
Computational Statistics & Data Analysis 38 (2002) 315–330
www.elsevier.com/locate/csda

Using genetic algorithms to
parameters (d; r) estimation for
threshold autoregressive models

Berlin Wua ;∗, Chih-Li Changb

aDepartment of Mathematical Sciences, National Chengchi University, Taiwan
bDepartment of Mathematics, Hsiuping Institute of Technology, Taiwan

Received 1 November 1999; received in revised form 1 February 2001; accepted 1 February 2001

Abstract

Threshold autoregressive model (TAR model) has certain characteristics due to which linear models
fail to 2t a nonlinear time series, while the problem of how to 2nd an appropriate threshold value
still attracts many researchers’ attention. In this paper, we apply the genetic algorithms to estimate the
threshold and lag parameters r and d for TAR models. The selection operator is formulated following
Darwin’s principle of survival of the 2ttest to guide the trek through a search space. The crossover
and mutation operators have been inspired by the mechanisms of gene mutation and chromosome
recombination. c© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Nonlinear time series analysis is a popular research topic that the scholars of time
series and econometrics are intent on and the search for structure change for nonlinear
time series has been attracting attention. For instance, Saikkonen and Luukkonen
(1988) and Guegan and Pham (1992) used the Lagrange multiplier test (LM test)
to test the threshold autoregressive models (TAR models); autoregressive conditional
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heteroskedasticity models (ARCH models) and bilinear time series models. Tsay
(1989) also used arranged autoregression to establish the parameters of TAR models.
Chen and Lee (1995) proposed Bayesian inference of the threshold autoregressive
model. Byers and Peel (1995) used TAR models to estimate and forecast industrial
production for six countries and found that TAR models give better explanations
and robust predictions than those of linear ARMA models. Recently, Wu and Chen
(1999) applied fuzzy techniques in the detection of change period for nonlinear
time series.

Practically, facts about structure changes often exist among many economic time
series, and these phenomena of structure changes are generated by the variables,
which are themselves based upon some change points. Exchange rate, for example,
is dynamic Foating for most countries, having a nonlinear tendency. If we em-
ploy the concept of transaction strategy from the 2lter rule: Buy foreign currency
when the exchange rate keeps rising by a certain percent from its recent lowest
point, and, on the contrary, sell foreign currency when it keeps falling by a certain
percent from its recent highest point; then, this strategy will depend totally on its
previous prices, regardless of the variations of economic factors (Boothe and Long-
worth, 1986). Therefore, we should construct a TAR model according to the previous
prices of the exchange rate.

The purpose of this paper is to explore the TAR models, especially to 2nd an
alternative technique for the estimation of parameters (d; r). This model separates the
time series into several regions, each following a diGerent AR model as a subsystem
with respect to the change points considered (similar to the “recent lowest=highest
points” of the 2lter rule). Then, we can use this nonlinear model to analyze the
tendency of the underlying time series. However, regarding the TAR model itself,
there still exist some problems that hinder its feasibility in applications. The main
reasons are: (1) it is diJcult to determine the number of change points in the time
series, (2) it is diJcult to 2nd the threshold values during the establishing process
of a TAR model. Besides, the number of parameters to be searched is too large for
the traditional searching process.

Focusing on the stated problems of TAR models construction, this research is
going to introduce the genetic algorithms (GA) by Holland (1975). Moreover, it has
been frequently combined with fuzzy theories and the neural net and has become one
of the most important research areas in the arti2cial intelligence 2eld, for instance,
see Goldberg and Deb (1991), Kennedy (1993), Bauer (1994), Oliver (1994), Yao
and Sethares (1994), Loraschi et al. (1995), Herrera et al. (1997) and Wong and
Yen (1999).

GA is a target-oriented parallel-searching technique, mainly applied to the
optimization process searching for the universal or nearly universal
extreme values. It processes a population of individuals, which represent search
space solutions, employing three operations: selection, crossover and mutation. We
hope that we can utilize the optimization searching techniques of genetic algorithms
through certain algorithm rules and procedures, to 2nd the optimized parameters
automatically for the TAR model, to improve the weakness of conventional TAR
models, and then complete the model establishment quickly and accurately.
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To sum up, this research will set up a time series genetic algorithm using the
establishing Fow for TAR models together with the optimization searching techniques
of genetic algorithms to 2nd the optimized TAR models universally. We will use the
“Macro” instruction of the statistical software, Minitab12.X, to compose a practical
program for this purpose. An empirical study on Thai baht to US dollar exchange
rate model construction as well as forecasting will be investigated.

2. TAR models and genetic algorithms

2.1. TAR models

TAR models have several obvious characteristics that can be used for general
judgement and identi2cation, such as periodic cycling, up-and-down oscillations and
sudden rising or fallings. These characteristics are diJcult to describe by the conven-
tional linear ARIMA models, see Wu (1995). Take the example of using the TAR
model for analyzing Lynx trappings and sunspot numbers by Tong and Lim (1980),
where we 2nd it easier to catch the periodic cycling by the TAR model rather than
by the conventional analysis.

When dealing with the structure changes of the nonlinear time series, Tong (1983)
presented the characteristics of the delay parameter and the threshold parameter (i.e.
“change point”), and so he described them by the switch mechanism. Since then,
the TAR model has been established completely.

Basically, the TAR model comprises several linear AR models and the switch
mechanism, and the switch mechanism switches AR models according to the com-
parison of the delay output and the threshold value. For example, a TAR(2; k1; k2)
model is expressed in the following form:

Yt = c1 +
k1∑
i=1

	1; iYt−i + a1; t if Yt−d6 r

= c2 +
k2∑
i=1

	2; iYt−i + a2; t if Yt−d ¿ r; (2.1)

where, k1; k2 are the orders of two AR models; 	1; i ; 	2; i are autoregressive coef-
2cients; �1; t ; �2; t are the white noise terms; d is the delay parameter (where the
controlled threshold occurs) and r is the threshold value.

Tong (1983) proposed the algorithm for determining TAR models to determine the
lag parameter d, the threshold value r, and the parameters of the two autoregressive
models. The key point is to use Akaike’s Information criterion (AIC)

AIC = n log �̂2 + 2(p+ q); (2.2)

as the standard for model determination. The method is given as follows:
(1) First 2x the delay parameter d and the threshold value r on d0 and r0, and let L

be the largest order of the model. Then divide the observations into two regional
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systems, and assign proper autoregressive models, respectively. Calculate

AIC(d0; r0) = AIC(k̂1) + AIC(k̂2); (2.3)

where k̂1; k̂2 are the minimum AIC estimator (MAICE) of k1; k2, satisfying

AIC(k̂ i) = min
06ki6L

{AIC(ki)}; i = 1; 2: (2.4)

(2) Keep 2xing d on d0. Considering all possible values {�1; �2; : : : ; �s} of the thresh-
old value r, and then repeating Step 1, we can get

AIC(d0; r̂) = min
r∈{�1 ;�2 ;:::;�S}

{AIC(d0; r)}; (2.5)

(3) Find the best-2tted delay parameter d. Consider all possible values {1; 2; : : : ; T}
of d, and repeat the above two steps. Due to the diGerence in d value, the number
of the eGective data, N–d, will change. Therefore, we must 2rst normalize AIC
with respect to the number of data:

NAIC(d) = AIC(d; r̂)=(N − d): (2.6)

(4) Finally we 2nd d̂, the minimum AIC estimator of d, satisfying

NAIC(d̂) = min
d∈{1;2;:::;T}

{NAIC(d)}: (2.7)

After these three steps, we can get k̂1; k̂2; r̂; d̂ as the 2nal MAICE for the orders
(k1; k2), threshold value r, and delay parameter d of the two autoregressive models,
respectively. Thus, we have accomplished the determination of the TAR model: Yt
is a nonlinear model and its parameter structures change with respect to its pre-
vious values.

We 2nd from the described algorithm for determining TAR model that: if the
number of the autoregressive models is M (M¿ 2), the largest order is L, the number
of threshold values is S (S¿ (M − 1)), and the number of delay parameters is T ,
then the number of models to be computed must be

LM ×
(

S
M − 1

)
× T = LM × S(S − 1) · · · (S −M + 2)

1 × 2 · · · (M − 1)
× T: (2.8)

When S and M , the number of threshold values and the number of the autore-
gressive models, increase, the number of models to be searched will be huge. This
is a signi2cant weakness within the TAR model itself.

The genetic algorithm is a method triggered by the basic structure of organism evo-
lution, 2rst proposed by John Holland in 1975. It combined Charles Darwin’s princi-
ple of “natural selection” and “survival of the 2ttest” with the computer-constructed
evolution mechanism to select better species from the original population. Then the
information was exchanged randomly among them, expecting a superior oGspring.
Besides, in order to avoid missing some good species and becoming a local opti-
mization, we must process several mutations.

The genetic algorithm not only avoids the trap of local optimization, but also
reduces much computational time to 2nd the optimum. Therefore, it is quite eligible
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for solving the optimization problems. This, of course, is also due to the aid of
computer programs. So one of the great contributions by Holland (1975) is to turn
the “evolution” concept into real computer programs.

In order to survive the complicated environment, organisms need the ability to
2t themselves to the environment. Genes in the organism determine diGerent 2t-
ting abilities when facing diGerent environments. And diGerent genes compose the
chromosome. Thus, organisms can produce better gene combinations (chromosome)
through many generations of the evolution process to equip themselves with the best
2tting ability.

We can express the chromosome by the binary string in the program computa-
tion, that is, the encoding process for the entire parameter value range. For example,
11010 and 01101 are two chromosomes, representing two parameters respectively,
and 0 and 1 are the genes in the chromosome. Then pick out a certain amount of
chromosomes (i.e., the strings), at random to be the primary population, and de-
code the chromosomes (strings) of this population. Then compute the 2tness of the
chromosome (string) by the 2tness function de2ned for optimization. This 2tness is
equivalent to the 2tting ability of the chromosome facing complicated environment,
only the one with better 2tting ability having a better chance to survive and repro-
duce its oGspring. In the same sense, the chromosome (string) with higher 2tness
has a higher chance of being selected for reproduction. After the reproduction, per-
form random crossover and mutation on the chromosomes according to the crossover
rate and mutation rate to produce their new generation. Follow this procedure from
generation to generation, repeat the “evolution” process (selection, reproduction, and
mutation) over and over again until the most competitive and best 2tted optimum is
found. Then we will 2nish the job of the genetic algorithm.

2.2. Principle of the genetic algorithm

2.2.1. Encoding and decoding the parameters
The 2rst step of the genetic algorithm is to encode the parameter values into

an appropriate range with 2nite-digit digital strings (i.e. the chromosomes, usually
binary strings). A widely used formula for decoding is

c = L+
A

2B − 1
× (U − L); (2.9)

where c is the parameter value of the chromosome; U and L are the upper and the
lower bounds in the parameter; A is the number in decimal form that is being rep-
resented in binary form of the chromosome; and B is the digits of the chromosome.

For example, if X is an integer-valued parameter, lying in [1,8], encoded by 3-digit
strings, then the chromosome range will be [000; 111], totally 23=8 values. In which,
chromosome 110 represents the value

c = 0 +
22 + 21

23 − 1
× (8 − 1) = 7:
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If X is a real-valued parameter, lying in [0; 10], encoded still by 3-digit strings, then
the chromosome range will be [000, 111], totally 23=8 values in which, chromosome
110 represents the value

c = 0 +
22 + 21

23 − 1
× (10 − 0) = 8:57:

2.2.2. Fitness function, selection, and reproduction
The 2tness function is the index to evaluate the 2tting ability of the chromosome,

and the selection and reproduction are similar to the asexual reproduction of organ-
isms. The probability of selection and mutation is determined by the 2tness function
value, computed by the genetic algorithm, of each chromosome. Chromosomes with
higher 2tness will have a higher probability of being selected and reproduced, while
chromosomes with lower 2tness will be eliminated. So the next generation must have
the chromosomes with higher 2tness, that is, “evolution” has increased the overall
quality of the next generation. As for the number of chromosome reproduction, it
depends on the selecting method.

2.2.3. Crossover
Crossover resembles the sexual reproduction of organisms. It provides an informa-

tion-exchanging function allowing diGerent chromosomes (strings) in this population
to exchange their genes (digits) for reproduction in a random crossover process.
The new chromosomes will retain some characteristics (genes) of their parents but
will still show diGerences. Their 2tness might be higher or lower than that of their
parents but chromosomes with low 2tness will be eliminated after competition. Only
chromosomes with high 2tness survive.

Crossover enables the parents with some superior genes to reproduce the new
generation with superior genes from both sides. And these more superior genes are
able to reproduce more similar, even better, oGspring to increase the 2tness of the
chromosomes in the whole population through this “evolution” process. That is why
the genetic algorithm can 2nd the optimum through this “evolution” mechanism quite
eJciently.

The result of the crossover process depends on the crossover rate. The higher the
crossover rate is, the more rapidly new chromosomes enter the population, and thus
speed up the optimum searching. But if the crossover rate is too high, then the speed
with which good chromosomes are taken out of the population might be faster than
the speed of improving the chromosomes by crossover, and the crossover is thus in
vain. On the contrary, if the crossover rate is too low, the optimum searching will
slow down or even stop. Therefore, the crossover rate must be carefully selected.
Usually, people take 0.5–0.9 as the appropriate range.

Although random factors exist in the crossover process, all the preserved chro-
mosomes are of higher 2tness because chromosomes of the crossover source have
undergone the selection and reproduction process in advance. That is also another
reason why the searching technique of the genetic algorithm is more eGective than
that of general random methods.
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The following are three schemes of the crossover:
(i) One-point crossover

Randomly select one crossover point from one pair of the parental chro-
mosomes (strings) and divide the chromosome into two parts, then switch
the genes (digits) after the crossover point. Demonstrate by the following
example (string length is 6, crossover point is 4):

Father chromosome 0 1 0 1 : 0 0
Mother chromosome 1 1 1 0 : 1 1
⇓ crossover
Son chromosome 0 1 0 1 : 1 1
Daughter chromosome 1 1 1 0 : 0 0

From this example, we know that although one-point crossover can produce
diGerent children chromosomes from their parental chromosomes, the last digits
will de2nitely be switched. It will damage certain high-2tness chromosomes
whose 2xed digit of the schema is at the last position.

(ii) Two-point crossover
Randomly select two crossover points from one pair of the parental chromo-
somes (strings) and divide the chromosome into three parts, then switch the
genes (digits) between the two crossover points. Demonstrate by the following
example (string length is 7, crossover point is 4,7):

Father chromosome 1 0 0 1 : 1 0 : 0
Mother chromosome 0 0 1 0 : 0 0 : 0
⇓ crossover
Son chromosome 1 0 0 1 : 0 0 : 0
Daughter chromosome 0 0 1 0 : 1 0 : 0

Two-point crossover replaces the single point in the one-point crossover with
two crossover points. It prevents the schemas from damage in the one-point
crossover, but there are still many characteristics of many schemas that this
two-point crossover cannot preserve eGectively.

(iii) Uniform crossover
In addition to the frequent use of the one- and two-point crossovers, many
relevant researchers of the genetic algorithm are eager to 2nd methods with
more crossover points to 2t a variety of problems. The most successful method
is the uniform crossover proposed by Syswerda (1991), that is: whether one
digit is going to switch is determined by a random index; if the index is 1, then
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switch; if its 0, then do not. Demonstrated by the following example (string
length is 7):

Father chromosome 1 0 0 1 1 0 0
Mother chromosome 0 0 1 0 0 0 0
⇓ crossover
Son chromosome 0 0 0 0 1 0 0
Daughter chromosome 1 0 1 1 0 0 0

The consequence of uniform crossover is irrelevant to the encoding characteristic
position of the chromosomes, unlike one- and two-point crossovers in which
children chromosomes have higher possibilities of being incomplete if there are
more 2xed digits in the schema. But uniform crossover still has the possibility
of damaging the superior genes. As a result, it depends on the situation of the
problem to judge the crossover methods (Bauer, 1994).

2.2.4. Mutation
If certain genes (digits) of all chromosomes (strings) in the population are iden-

tical, then their values will never change after any reproduction and crossover. This
will limit the chance for some new chromosomes to enter this population, and pos-
sibly fall into the trap of local optimization. To avoid this situation, we have to
perform a little mutation. We select, at random, a few genes of certain chromosomes
to perform the mutation, i.e. turn 0 into 1 and 1 into 0, according to the mutation
rate.

The possibility of the occurrence of mutation in the natural world is very low, so
we shall also keep the mutation rate rather small in the genetic algorithm.

All the above are the fundamental principles of the genetic algorithm. According
to the principles, 2rst we have to encode the parameter value range of the target
before the genetic algorithm is started, and then set up the controlled parameters
and the terminating criterion of the genetic algorithm to execute the job of optimum
searching successfully. These essential parameters are explained in Table 1.

3. Simulation study on the estimation of (d; r) in TAR models with GA

The genetic algorithm is a tool for solving the optimization problems, being able
to 2nd a set of optimized parameters. Especially, when the problem we face has
an enormous parameter space, which means lots of choices, the genetic algorithm
demonstrates its eJciency to search and solve the problem. There are many diGer-
ences between it and other conventional optimization solving methods.
(1) The genetic algorithm computes strings by encoded and decoded discrete points

instead of the original parameter value set. That is why those discontinuity or
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Table 1
Essential parameters in the genetic algorithm

Parameters Explanation

Encoding method Design the encoding method according to the parameter value
and the range of the target. If the needed chromosome (string) length is
chromosome length B, then all parameter value combinations will be2B

Size of the The size of the population is the number of chromosomes
population participating in the evolution. Generally, it appears that the larger

the population is, the closer to the optimum the result of the
searching will be. But Syswerda (1991) pointed out that it would
not sustain forever because the reproduction and crossover
method and design of other controlled parameters would all
inFuence the 2nal outcome. Therefore, we can execute the genetic
algorithm with a large population size to achieve evolution; we
can also use a smaller size to speed up the convergence, but with
a number of executions, to compare their results

Fitness function Set up a 2tness function of every target, being capable of
evaluating the chromosome eJciency, to continue the evolution
process

Selecting method After the 2tness function is settled, we must settle the selecting
method. Then we can determine the number of each chromosome
to be reproduced following the 2tness function and the selecting
method

Crossover rate and Crossover rate is the probability as to whether two chromosomes will
method crossover, ranging from 0 to 1, normally set between 0.6 to 1. At the

same time, the crossover method must also be settled to continue
the evolution process

Mutation rate Mutation rate is the probability of gene mutation in every
chromosome, usually set very small

Terminating The searching process of the genetic algorithm described in
criterion Section 2:3 is a cycling evolution process. So we have to set

up a judging rule to decide whether or not to continue the process.
This criterion is usually set to terminate the execution when the
optimum (degree of convergence) or a certain generation
(maximum terminating generation) is reached

indiGerentiability function problems that calculus cannot handle can be solved,
thus escaping the additional limits in analysis. This is not only more Fexible and
eJcient but also 2ts computer logic operations better, because of the adaptation
of binary strings.

(2) There is no need of any extra information, such as prior information, but the
2tness function is used completely for evaluation, because the primary population
is created at random. From this, we can know whether the 2tness function
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is properly chosen, has become the key of the genetic algorithm and directly
determines how well the consequence is.

(3) The genetic algorithm uses random processing to 2nd the optimum more objec-
tively. This random processing combines characteristics of both natural systems
and arti2cial systems, which gives it high plasticity so as to improve the system.

(4) The searching process of the genetic algorithm depends on the selection, repro-
duction, crossover, and mutation, and all these steps are accompanied by random
factors. Therefore, even under an identical parameter setting, every single exe-
cution of the genetic algorithm will be a stand-alone searching process, and thus
it might end up with diGerent answers.

Owing to its diverse characteristics described above, the genetic algorithm has diverse
applications such as engineering, social sciences, and medicine. As Goldberg (1989)
said, “Maturation of the genetic algorithm lies in its broaden application 2elds, not
its theory”. As a result, anyone can do the optimum-approaching calculation with the
powerful searching ability of the genetic algorithm, if he or she can clearly transform
the problem into a genetic algorithm form.

A practical GA procedure of executing the searching rule for (d; r) of a TAR
model is described as follows.

Step 1: Encode the parameters d; r; k1, and k2 from an assigned range.
Step 2: Initialize a random population with N digits of chromosome.
Step 3: Decode the chromosome and construct the TAR models according to the

d; r; k1 and k2 values.
Step 4: For each candidate TAR model, calculate its NAIC value and rank these

values by the integral order.
Step 5: Delete undesirable members from population, evaluate the new chromo-

somes and insert them into the population.
Step 6: If the stopping criterion is satis:ed, then stop and return the best chro-

mosome; otherwise, go to step 5.

3.1. Simulation study 3.1

We simulate 200 time series data from the following TAR model (3.1). The plot
is shown in Fig. 1

Yt = 1 + 0:2Yt−1 + �1; t if Yt−26 0;

=−1 + 0:2Yt−1 + �2; t if Yt−2¿ 0: (3.1)

From model (3.1) we know that the values of parameters d; r and k1; k2 are
2; 0; 1; 1, respectively. Given the possible range of parameters d = 1; 2; r = 0; 1 and
k1 = 1; 2; k2 = 1; 2, there will be 24 = 16 possible combinations. The following steps
illustrate the whole searching process.
(1) Let d; r and k1; k2 be codes as a 4-bit of strings. The bit strings consist of 0s

and 1s, which represent the value of a number in binary form. For instance,
here, the number 11 would look like 1011, i.e., 23 + 21 + 20 = 11.
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Fig. 1. Simulation data for model (3.1).

Table 2
The initial generation

Family Coding d r k1 k20 NAIC Fitness Probability of selection Numbers of reproduction

1 1101 2 1 1 2 −0:081 3 0.3 1
2 1110 2 1 2 1 −0:038 2 0.2 1
3 1001 2 0 1 2 −0:996 4 0.4 2
4 0110 1 1 2 1 0.037 1 0.1 0

Table 3
The process for the 2rst generation on reproduction

Family Coding d r k1 k2 NAIC Fitness Probability of selection Numbers of reproduction

1 1101 2 1 1 2 −0:081 2 0.2 1
2 1110 2 1 2 1 −0:038 1 0.1 0
3 1001 2 0 1 2 −0:996 3.5 0.35 1.5
4 1001 2 0 1 2 −0:996 3.5 0.35 1.5

(2) Randomly generate a population with each chromosome containing 4 digits. For
each chromosome, set up a TAR model according to d; r, and k1; k2.

(3) Calculate the values of adaptive function NAIC for each family. Then process
the reproduction and crossover according to their 2tness (rank).

Tables 2 and 3 illustrate the result of the process
(3) Let the crossover rate be 0.6 and the mutation rate be 0.001. Using the uniform

crossover scheme, the random combinations of crossover are families 2 and 3.
We illustrate the result in Table 4. Note that the crossover occurred at the 4th
digit and that the mutation did not occur. The minimum NAIC occurred at the
second family. We 2nd that the second family of the second generation has a
smaller NAIC value than the minimum NAIC of the 2rst generation.
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Table 4
The second generation

Family Coding d r k1 k2 NAIC

1 1101 2 1 1 2 −0:081
2 1111 2 1 2 2 −0:068
3 1000 2 0 1 1 −1:044
4 1001 2 0 1 2 −0:996

4. Empirical studies

Since the economics of APEC countries relies broadly on international trading, the
exchange rate plays a crucial role in government policy. In response to the regional
economics promotion, liberation and internationalization have become the index of
a nation’s goal. Therefore, the investigation of changing exchange rate with respect
to other regional countries become indispensable.

In this empirical study, we will use the GA technique to search for the chang-
ing exchange rate of Thailand. We consider 300 daily data, from July 2, 1997 to
September 15, 1998, which comes from FSM Data Bank, EPS, Computer Center,
Ministry of Education. Fig. 2 plots the daily time series.

Let k1; k2 ∈{1; 2; : : : ; L}. According to Tong (1983), the order of AR models had
been suggested as B=N�; �¡ 1=2, where N is the data size. For model simpli2cation
and computational eJciency, in this study we choose L= 9, i.e. k1; k2∈{1;2;3;4}.

Since the delay parameter d∈{1; 2; : : : ; T}, but T6L, we choose the range of d as
16d6 4. For the threshold value r, let S=5. Since the median of the data is 40.2,
we take the candidate values of r to be {38:0; 38:5; 39:0; 39:5; 40; 40:5; 41:0; 41:5}.

Fig. 2. Changing of exchange rate for Thailand=US$.
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The boundary of r approximately touches the Q1 (1=4) and Q3 (3=4) quintiles of
the data.

If we use the above initial parameters settings and execute the procedure Tong
(1983) proposed, we get the following result:

Yt = 1:0444Yt−1 − 0:00444Yt−2 + �1; t if Yt−16 40:5

= 1:0256 + 1:2245Yt−1 − 0:2483Yt−2 + �2; t if Yt−1¿ 40:5: (4.1)

From Eq. (4.1) we can 2nd that the threshold values of d; r; k1 and k2 are 1; 40:5; 2
and 2, respectively, with the NAIC=−189:78+(−54:52)=−244:29. Since the number
of the autoregressive models M = 2, the largest order L= 4, the number of threshold
values S = 8, and the number of delay parameters T = 4 from (2.8) the number of
models to be computed must be

LM ×
(

S
M − 1

)
× T = 42 ×

(
8
1

)
× 4 = 512:

For comparison, if we use the ARIMA family to 2t this data, we can 2nd that
the best-2tted ARIMA model is ARIMA(1; 1; 0):

Yt = 1:1607Yt−1 + 0:1607Yt−2 + �t ; AIC = −191:44: (4.2)

Next, to incorporate GAs into our scheme, we encode the rule base into a binary
string. Let d∈{1; 2; 3; 4}; r ∈{38:0; 38:5; 39:0; 39:5; 40; 40:5; 41:0; 41:5} k1; k2 ∈{1; 2;
3; 4}; then, coding with length 9 is illustrated as

d︷︸︸︷
• •

r︷ ︸︸ ︷
• • •

k1︷︸︸︷
• •

k2︷︸︸︷
• •

These 9 bits represent the TAR characteristics. For example, the chromosome (string)
with coding 01 011 10 11 stands for d= 1; r= 39:0; k1 = 2; k2 = 3. The total number
of combination of parameters is 29 = 512.

In executing the processing, we take the following parameters:
The population size N = 20.
The 2tness function NAIC (d; r; k1; k2) = [AIC(k1) + AIC(k2)]=(N − d).
The crossover probability Pc = 0:8 with uniform crossover.
The mutation probability Pm = 0:01.
The selecting rule: rank order selection.

Stopping rule: If the NAIC is less than −245:98 or the evolution reaches the 20th
generation, then stop. The reason is that in order to compare the eJciency of our
proposed method with that of Tong’s (1983), we set the stopping value at −245:98,
which is the NAIC for Tong’s method.

We execute our GAs procedure three times with diGerent initial populations.
The processes are illustrated in Tables 5–7, respectively. All three processes reached
the goal NAIC =−245:98. The numbers of iteration are 6, 4, and 10. Note that two
of them converge very fast, while the third process met a bottleneck at the 9th
generation. The average number of iterations is 6.67.

Note that there are 20 chromosome getting into the evolution. If we execute the
process for 4 generations, then we need to search 80 TAR models by traditional
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Table 5
GA in TAR model construction: 2rst process

Generation Best chromosome d r k1 k2 NAIC

1 000101010 1 39 2 2 −213:29
2 000100110 1 39 1 2 −224:46
3 000111010 1 39.5 2 2 −226:25
4 001001010 1 40 2 2 −232:89
5 001010110 1 40.5 1 2 −239:51
6 001011010 1 40.5 2 2 −245:98

Table 6
GA in TAR model construction: second process

Generation Best chromosome d r k1 k2 NAIC

1 001110101 1 41 1 1 −213:45
2 001111001 1 41 2 1 −238:07
3 001011001 1 40.5 2 1 −239:51
4 001011010 1 40.5 2 2 −245:98

Table 7
GA in TAR model construction: third process

Generation Best chromosome d r k1 k2 NAIC

1 000001001 1 38 2 1 −193:60
2 000001010 1 38 2 2 −199:72
3 000011010 1 38.5 2 2 −202:09
4 000011010 1 38.5 2 2 −202:09
5 000011010 1 38.5 2 2 −202:09
6 001011010 1 38.5 2 2 −202:09
7 000011010 1 38.5 2 2 −202:09
8 000110110 1 39.5 1 2 −227:05
9 001001010 1 40 2 2 −232:89
10 001011010 1 40.5 2 2 −245:98

methods. If we execute the process 7 times (the average number of iterations), we
need to search 140 TAR models. Therefore, it appears that our proposed GA is more
eJcient than that of Tong’s.

5. Conclusion

The most diJcult aspect in building a TAR model is the identi2cation and 2nding
of the procedure used to construct the model. Since the GA procedure can simul-
taneously select an appropriate subset of the (d; r) parameters in the TAR models,
it reduces the huge searching time compared to the traditional estimation methods.
The advantage of GAs lies in its Fexibility. As long as one decodes the possible



B. Wu, C.-L. Chang / Computational Statistics & Data Analysis 38 (2002) 315–330 329

answer in the form of binary strings, one can get the closest result by means of the
evolutionary process of GAs.

Reviewing the results of our empirical study, we can see that the searching scheme
for parameters (d; r) can be found eGectively. The searching schemes are capable
of constructing the evolutionary rule to achieve satisfactory performance in model
identi2cation.

Lastly, we have three suggestions about the limitations and the research yet to be
performed:
(1) The practical part of this research only explains the dynamic structural relation-

ship between the exchange rate and its historical information without considering
other impacts from seasonal factors and other economic variables.

(2) In the genetic algorithms, the determination of the controlled parameters (such
as population size, crossover rate, etc.) apparently will aGect its searching ef-
2ciency. However, problems of diGerent kinds bring diGerent criteria for the
determination. Therefore, there is no universal standard for it at present.

(3) How to decide the mutation rate? Since GAs are essentially parallel search-
ing techniques, the mutation rate should depend on the strong or long memory
dependence data.

(4) Is the AIC criterion an optimal adaptive function for constructing TAR models?
(5) The appropriateness for the constructed time series model when compared with

other models.
However, in order to get answers for the above questions, we believe that the research
combined with fuzzy theories and the neural networks will constitute an encouraging
approach in the 2eld of nonlinear time series analysis.
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