
An International Journal

mathematics
computers &

with appllcatlone
PERGAMON Computers and Mathematics with Applications 44 (2002) 1431-1437

www.elsevier .com/locate/eamwa

Performance Analysis of a Parallel
Dantzig-Wolfe Decompos i t ion

Algor i thm for Linear Programming

JRJUNG LYU*
Department of Industrial Management Science

National Cheng Kung University
Tainan, Taiwan, R.O.C.
j lyu~nail, ncku. edu. tw

HSING LUH
National Cheng Chi University

Tainan, Taiwan, R.O.C.

MING-CHANG LEE
National Cheng Kung University

Tainan, Taiwan, R.O.C.

(Received October 2000; accepted August 2001)

A b s t r a c t - - T h i s paper employs the Dantzig-Wolfe decomposition principle to solve linear pro-
gramming models in a parallel-computing environment. Adopting the queuing discipline, we showed
that under very general conditions, the proposed algorithm speedup trends toward a limiting value
as the number of processors increases. (~) 2002 Elsevier Science Ltd. All rights reserved.

K e y w o r d s - - L i n e a r programming, Decomposition algorithms, Parallel processing.

1. I N T R O D U C T I O N

Consider a linear programming (LP) problem that can be expressed in the following form:

Minimize: CTX,

Subject to: AX = b,

X_>O.

Suppose the A matrix has a special block-angular structure, namely,

A = A2 ,

An

*Author to whom all correspondence should be addressed.

(1)

0898-1221/02/$ - see front matter (~) 2002 Elsevier Science Ltd. All rights reserved. Typeset by J IA~TEX
PII: S0898-1221(02)00267-5

1432 J.J. LYU et al.

where all Ai in the technology matrix A are independent blocks linked by coupling-equation
matrices Li. In this research, a parallel algorithm, based on the Dantzig-Wolfe decomposition
principle (DWDP), was developed to solve the linear programming problems as stated above•
Since Dantzig and Wolfe developed the decomposition principle in the early sixties, this method
is still widely adopted to cope with large-scale optimization problems. For instance, Ziarati, et
al. [1] considered a multicommodity flow model for assigning locomotives to train-segments while
employing DWDP to solve a very large-scale-scheduling problem• Desaulniers, et al. [2] used
DWDP to solve the problem of choosing the best crew pairing at Air France. Other examples
can be found in [3-5]. Given that larger and more complex mathematical models have become
commonplace (see [6]), the importance of DWDP is well recognized by researchers•

An ideal Dantzig-Wolfe decomposition model considers a typical linear programming problem
whose technological matrix is block-type. Since each block-type submatrix can be transformed
into an independent subproblem while maintaining the global optimum, an ideal Dantzig-Wolfe
decomposition algorithm represents a limiting case for the effects of parallelism• When a parallel
Dantzig-Wolfe decomposition algorithm is developed, it can be shown that there is no wasted
time associated with communication delays where the only source of communication delay is the
actual time used in executing the program. This research, therefore, provides an upper bound
for algorithm speedup using parallel processing for linear programs•

2. A P A R A L L E L L P A L G O R I T H M

In problem (1), let each Ai have mi rows and pi columns and each Li be an m0 x Pi matrix,
• n m n for i = 1, 2, . . , n. Letting m = ~ i=0 i and p =)-~i=1Pi, A is, therefore, an m x p matrix.

By partitioning vectors b, X, and C into sizes corresponding to each Ai, problem (1) can be
rewritten as follows.

n

Minimize: E C~Xi ,
i ~ l

Subject to: E LiXi = b0, (2)
i = 1

AiXi = b~,

Xi_>0.

We can then define the subproblem i, for i=1, 2, . . . , n, as:

Minimize: (C: - A~Li) Xi,

Subject to: A i X i = bi,

Xi >_0,

(3)

where A~ is the vector denoting the simplex multipliers corresponding to the constraint 2in__l

LiXi = b0.
In contrast to subproblem (3), problem (2) is called the master program. Based on the convexity

properties of problems (2) and (3), which imply that all solutions can be written as a linear
combination of their vertices, a two-level algorithm based on DWDP can be developed. In this
algorithm, the master program is on the first level to search for the coefficients of the linear
combination. Subproblem (3) is on the second level to solve the possible optimal vertices.

Consider that there exists a distributed computing environment (DCE), which has more than n
independent workstations connected by a network and a centralized processor (or the master
processor) to serve as the coordinator. Such a framework has proven to be a viable approach to
provide concurrent computing power at reasonable costs [7]. Procedure i describes an algorithm
based on the Dantzig-Wolfe decomposition principle (DWDP) that can be executed on the DCE.

Dantzig-Wolfe Decomposition Algorithm 1433

PROCEDURE 1. Parallel DWDP algorithm.

Step 1 Initiate the distributed computing environment by creating n processes in the network
and identify one of these processes as the master process to coordinate the computing
tasks. Let basis matrix B = I be an identity matrix.

Step 2 The master process solves the current basic solution XB, and determines the simplex
multipliers A T = (A0 -r, £) = B - I C n T where £ = (~ 1 , / ~ 2 , - . • , ~ n) .

Step 3 The master process broadcasts necessary data to each child-process and assigns the i th
process to solve X* of the ith subproblem (as denoted in equation (3)) and calcu-
lates r* = (O~ -)~0-rLi)X~ - ~i, for i = 1, 2 , n.

Step 4 Once the i th process solves the i th subproblem, it sends r~ and X* to the master
process. After all of the processes return their solutions, if all r* > 0, then the optimal
is found and the algorithm terminates. Otherwise, go to Step 5.

Step 5 The master process determines which column enters the basis by selecting the min-
imum value r* of the subproblems. Let (L, x7) be the column that will enter the

e~

current basis B, where ei is a unit vector.
Step 6 The master process updates B - 1 and go to Step 2.

3. P E R F O R M A N C E O F T H E P R O P O S E D A L G O R I T H M

Assume that the proposed algorithm is implemented in a cluster of n workstations connected
in a distributed computing environment and terminates in time t,~. Let ts be the best possible
time required for solving the same problem using a sequential algorithm. The speedup can be
defined as the ratio

ts
Speedup = t-~" (4)

Speedup is one of the most common indicators for measuring the efficiency of a parallel al-
gorithm [8]. The attainable speedup of an algorithm is certainly a random variable since it is
affected by many factors in a distributed computing environment. Under very general conditions,
speedup tends to be a limiting value called mean speedup [9], which can be defined as follows.

E (calculation time using one processor)
Mean speedup = E (calculation time using n processors) ' (5)

where E(.) is the usual expectation. In a stochastic environment, mean speedup represents the
upper bound of the algorithm speedup.

Suppose that a LP problem can be solved within finite iterations in DCE. Let u, j be the
computation time for the i th processor to complete its task in the j th stage and cij be the
communication time for a message transmission from the moment of completion of a given task
in the j th stage at the i th processor until all processors have received that message. Assume that
both uij and cij are i.i.d., and that they are independent. In executing the proposed algorithm,
since each iteration is independent and has an identical stochastic structure, we can, therefore,
omit the subscript j and have the mean speedup as follows.

Mean speedup = n E (u l)
E (t , ,) ' (6)

In each iteration of the proposed algorithm, a simplex direction search is performed, where
the columns generated by subproblems are searching for an entering variable using the simplex
method. We can analyze a single iteration as a finite-i)opulation G / G / 1 queue, where each sim-
plex method can be treated as a "customer" (job) that is "served" (solved) by a processor. Similar
to a G / G / 1 queue, the job processing may be interrupted before completion. The discipline for
this operation is FIFO (first in first out). Let u(n) be the maximum of u l , . . . , un which is the

1434 J.J. LYU et al.

time the last processor finished its computations, or, from the queueing perspective, the arrival
time of the n th job. Let ai be the accumulated communications backlog at the time, when the i th
job was finished and ci is the communication time for the job performed by the i th processor.
Thus, we may write tn = u(n) + an + cn. We can then extend (6) as follows.

Mean speedup = nE(Ul)
E (u(n) + an + cn)" (7)

Taking a distributed computing system as the server in a queuing system, we observe that the
computation time required is always greater than or equal to the time it takes for all of the jobs
to be served. The n th job to enter the queue will not wait longer than the sum of the service
times of the n - 1 jobs that entered the queue before it. We thus have CPU time bounds as
follows.

e l + ' ' " -~- Cn ~ tn <~_ U(n) "~- Cl -4- ' ' " "~- On--1 -~- C~. (8)

To derive the lower and upper mean speedup boundaries, the expectations of (8) are inverted,
and multiplied by nE(ul) , to obtain the following results:

nE(ul) nE(ul) nE(ul)

E (u(,~) + cl +. ". + an) <- E(tn) <-

We can then extend (9) as follows.

nE(Ul) < Mean speedup _< E(Ul__._~)
E (u(~)) + nE(Cl) - E(cl)"

E(el + . . - +
(9)

(lO)

Let a be the maximal computation time for a single job and let ~ be the communication time.
The upper and lower mean speedup boundaries are as follows.

nE(ul) E(ul)
< Mean speedup < - - (11)

E (u(,)) + nE(Cl) - E(cl)"

Since the distribution of u(,) is F , , its expectation can be computed by finding the expectation
on nonnegative continuous random variable

E (u(n)) = (1 - F:(y)) dy. (12)

From (11), it is also clear that a sufficient condition for mean speedup to a / $ is

lim E (u(n)_______~) = 0. (13)
n-.oo n

The sufficient condition for the mean speedup to converge to ~/f~ is given below (the proof is
similar to [9]).

PROPOSITION 1. Let computation time u be a continuous nonnegatNe random variable with
distribution function F,, and such that E(u a) < c~ for some d > 1. Then, l i m n - ~ E(u(,~))/n = O;
i.e., the mean speedup converges to ~/f~.

4. N U M E R I C A L R E S U L T S

In this section, we present the numerical experimental results in order to justify the performance
of the proposed algorithm. The algorithm presented was implemented in a cluster of distributed
network workstations, which were connected via an optical fiber link. We used the parallel virtual
machine (PVM) library routines to develop the message-passing environment for distributed

!

~J

Dantzig-Wolfe Decomposition Algorithm

400

350

300

250

200

150

100

50

0

© 120 constraints
- ' - 50 constraints

"~. ~ - - I - - 20 COllS/railltS

• . _ o _ . . _ . _

~ , -~ - - i - -~ - -u -~ - -a ,

1 2 3 4 5 6 7

number of processors
Figure 1. CPU time (in seconds) versus number of processors.

1435

~4

3

~ " - - m - - 50 c a a , ~

e - - 20 con~

2 3 4 5 6 7

number Oflmm~mr

Figure 2. Mean speedup and speedup versus number of processors.

computing. PVM enables a collection of heterogeneous computer systems to be viewed as a single
parallel virtual machine and has been widely adopted by researchers [10,11]. The algorithm code
was programmed in FORTRAN/77.

The method for numerical experiments in this study was similar to the one proposed by [12],
where the number of model constraints are 20, 50, and 120, and the number of model variables
is 120. For each problem type, five sets of models, generated using different random-number
generator seeds, were solved. The average CPU time (five replications for each instance) required
to solve each type of test problem with respect to the different numbers of processors used during

1436 J.J. LYU et al.

experiments is plotted in Figure 1. The speedup earned in the numerical experiments as well as
the mean speedup of the proposed algorithm are calculated and plotted in Figure 2.

It is clear tha t the numerical performance of the proposed algorithm is impressive based on
the experimental results demonstrated in Figure 1. When solving a modest sized problem (120
constraints), the CPU time saved in a DCE could be more than six fold. Given that a distributed
computing environment is very common in many computer centers and PVM is a shareware, the
presented algorithm is useful to many researchers in solving a linear programming problems.

The average of the mean speedups and the empirical speedups obtained in this research are
shown in Table 1. The best empirical speedup found in the numerical experiments was 6.34,
with respect to the best mean speedup approaches 6.69. In general, the speedups earned in
the experiments were close to the mean speedups as expected (Figure 2 and Table 1). It is
also interesting to note tha t near linear speedup was achieved, which means that the proposed
algorithm can take full advantage of the distributed computing power as the size of the problem
increases.

Table 1. Experimental results of mean speedup and empirical speedup.

Number of processors Mean speedup Empirical speedup

2 1.74 1.55

3 2.72 2.42

5 4.70 4.42

6 5.66 5.36

7 6.69 6.34

5. C O N C L U S I O N S

This s tudy developed a parallel DWDP algorithm on clusters of distributed network work-
stations and evaluated its performance. It was shown that the mean speedup of the proposed
algorithm converges to a / ~ , where a is the maximal computat ion time for a single job and/3 is
the communication time. The numerical results are consistent with the analytical analysis. We,
therefore, demonstrated that there is a "communications speedup limit" tha t cannot be exceeded
regardless of the number of processors available in the DCE. Since D W D P represents a limiting
case for communication delays, we can state that this speedup limit is also an upper boundary
for the asymptotic speedup of block-type problems.

On the other hand, the numerical results suggested that the CPU time saved by the proposed
parallel algorithm is inspiring. This algorithm could be implemented in a general distributed
computing environment and the speedup earned will approach linearity. The parallel D W D P
algorithm implementation is therefore useful to many practitioners. As networked computing
environments are becoming increasingly more available, greater effort on the development of
parallel optimization algorithms will be necessary.

R E F E R E N C E S
1. K. Ziarati, F. Soumis, J. Desrosiers and S. Gelinas, Locomotive assignment with heterogeneous consists a t

CN North America, European Journal of Operational Research 9"7, 281-292, (1997).
2. G. Desaulniers, J. Desrosiers, Y. Dumas, S. Marc, B. Rioux and M. Solomon, Crew pairing at Air France,

European Journal of Operational Research 9'7, 245-259, (1997).
3. M. Aganagic and S. Mokhtari, Security constrained economic dispatch using nonlinear Dantzig-Wolfe decom-

position, IEEE Transactions on Power Systems 12, 105-112, (1997).
4. H. Hafsteinsson, H.R. Levkovitz and G. Mitra, Solving large-scale linear programming problems using an

interior point method on a massively parallel SIMD computer, Parallel Algorithms and Applications 4, 301-
316, (1994).

5. A. Sanghvi and I. Shavel, Investment planning for hydro-thermal power system expansion: Stochastic pro-
gramming employing the Dantzig-Wolfe decomposition principle, IEEE Transactions on Power Systems 1,
115-121, (1986).

Dantzlg-Wolfe Decomposition Algorithm 1437

6. J.W. Chinneck, Computer codes for the analysis of infeasible linear programs, Journal of the Operational
Research Society 47, 61-72, (1996).

7. V.S. Sunderam, G.A.. Geist, J. Dongarra and R. Manchek, The PVM concurrent computing system: Evolu-
tion, experiences, and trends, Parallel Computing 20, 53L-545, (1994).

8. J. Lyu, A. Gunasekaran and V. Kachitvichyanukul, Towards a portable and efficient environment for parallel
computing, International Journal of Systems Science 26 (6), 1333-1341, (1995).

9. P.M. Feldman, R.S. Feldman and D.B. Kim, Predicting speedup for distributed computing on a token ring
network, Journal of Parallel and Distributed Computing 45, 53-62, (1997).

10. P. D'Ambra and G. Giunta, Concurrent banded Cholesky factorization on workstation networks using PVM,
Parallel Computing 21, 487-494, (1995).

11. V.S. Sunderam, PVM: A framework for parallel distributed computing, Concurrency, Practice and Experience
2 (4), 315-339, (1990).

12. D. Pisinger, An expanding-core algorithm for the exact 0 - 1 Knapsack problem, European Journal of Oper-
ational Research 87, 175-187, (1995).

