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A b s t r a c t - - T h i s  paper employs the Dantzig-Wolfe decomposition principle to solve linear pro- 
gramming models in a parallel-computing environment. Adopting the queuing discipline, we showed 
that  under very general conditions, the proposed algorithm speedup trends toward a limiting value 
as the number of processors increases. (~) 2002 Elsevier Science Ltd. All rights reserved. 
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1. I N T R O D U C T I O N  

Consider a linear programming (LP) problem that can be expressed in the following form: 

Minimize: CTX, 

Subject to: AX = b, 

X_>O. 

Suppose the A matrix has a special block-angular structure, namely, 

A = A2 , 

An 
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where all Ai in the technology matrix A are independent blocks linked by coupling-equation 
matrices Li. In this research, a parallel algorithm, based on the Dantzig-Wolfe decomposition 
principle (DWDP), was developed to solve the linear programming problems as stated above• 
Since Dantzig and Wolfe developed the decomposition principle in the early sixties, this method 
is still widely adopted to cope with large-scale optimization problems. For instance, Ziarati, et 
al. [1] considered a multicommodity flow model for assigning locomotives to train-segments while 
employing DWDP to solve a very large-scale-scheduling problem• Desaulniers, et al. [2] used 
DWDP to solve the problem of choosing the best crew pairing at Air France. Other examples 
can be found in [3-5]. Given that  larger and more complex mathematical models have become 
commonplace (see [6]), the importance of DWDP is well recognized by researchers• 

An ideal Dantzig-Wolfe decomposition model considers a typical linear programming problem 
whose technological matrix is block-type. Since each block-type submatrix can be transformed 
into an independent subproblem while maintaining the global optimum, an ideal Dantzig-Wolfe 
decomposition algorithm represents a limiting case for the effects of parallelism• When a parallel 
Dantzig-Wolfe decomposition algorithm is developed, it can be shown that  there is no wasted 
time associated with communication delays where the only source of communication delay is the 
actual time used in executing the program. This research, therefore, provides an upper bound 
for algorithm speedup using parallel processing for linear programs• 

2. A P A R A L L E L  L P  A L G O R I T H M  

In problem (1), let each Ai have mi rows and pi columns and each Li be an m0 x Pi matrix, 
• n m n for i = 1, 2, . .  , n. Letting m = ~ i=0  i and p = )-~i=1Pi, A is, therefore, an m x p matrix. 

By partitioning vectors b, X, and C into sizes corresponding to each Ai, problem (1) can be 
rewritten as follows. 

n 

Minimize: E C~Xi ,  
i ~ l  

Subject to: E LiXi  = b0, (2) 
i = 1  

AiXi = b~, 

Xi_>0.  

We can then define the subproblem i, for i=1, 2, . . .  , n, as: 

Minimize: (C:  - A~Li) Xi, 

Subject to: A i X i  = bi, 

Xi >_0, 

(3) 

where A~ is the vector denoting the simplex multipliers corresponding to the constraint  2in__l 

LiXi = b0. 
In contrast to subproblem (3), problem (2) is called the master program. Based on the convexity 

properties of problems (2) and (3), which imply that all solutions can be written as a linear 
combination of their vertices, a two-level algorithm based on DWDP can be developed. In this 
algorithm, the master program is on the first level to search for the coefficients of the linear 
combination. Subproblem (3) is on the second level to solve the possible optimal vertices. 

Consider that  there exists a distributed computing environment (DCE), which has more than n 
independent workstations connected by a network and a centralized processor (or the master 
processor) to serve as the coordinator. Such a framework has proven to be a viable approach to 
provide concurrent computing power at reasonable costs [7]. Procedure i describes an algorithm 
based on the Dantzig-Wolfe decomposition principle (DWDP) that  can be executed on the DCE. 



Dantzig-Wolfe Decomposition Algorithm 1433 

PROCEDURE 1. Parallel DWDP algorithm. 

Step 1 Initiate the distributed computing environment by creating n processes in the network 
and identify one of these processes as the master process to coordinate the computing 
tasks. Let basis matrix B = I be an identity matrix. 

Step 2 The master process solves the current basic solution XB, and determines the simplex 
multipliers A T = (A0 -r, £) = B - I C n  T where £ = ( ~ 1 , / ~ 2 , - .  • , ~ n ) .  

Step 3 The master process broadcasts necessary data to each child-process and assigns the i th 
process to solve X* of the ith subproblem (as denoted in equation (3)) and calcu- 
lates r* = (O~ - )~0-rLi)X~ - ~i, for i = 1, 2 . . . .  , n. 

Step 4 Once the i th process solves the i th subproblem, it sends r~ and X* to the master 
process. After all of the processes return their solutions, if all r* > 0, then the optimal 
is found and the algorithm terminates. Otherwise, go to Step 5. 

Step 5 The master process determines which column enters the basis by selecting the min- 
imum value r* of the subproblems. Let (L, x7 ) be the column that  will enter the 

e~ 

current basis B, where ei is a unit vector. 
Step 6 The master process updates B - 1  and go to Step 2. 

3.  P E R F O R M A N C E  O F  T H E  P R O P O S E D  A L G O R I T H M  

Assume that  the proposed algorithm is implemented in a cluster of n workstations connected 
in a distributed computing environment and terminates in time t,~. Let ts be the best possible 
time required for solving the same problem using a sequential algorithm. The speedup can be 
defined as the ratio 

ts 
Speedup = t-~" (4) 

Speedup is one of the most common indicators for measuring the efficiency of a parallel al- 
gorithm [8]. The attainable speedup of an algorithm is certainly a random variable since it is 
affected by many factors in a distributed computing environment. Under very general conditions, 
speedup tends to be a limiting value called mean speedup [9], which can be defined as follows. 

E (calculation time using one processor) 
Mean speedup = E (calculation time using n processors) ' (5) 

where E(.) is the usual expectation. In a stochastic environment, mean speedup represents the 
upper bound of the algorithm speedup. 

Suppose that  a LP problem can be solved within finite iterations in DCE. Let u, j  be the 
computation time for the i th processor to complete its task in the j th stage and cij be the 
communication time for a message transmission from the moment of completion of a given task 
in the j th stage at the i th processor until all processors have received that  message. Assume that  
both uij  and cij  are i.i.d., and that  they are independent. In executing the proposed algorithm, 
since each iteration is independent and has an identical stochastic structure, we can, therefore, 
omit the subscript j and have the mean speedup as follows. 

Mean speedup = n E ( u l )  
E ( t , , )  ' (6) 

In each iteration of the proposed algorithm, a simplex direction search is performed, where 
the columns generated by subproblems are searching for an entering variable using the simplex 
method. We can analyze a single iteration as a finite-i)opulation G / G / 1  queue, where each sim- 
plex method can be treated as a "customer" (job) that  is "served" (solved) by a processor. Similar 
to a G / G / 1  queue, the job processing may be interrupted before completion. The discipline for 
this operation is FIFO (first in first out). Let u(n ) be the maximum of u l , . . . ,  un which is the 
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time the last processor finished its computations, or, from the queueing perspective, the arrival 
time of the n th job. Let ai be the accumulated communications backlog at the time, when the i th 
job was finished and ci is the communication time for the job performed by the i th processor. 
Thus, we may write tn = u(n) + an + cn. We can then extend (6) as follows. 

Mean speedup = nE(Ul) 
E (u(n) + an + cn)" (7) 

Taking a distributed computing system as the server in a queuing system, we observe that  the 
computation time required is always greater than or equal to the time it takes for all of the jobs 
to be served. The n th job to enter the queue will not wait longer than the sum of the service 
times of the n - 1 jobs that  entered the queue before it. We thus have CPU time bounds as 
follows. 

e l  + ' ' "  -~- Cn ~ tn  <~_ U(n ) "~- Cl -4- ' ' "  "~- On--1 -~- C~. (8) 

To derive the lower and upper mean speedup boundaries, the expectations of (8) are inverted, 
and multiplied by nE(ul) ,  to obtain the following results: 

nE(ul )  nE(ul)  nE(ul)  

E (u(,~) + cl +.  ". + an) <- E(tn) <- 

We can then extend (9) as follows. 

nE(Ul) < Mean speedup _< E(Ul__._~) 
E (u(~)) + nE(Cl) - E(cl)" 

E(el + . . -  + 
(9) 

(lO) 

Let a be the maximal computation time for a single job and let ~ be the communication time. 
The upper and lower mean speedup boundaries are as follows. 

nE(ul )  E(ul)  
< Mean speedup < - -  (11) 

E (u(,)) + nE(Cl) - E(cl)" 

Since the distribution of u(,) is F , ,  its expectation can be computed by finding the expectation 
on nonnegative continuous random variable 

E (u(n)) = (1 - F:(y) )  dy. (12) 

From (11), it is also clear that  a sufficient condition for mean speedup to a / $  is 

lim E (u(n)_______~) = 0. (13) 
n-.oo n 

The sufficient condition for the mean speedup to converge to ~/f~ is given below (the proof is 
similar to [9]). 

PROPOSITION 1. Let computation time u be a continuous nonnegatNe random variable with 
distribution function F,,  and such that E(u a) < c~ for some d > 1. Then, l i m n - ~  E(u(,~))/n = O; 
i.e., the mean speedup converges to ~/f~. 

4.  N U M E R I C A L  R E S U L T S  

In this section, we present the numerical experimental results in order to justify the performance 
of the proposed algorithm. The algorithm presented was implemented in a cluster of distributed 
network workstations, which were connected via an optical fiber link. We used the parallel virtual 
machine (PVM) library routines to develop the message-passing environment for distributed 
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Figure 1. CPU time (in seconds) versus number of processors. 
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Figure 2. Mean speedup and speedup versus number of processors. 

computing. PVM enables a collection of heterogeneous computer systems to be viewed as a single 
parallel virtual machine and has been widely adopted by researchers [10,11]. The algorithm code 
was programmed in FORTRAN/77. 

The method for numerical experiments in this study was similar to the one proposed by [12], 
where the number of model constraints are 20, 50, and 120, and the number of model variables 
is 120. For each problem type, five sets of models, generated using different random-number 
generator seeds, were solved. The average CPU time (five replications for each instance) required 
to solve each type of test problem with respect to the different numbers of processors used during 
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experiments is plotted in Figure 1. The speedup earned in the numerical experiments as well as 
the mean speedup of the proposed algorithm are calculated and plotted in Figure 2. 

It  is clear tha t  the numerical performance of the proposed algorithm is impressive based on 
the experimental results demonstrated in Figure 1. When solving a modest sized problem (120 
constraints), the CPU time saved in a DCE could be more than six fold. Given that  a distributed 
computing environment is very common in many computer centers and PVM is a shareware, the 
presented algorithm is useful to many researchers in solving a linear programming problems. 

The average of the mean speedups and the empirical speedups obtained in this research are 
shown in Table 1. The best empirical speedup found in the numerical experiments was 6.34, 
with respect to the best mean speedup approaches 6.69. In general, the speedups earned in 
the experiments were close to the mean speedups as expected (Figure 2 and Table 1). It  is 
also interesting to note tha t  near linear speedup was achieved, which means that  the proposed 
algorithm can take full advantage of the distributed computing power as the size of the problem 
increases. 

Table 1. Experimental results of mean speedup and empirical speedup. 

Number of processors Mean speedup Empirical speedup 

2 1.74 1.55 

3 2.72 2.42 

5 4.70 4.42 

6 5.66 5.36 

7 6.69 6.34 

5. C O N C L U S I O N S  

This s tudy developed a parallel DWDP algorithm on clusters of distributed network work- 
stations and evaluated its performance. It  was shown that  the mean speedup of the proposed 
algorithm converges to a / ~ ,  where a is the maximal computat ion time for a single job and/3  is 
the communication time. The numerical results are consistent with the analytical analysis. We, 
therefore, demonstrated that  there is a "communications speedup limit" tha t  cannot be exceeded 
regardless of the number of processors available in the DCE. Since D W D P  represents a limiting 
case for communication delays, we can state that  this speedup limit is also an upper boundary  
for the asymptotic speedup of block-type problems. 

On the other hand, the numerical results suggested that  the CPU time saved by the proposed 
parallel algorithm is inspiring. This algorithm could be implemented in a general distributed 
computing environment and the speedup earned will approach linearity. The parallel D W D P  
algorithm implementation is therefore useful to many practitioners. As networked computing 
environments are becoming increasingly more available, greater effort on the development of 
parallel optimization algorithms will be necessary. 
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