and DeFigueiredo-Lions-Nussbaum [14]. They considered the 
Laplace equation -Au -u on a ball in RN N > 3, with Dirichlet boundary 
conditions. Pohozaev [ 19] showed that for 06N= 2 there,is no positive solution 
to this problem. Later DeFigueiredo-Lions-Nussbaum [14] proved that for 6 < 
N-, we have a priori estimates in the L??-norm for the positive solutions. 
Note that the critical exponent provided by Proposition 29 reduces exactly to 
N+2 if m = 1, p = 2, the situation in Pohozaev [19] and DeFigueiredo-Lions- 
Nussbaum [14]. 
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(2) Since NG( ) is compact, in principle we can apply degree-theoretic tech- 
niques using NG( ). But in this general case, the derivation of a priori estimates 
is extremely difficult. 

Of course, we can drop the sublinear growth condition H(G)(2) and replace 
it by a strict sign condition assuming that G(z, *) depends only on u and not 
on any of its derivatives. So our hypothesis on G(x, r) is now the following: 
H(G)j: G: Z x R -* 2R\{0} is a multifunction such that 

(1) G(x, r) = [Vo(x, r), yV(x, r)] is measurable in (x, r) and u.s.c. in r; 
(2) y(x, r)r > 0 if r < 0, (x, r)r > 0 if r > 0, and for each s > 0 there 

is h,(*) E Llq (Z) such that IG(x, r)l = max[l(j(x, r)I, kV(x, r)I] < 
h,(x) a.e. on Z for Irl < s. 

Using similar arguments as in the proof of Theorem 28, we can have 

Theorem 30. If hypotheses H(A) and H(G)1 hold and h E W-m,q(Z), then 
problem (*) I has a generalized solution U E WOM IP (Z) . 

(II) Now we consider a multivalued parabolic partial differential equation. So 
let S = [0, b] and Z C Rn a bounded domain with smooth boundary IF. By Q 
we will denote the cylinder S x Z. We consider the following initial-boundary 
value nonlinear parabolic problem: 
(*)2 

Ja+ E (-l)1aD<A(t, x, tn(u(t, x))) + G(t, x, u(t, x)) 3 h(t, x) on Q, 
j7 + 

al<m 

UITxr=, u(O, x) =uo(x) a.e. on Z 

where as before i7(u) = {Dau: jai < m}, {(u) = {Dau: jai < m - 1}, and 
the function A<> maps S x Z x RNm into R. Again we split j into two parts, 
n=(4, ') with = (4a: lal < m- 1) and 4 = (Cc,: Ial = m). 

We will need the following hypotheses on the data: 
H(A)i: A,: S x Z x RNm -- R is a function such that 

(1) (t, x) -- Aa(t, x, ?i) is measurable, Ac,(t, x, i1) is continuous, 
and 

IAa(t,x, n) ?<aj(t,x)+ciIjujIPI1 a.e. on Q 
with al E Lq(Q) and cl > 0 (p > 2 and p + 1 = l); 

(2) Ziai=m[Aa(t,, x, C)-Ac(t, x, , C)](Ca -)> 0 for all C#' and 
all (t, x, 4) E S x Z x RNm-1; 

(3) there exist c > 0 and f, E L'(Q)+ such that 

E Ac(t, x, i)i7c > clilIlP -,Bl(t, x) a.e. on Q 
Ial?m 

for all c: E IRNm 

H(G)2: G: S x Z x R 2R\{1} is a multifunction such that 
(1) G(t, x, r) = [(g(t, x, r), yf(t, x, r)] is measurable in (t, x, r) and 

u.s.c. in r; 
(2) y,(t,x,r)r>O for r<0 and q(t,x,r)r>O for r>0; 
(3) IG(t, x, r)l = max[IV(t, x, r)I, IyV(t, x, r)I] < a2(t, x) + c2lrlP'q a.e., 

a2_ . X) E Lq(Q) _ C2> 
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Theorem 31. If hypotheses H(A)1 and H(G)2 hold, uo E L2(Z) and h E 
Lq(S, W-m e(Z)), then problem (*)2 admits a generalized solution in 
WOM ,p (Z) . 

Proof. Let Y = Wom P(Z) and Y* = W-m,q(Z). Define T: D C LP(T, Y) 
Lq(T, Y*) by T(u) = , with D = {u E LP(S, Y): U E Lq(S, Y*) and 
u(O) = uo(-)} (recall that the space Wpq(S) of functions u E LP(S, Y) such 
that ui E Lq (S, Y*) embeds continuously into C(S, H), H = L2(Z) and so 
the condition u(O) = uo(*) makes sense). 

We claim that T(-) is maximal monotone from LP(T, Y) into Lq(T, Y*). 
Clearly T(- ) is. monotone. According to Lemma 5 in order to establish the 
maximality of T(-), we need to show that R(T + J1) = Lq(S, Y*) with J1 
being defined by Jj(u)(t) = J(u(t))IIu(t)11P2, u E LP(S, Y), t E [0, b], and 
J is the duality map from Y into Y* . Let g E Lq (S, Y*) and consider the 
Cauchy problem 

iu(t) + J(u(t))IIu(t)IIp-2 = g(t) a.e., u(O) = uO. 

Since J(.) is maximal monotone, demicontinuous, by a well-known exis- 
tence result for evolution equations, we deduce that the above problem has a 
unique solution u E Wpq(S) . So R(T + J1) = Lq (S, Y*) and this proves the 
maximality of T. Hence Gr T is a closed subspace of LP (S, Y) x Lq (S, Y*) . 
Therefore D equipped with the graph norm IIUIID = IIUIILP(S,y) + IITulILq(s,y*) 
is a separable reflexive Banach space. By Troyanski's theorem we may assume 
that both D and D* are locally uniformly convex spaces. 

Let A: S x Y -- Y* be defined by 

(A(t, u), u) = j E Ac(t, x, i (u(x)))Dcu(x) dx 

and let A: D -- D* be defined by A(u)(t) = A(t, u(t)) . 
Using Krasnosel'skii's theorem, we see that A(.) is continuous. Also we will 

show that A(-) is of class (S) . To this end, let u,- u in D and assume 
that 

lim((A(un), us-u)) 0 O 

with ((*, *)) denoting the duality brackets for the pair (D, D*). From The- 
orem 5.1, p. 58 of Lions [17] we know that D embeds compactly in LP(Q). 
So for all IacI < m - 1, we have DaU u Dk Ju in LP(Q) and Dcu (t, x) -+ 

Dau(t, x) a.e. Using hypothesis H(A)1 and the result of Browder [6] as in the 
proof of Proposition 27, we can get that Daun -+ Dau in LP(Q) for lal = m 
and so conclude that indeed A is of class (S)+ and of course bounded. 

Next let G : D -+ 2D \{0} be defined by 

G(u) = {g E Lq (Q) : g(t, z) E G(t, z, u(t, z))}. 

First note that G(*) is bounded into Lq(Q) (cf. hypothesis H(G)2(3)) and 
since Lq(Q) embeds compactly into D*, we deduce that G(-) is a compact 
multifunction. Also it is easy to see that G(*) is u.s.c. (hence G(.) is of class 
(P); cf. ?3). 
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Now consider the map sJ+ (1-s)(T+ A+ G)u, sE [0, 1] and the operator 
inclusion sJu + (1 - s)(T + A + G)u D h. Let u E D be a solution of this 
inclusion. Hence there is a g E G(u) such that 

s((Ju, u)) + (1 - s)[((Tu, u)) + ((Au, u)) + ((g, u))] = ((h, u)). 

Note that ((4, u)) > 0 (cf. hypothesis H(G)2), ((Au, u)) > CIIUIIlpS Y) - , 
(cf. hypothesis H(A)1), and ((Tu, u)) = ((ii, u)) = 2IlIu(b)112(z) - IIIUOIIL2(Z)- 

So we get 

sIIuI12 + (1- S)CIIUIIP( < IIhII-SlIyL9(S,y) IUIILp(S,Y) + A3 + IIUOIIL2(z). 

From this, using Young's inequality, we deduce that there is M1 > 0 such 
that IIUIILP(s, Y) < M1 . Thus there is M2 > 0 such that sIIuII12 < M2. Our claim 
is that IIU IID is uniformly bounded as u varies over all solutions of the original 
operator inclusion. Indeed if this is not the case, we can find solutions u, of 
the operator inclusion with Sn E [0, 1] such that IlUnIlD -+ 00; SO SnIIUnIID - 0?, 
i.e. Sn -- 0. But note that for some M3 > 0, (1 -sn)lI TUn IILq(S' *) < SnIIUnhlD+ 
M3 = ITuTnlILq(S, y*) is bounded; hence IlunlID is bounded, a contradiction. 
Therefore there exists M4 > 0 so that IIUIID < M4 for every solution of the 
operator inclusion. Choose M5 > M4 such that h E J(U) with U = {u E D: 
IIU IID < M5}. Then by homotopy invariance, we have 

d(T+A+G, U, h) = d(J, U, h) = 1 

= (*)2 admits a generalized solution u(*) E Wpq(S). Q.E.D. 
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