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Abstract

Recently, fuzzy regression analysis has been largely applied in the modeling of economic or .nancial data. However,
those data often exhibit certain kinds of linguistic terms, for instance: very good, a little reclining or stable, in the business
cycle or the growth rate of GDP, etc. The goal of this paper is to construct a fuzzy regression model by fuzzy parameters
estimation using the fuzzy samples. It deals with imprecise measurement of observed variables, fuzzy least square estimation
and nonparametric methods. This is di8erent from the assumptions as well as the estimation techniques of the classical
analysis. Empirical results demonstrate that our new approach is e:cient and more realistic than the traditional regression
analysis. c© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Regression analysis has been a very popular method
with many successful applications. The problem of
parameter estimation in the linear regression models
has been an important research topic for statisticians.
Conventional study on the regression analysis is based
on the conception that the observed data are random
with certain measurement errors or noise. However,
in the empirical study those assumptions may hardly
be realized, since there are many observations that
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experience linguistic or vague data inside the classical
type.
For example, the o:cial record of exchange rate for

Japanese Yen to US dollar in January 1999 is 118.4.
However, this exchange rate only accounts for the last
exchange data, it cannot exactly display the variation
of exchange rate (Japanese Yen to US dollar) during
January 1999. Under such a situation, there may be a
great chance of being misled if we try to apply these
inaccurate data to .t a regression model.
Tanaka et al. [5] proposed the study in linear regres-

sion analysis using fuzzy set theory. They consider the
linear interval regression model as

Y = A0 + A1x1 + A2x2 + · · ·+ Apxp; (1.1)
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where parameters Ai are triangular fuzzy numbers
and the explained variables x1; x2; : : : ; xp are real
value numbers. Therefore, the estimated value Y is
also a fuzzy number. Tanaka et al. designed a useful
technique to solve the estimation problem by trans-
forming the optimization problem of estimation into a
linear programming scheme. However, their method
is a little complicated. Isshibuchi and Tanaka [2]
presented an interval regression analysis based
on the back-propagation neural networks. Their
method is to obtain a nonlinear interval regres-
sion model by identifying the upper bound and the
lower bound of the data interval. Recently, Yang
and Ko [6] proposed a cluster-wise fuzzy in two
approaches: the two-stage weighted fuzzy regres-
sion and the one-stage generalized fuzzy regression.
The two-stage procedure extends the results of Ja-
juga [3] and Diamond [1]. The one stage is cre-
ated by embedding fuzzy clustering into the fuzzy
regression model .tting at each step of the proce-
dure.
The regression analysis dealing with fuzzy data is

usually called fuzzy regression analysis, while a lin-
ear interval regression model with fuzzy parameters is
called fuzzy regression model. One advantage of us-
ing fuzzy regression analysis is that it can process the
fuzzy sample data such as (xi ; Yi), where Yi is a fuzzy
number and xi is the vector of the explained variables,
in a way which is closer to the reality. However, the
estimation of fuzzy regression coe:cients about fuzzy
regression models has not been studied very much.
That is, when the parameters Ai in Eq. (1.1) exhibit
a linguistics form, such as Ai contains .ve linguistic
values {very low, low, medium, high, very high}. In
order to get an appropriate model to exhibit the real
case, we had better apply the concept of fuzzy theory
as well as the membership functions for these fuzzy
sample data.
In this paper we propose a new approach to fuzzy

regression models by using fuzzy number and method
of least square. It is connected with imprecise mea-
surement of observed variables, fuzzy least-squares
estimation and nonparametric methods. This is dif-
ferent from the assumptions as well as the estimation
techniques of the classical analysis. A generalized
least-squares method with nonparametric statistics
estimating the regression coe:cients is derived. Em-
pirical results demonstrate that our new approach is

e:cient and more realistic than the traditional regres-
sion analysis.

2. Fuzzy regression models

Since all information contained in a fuzzy set is
described by its membership function, it is necessary
to develop a lexical term to describe fuzzy number.

De�nition 2.1 (fuzzy number). A fuzzy number A
de.ned on the universe set X is a fuzzy subset in
support R (the real number) which is both normal and
convex where supp(A)= {x∈R | �A(x)¿0}. Suppose
we have an exhaustive collection of individual ele-
ments {x1; x2; : : : ; xn}, which make up a universe of
information or discourse X . Let A be a fuzzy num-
ber de.ned on the universe set X which contains
x1; x2; : : : ; xn as its elements and u(xi) denote the grade
of membership of xi in A for i=1; 2; : : : ; n. Then the
fuzzy number A is written as

uA(X )=A = u(x1)=x1 + u(x2)=x2 + · · ·+ u(xn)=xn:

(2.1)
Example 2.1 (How many hours do you sleep in one
day?). Let A be the fuzzy number of hours you sleep.
Assume X to be the universe set with integral num-
bers. That is, X = {0; 1; 2; 3; 4; 5; : : : ; 24}. If a person’s
sleeping hours exhibit the followingmembership func-
tion A:

uA(X ) = {u(6) = 0:1; u(7) = 0:2; u(8) = 0:4;

u(9) = 0:2; u(10) = 0:1}

then the fuzzy number of sleeping hours can be written
as

X = uA(X )=A

= 0:1=6 + 0:2=7 + 0:4=8 + 0:2=9 + 0:1=10:

A general linear fuzzy regression model can be writ-
ten as follows

Ỹ (xi) = A0 + A1x1i + A2x2i + · · ·+ Apxpi; (2.2)

where xi =(1; x1i ; x2i ; : : : ; xpi)′ is the vector of ex-
planatory variables, Ỹ (xi) is the fuzzy sample de-
pendent on xi and Am (m=1; 2; : : : ; p) is a fuzzy
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parameter. Usually, symmetric triangular membership
functions are designed for the fuzzy parameter Am.
Hence, the membership function of Ỹ (xi) is also of
symmetric triangular type.
Traditionally, we use the linear programming op-

timization method to estimate fuzzy parameter Am as
well as its support of Ỹ (xi). That is, one is to .nd a
support of Ỹ (xi) such that the total length of interval
has the minimized value and the support of Ỹ (xi) can
cover the fuzzy sample Yi. Therefore, we can derive
the membership function of Ỹ (xi), and then .nd the
estimators of fuzzy parameters Am.
However, there still exist certain drawbacks in the

estimation of fuzzy parameters by the use of linear
programming. For instance, (i) Why should the fuzzy
sample Yi be covered by the interval estimations of
Ỹ (xi)? (ii) Are the fuzzy regression coe:cients de-
rived from the linear programming the best estima-
tion? In this research, we will free the assumption, that
is the fuzzy sample which falls outside the interval
estimation Ỹ (xi) can be tolerated.
Although Savic and Pedrycz [4] have proposed

least-squares method to estimate the fuzzy param-
eters, the main estimation procedure still uses the
concept of the linear programming. For the sake of
being realistic and e:cient, we would propose an al-
ternative new estimated procedure, which is di8erent
from the linear programming scheme.
In conventional estimation of the fuzzy parameter

Am for Eq. (2.2), people used to assume that the mem-
bership function of Am is of triangle type, i.e.

�Am(t) = max
{
1− |t − cm|

sm
; 0
}
; −∞¡ t ¡∞;

(2.3)

where cm and sm are the center and radius on the trian-
gular membership function, respectively. Their mem-
bership of the fuzzy parameter Am is shown in Fig. 1.
Applying the fuzzy logic in the above Eq. (2.3), the

membership function for fuzzy output Ỹ (xi) can be
obtained as

�Ỹ (xi)(t)

= max

{
1−

∣∣∣∣∣t −
p∑

m=0

cmxmi

∣∣∣∣∣
/ p∑

m=0

sm|xmi|; 0
}

;

−∞¡ t ¡∞: (2.4)

Fig. 1. Membership function for the fuzzy parameter Am.

For simplicity, Am can be represented by its center cm
and radius sm as

Am = 〈cm; sm〉: (2.5)

Then, from (2.5), the fuzzy regression model (2.2)
can also be represented as

Ỹ (xi) = 〈c0; s0〉+ 〈c1; s1〉x1i + 〈c2; s2〉x1i
+ · · ·+ 〈cp; sp〉xpi: (2.6)

However, in constructing fuzzy regression model,
the fuzzy parameter Am is unknown. In fact this is also
what we are concerned with in this paper. But from
the previous assumption of a triangle type, as long as
we .nd its center cm and the radius, we can get the
estimation of membership functions Am.

3. Estimation for fuzzy parameter

When the human subjective decision, measurement
error or incomplete data a8ected the output data, we
had better not look at those output data as an accurate
numerical value. Therefore, we would like to use the
fuzzy number as an exhibition of output. For obser-
vations (xi ; Yi), where xi =(x1i ; x2i ; : : : ; xpi) is the ith
input vector and Yi is its corresponding fuzzy sample,
the fuzzy sample Yi may be considered as a symmetric
triangular membership function as follows:

�Yi(t) = max
{
1− |t − yi|

ri
; 0
}
; −∞¡ t ¡∞;

(3.1)
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where yi and ri are the center and radius on the sym-
metric triangular membership function, respectively.
In order to estimate the middle point cm and the

radius sm in Eq. (2.3), we have to consider the concepts
of fuzzy number, which will be concerned with the
concept of h-cut. An h-cut [A]h for a fuzzy number A
on X is a crisp set denoted as

[A]h = {x | �Ai(x)¿ h}:
That is, the set [A]h contains all the elements of the
universal set X such that the membership degree in
A is greater than or equal to the speci.ed value of h.
Having the concept of h-cut, we give the de.nition of
signi.cant level h, the degree of .tness between the
fuzzy sample Yi and output Ỹ (xi).

De�nition 3.1. Assume that (xi ; Yi) is fuzzy sam-
ple and Ỹ (xi) is fuzzy output. Let hi be the degree
of .tness between the fuzzy sample Yi and out-
put Ỹ (xi). If [Yi]h and [Ỹ (xi)]h are the h-cut for Yi
and Ỹ (xi), respectively, i.e. [Yi]h = {t | �Yi(t)¿h}
and [Ỹ (xi)]h = {t | �Ỹ (xi)(t)¿h}, then, under the ith
observation,

hi = max{h | [Yi]h ⊂ [Ỹ (xi)]h}: (3.2)

The hi is an important index in measuring the de-
gree of .tness between the fuzzy sample Yi and output
Ỹ (xi). The larger the hi is, the more .t the fuzzy sam-
ple Yi and output Ỹ (xi). Note that the measurement
of .tness for traditional regression analysis is judged
by the sum of square error, while in the case of fuzzy
sample the concept of distance measurement is more
sophisticated. Therefore, we use hi instead of sum of
square error to measure the degree of .tness between
the fuzzy sample Yi and output Ỹ (xi). Fig. 2 illustrates
the relationships among Yi; Ỹ (xi) and hi.
Under the condition of De.nition 3.1, the degree of

.tness hi can be written as

hi = 1− |yi −
∑p

m=0 cmxmi|∑p
m=0 sm|xmi| − ri

: (3.3)

In order to get an appropriate estimation for cm and
sm, we need to restrict all the values of hi which are
larger than a speci.c real value H , i.e. hi¿H , for all
i, such that the degree of .tness between fuzzy sam-
ple Yi and output Ỹ (xi) reaches a signi.cant level H .
We would like to guarantee that the degree of .tness

Fig. 2. Relationships among Yi; Ỹ (xi) and hi .

between the estimated Ỹ (xi) and Yi will be better. It
is natural for us to make the assumption that hi should
be larger than a signi.cant level H , i.e. hi¿H for all
i. Given the signi.cant level H , we can get the fol-
lowing two equations:

yi ¿
p∑

m=0

cmxmi − (1− H)
p∑

m=0

sm|xmi|+ (1− H)ri

and

yi 6
p∑

m=0

cmxmi + (1− H)
p∑

m=0

sm|xmi| − (1− H)ri

for all i: (3.4)

Moreover, we want to minimize the sum of each
radius of triangle memberships for the fuzzy output
Ỹ (xi), see Fig. 2, such that the estimated output will get
the maximum likelihood information from the data.
Following the above concept, we give the following
de.nition as the objective function.

De�nition 3.2. Let
∑p

m=0 sm|xmi| be the radius of the
ith (i=1; : : : ; n) output Ỹ (xi). The objective function
Of for the estimated parameter of fuzzy regression is
denoted by

Of =
n∑

i=1

p∑
m=0

sm|xmi|: (3.5)
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Therefore, under the condition of (3.4), we aim to
.nd cm and sm such that Of be minimized by the linear
programming method.
In the above linear programming estimation pro-

cess, the concept of hi is used to estimate output Ỹ (xi)
such that [Yi]h⊆ [Ỹ (xi)]h. Therefore the output for a
fuzzy regression is to .nd a set of distributed inter-
vals which will cover all the samples. From the above
estimation process, we may ask: is it necessary to use
the .tted value hi for sample Yi and output Ỹ (xi)?
If we use hi then it means that [Yi]h can only fall in
the interior of [Ỹ (xi)]h because [Yi]h⊆ [Ỹ (xi)]h. But
if there exist certain outliers, according to the linear
programming estimation technique, we may obtain a
huge but ine:cient estimated interval. We would like
to believe that Yi may reQect most properties of out-
put, even that [Yi]h �⊂ [Ỹ (xi)]h. Hence, the assumption
of the linear programming method does not seem ro-
bust. A more precise explanation should be that the
h cut [Yi]h for the representative sample Yi should be
close to [Ỹ (xi)]h, and as near as possible, i.e [Yi]h

≈ [Ỹ (xi)]h.
Since the fuzzy sample Yi = 〈yi; ri〉 belongs to a

triangle membership function, the membership of Yi
is distributed on the interval [yi − ri; yi + ri], where
yLi =yi − ri is the lower bound and yUi =yi + ri is
the upper bound. Though we require both bounds of
Yi to be very close to the support of Ỹ (xi), we cannot
claim which one is contained in the other or whether
both of their supports are equal.
We think that the memberships of lower and upper

bounds, yLi and yUi for Ỹ (xi) reach a certain degree
of signi.cant level. Given the signi.cant level H , we
have

�Ỹ (xi )
(yi − ri) ≈ H; �Ỹ (xi )

(yi + ri) ≈ H; (3.6)

where �Ỹ (xi )
(yi−ri) and �Ỹ (xi )

(yi+ri) are the degrees of
membership of the lower bound yLi and upper bound
yUi, respectively. In order to let the �Ỹ (xi )

(yi− ri) and
�Ỹ (xi )

(yi + ri) get close to H , we may adjust their
values instead of asking both of them to be larger
than H .
From the above explanation and condition (3.6), we

will present a new method in estimating fuzzy param-
eters. The method has the advantage of e:ciency and
it is easy to run.

3.1. Least-squares method for fuzzy parameter
estimation

For a linear regression line, let the lower regression
line be constructed by the least-squares method with
the lower bound of {(xi ; yLi) | i=1; 2; : : : ; n}, which
is written as

yL(xi) = L̂0 +
p∑

m=1

L̂mxmi; i = 1; 2; : : : ; n; (3.7)

where Lm is a regression coe:cient. Similarly,
a linear regression line which is constructed by
the least-squares method with the upper bound of
{(xi ; yLi)| i=1; 2; : : : ; n} is called an upper regression
line, which is written as

yU(xi) = Û 0 +
p∑

m=1

Ûmxmi; i = 1; 2; : : : ; n: (3.8)

Now we want to use the two functions to estimate
the output Ỹ (xi) such that its degree of membership
function approaches H . That is

[Ỹ (xi)]H =

[
L̂0 +

p∑
m=1

L̂mxmi; Û 0 +
p∑

m=1

Ûmxmi

]
:

(3.9)

By a simple calculation, we can get

�Ỹ (xi)(t) = max

{
1−

∣∣∣∣∣t −
p∑

m=0

(
Ûm + L̂m

2

)
xmi

∣∣∣∣∣
/

p∑
m=0

(
Ûm − L̂m
2(1− H)

)
|xmi|; 0

}
;

(3.10)

where xi0 = 1. Moreover, the memberships of the
fuzzy parameter Am can be written as

�Am(t) = max

{
1− |t − ((Ûm + L̂m)=2)|

((Ûm − L̂m)=2(1− h))
; 0

}

(3.11)

or equivalently

Am =

〈
Ûm + L̂m

2
;

Ûm − L̂m
2(1− H)

〉
; (3.12)
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where (Ûm + L̂m)=2 is the center of the support and
(Ûm− L̂m)=2(1−H) is the distributed radius. Finally,
we get the following fuzzy regression model

Ỹ (xi) =

〈
Û 0 + L̂0

2
;
Û 0 − L̂0
2(1− H)

〉

+

〈
Û 1 + L̂1

2
;
Û 1 − L̂1
2(1− H)

〉
x1i

+

〈
Û 2 + L̂2

2
;
Û 2 − L̂2
2(1− H)

〉
x2i

+ · · ·+
〈
Ûp + L̂p

2
;
Û p − L̂p
2(1− H)

〉
xpi: (3.13)

From the above process, the estimation of fuzzy re-
gression model based on the least square method is
simpler than the linear programming method.
Conventional estimation for the fuzzy parameters is

based on the linear programming with the restriction
that the sample must not fall outside of a bound area.
Meanwhile, in order to make the estimation procedure
more applicable, the new method we proposed is to
free this restriction such that the data that fall outside
the bound area are acceptable.
In fact, in the real case when the sample exhibits

many outliners, the traditional LSEmay not accurately
estimate the fuzzy parameters Am = 〈cm; sm〉, since the
estimators induced by LSE will easily be inQuenced
by the outliers. On the other hand, it is well known that
by the application of nonparametric regression meth-
ods, we can .nd a more robust estimator. Therefore,
we will combine the technique with fuzzy statistical
method to get a more appropriate estimation of fuzzy
parameters Am = 〈cm; sm〉.
Let the lower boundary of H -cut be

yL(xi) = L0 +
p∑

m=1

Lmxmi; i = 1; 2; : : : ; n: (3.14)

Using the Gram–Schmidt orthogonalization procedure
we can transform the endogenous variable xmi into zmi.
The procedure of orthogonalization is

z1i = x1i ; 1; 2; : : : ; n;

zmi = xmi −
m−1∑
k=1

rmkzki for m ¿ 1; 1; 2; : : : ; n;

rmk =

(
n∑

i=1

xmizki

)/(
n∑

i=1

z2ki

)
: (3.15)

Hence we have the following regression models:

yL(zi) = L′0 +
p∑

m=1

L′pzmi; i = 1; 2; : : : ; n; (3.16)

Then we will .nd the L′m by the transformed regression
model and later through a simple transformation we
will get the estimator L′m of regression model (3.14).
A detailed algorithm is described below.

1. For each m, let L′m =0; m=1; 2; : : : ; p,

2: let �L′m =med

{
bij(m) =

yLj − yLi

zmj − zmi
;

zmi ¡ zmj; 16 i ¡ j 6 n

}
;

(3.17)

3. L′m←L′m + �L′m,
4. yLi←yLi − �L′mzmi,
5. if the L′m converges then go to Step 6, otherwise

let m=m+ 1, go to Step 3,
6. decide L̃

′
0 =med{yLi}.

From the above procedure we can get L̃
′
0; L̃

′
1; L̃

′
2 : : : ;

L̃
′
p. The .nal estimation of L̃m can be written as

L̃p = L̃
′
p;

L̃p−m = L̃
′
p−m −

m−1∑
i=0

rp−i;p−mL̃m−i ;

m = 1; 2; : : : ; p− 1;

L̃0 = L̃
′
0: (3.18)

Inserting L̃0; L̃1; : : : ; L̃p into Eq. (3.14), we can get
the H-cut of lower bound of Ỹ (xi). Similarly, we can
.nd theH-cut of upper bound of Ỹ (xi). Lastly, puting
the H-cut of lower and upper bounds of Ỹ (xi) into
Eq. (3.13), we can derive a fuzzy regression model
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Fig. 3. The integrated Qowchart of the estimation procedure.

Fig. 4. Index of Taiwan business cycle.

under the nonparametric concept. Fig. 3 gives the in-
tegrated Qowchart of the estimation procedure.

4. Empirical study

Fig. 4 is a plot of the monthly Taiwan Business In-
dex from November 1987 to February 1997. These
data come from the Council of Economic Planning
and Development, Taiwan. Several nonregular busi-
ness cycles in the 112 time series as well as certain
structural change are exhibited. It is di:cult to identify
the structural change in this case. Fig. 4 also presents
a large Quctuation and it is hard to construct a suit-
able model. First, we inspect the tendency of the Tai-
wan business in Fig. 4. We .nd large Quctuations in
the beginning and the end of the Taiwan business cy-
cle index which shows that there is larger variation in
these periods.

In the data collection, because of the time lag, the
published data cannot exhibit the exact value during
the period. Some volume has been shifted to the next
or the last time, for instance, the GDP, exchange rate,
business cycles etc. The historical data record, rough
average value, close market price or the mod of the
price during the time period. They seldom described
the variation during the period. To apply those data,
statistical analysis might meet the danger of overes-
timation or overexplanation. Hence, we will use the
concept of fuzzy statistics in constructing the regres-
sion models.
Taiwan Business Index, published monthly by the

Economics Counsel, Execute Yen, consists of nine
variables: M1b, Loan, Amount of Bills Exchange,
Stock Market Index, New Order for Manufacture
Department, Export Volume, Index of Industry
Manufacture Department, Inventory of Manufac-
ture Department, the Employment Rate of Non-
Agriculture Department. Summarizing the above 9
variables we can get the index of business cycle. There
are 5 Business Lights corresponding to the linguistic
term, that is: (1) red light means that the business ac-
tivity is excellent, (2) yellow–red light means that the
business activity is good, (3) green light means that
the business activity is medium, (4) yellow–blue light
means that the business activity is not good, (5) blue
light means that the business activity is retrieving.
Since the index of business exhibits fuzzy charac-

teristics, we apply the fuzzy parameter estimation to
construct a fuzzy regression linear model. Among the
nine factors, we choose the most essential exogenous
variables (monthly): (1) increasing rates of M1B(X1);
(2) increasing rate of export volumes (X2); (3) in-
creasing rate of industry production (X3); and also take
the index of business cycle as our fuzzy endogenous
variable. There are 88 data for each variable starting
from October 1990 to January 1998.
The index of business cycle is composed of nine ex-

ogenous variables, thus we need to investigate the re-
lationship among those variables. Moreover, we want
to (1) examine whether fewer variables can better
exhibit the index of business cycle, (2) con-
struct a linear regression model under the point
of fuzzy statistical view, (3) identify the linguis-
tic category of the business lights (red, yellow–
red, green, Yellow–blue, blue) among the main
variables.
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Table 1
The o:cial record for index of business cycle

Light Index of business cycle

Red 38–45
Yellow–Red 32–37
Green 23–31
Blue–Yellow 17–22
Blue 9–16

Table 2
The statistics of parameters

Parameter Estimate of L̂i "̂(L̂j) T-Value P-Value

L0 14.500 0.6461 22.45 0.000
L1 0.448 0.0500 8.96 0.000
L2 0.116 0.0321 3.63 0.000
L3 0.182 0.0711 2.56 0.012

"̂ = 3:057 R2 = 61:0%

Let the regression model Ỹ (xi) for the business cy-
cle be

Ỹ (xi) = A0 + A1x1i + A2x2i + A3x3i ; (4.1)

where x1i is the M1b; x2i is the annual rate of ex-
port, x3i is the annual rate of industrial production, and
Am = 〈cm; sm〉 are the regression coe:cients. For this
88 data size, we assume the index of business cycle Yi
as the fuzzy sample. The o:cial record, using color as
the symbol of index of business cycle was illustrated
in Table 1.
We translate the rank of light into several intervals

such that we can get both boundary points yLi yUi

for each sample point.
Under the signi.cant level H = 0:3, for all the

lower points of sample (xi ; yLi), we get the following
lower regression model by the use of least square error
method:

yL(xi) =
3∑

m=0

Lmxmi = 145 + 0:45x1i

+0:12x2i + 0:18x3i ; (4.2)

where the statistics of parameters are illustrated in
Table 2.

Table 3
The statistics of parameters

Parameter Estimate of Um "̂(Ûm) T-Value P-Value

U0 20.200 0.6779 29.85 0.000
U1 0.550 0.0524 10.48 0.000
U2 0.125 0.0336 3.70 0.000
U3 0.211 0.0745 2.83 0.006

"̂ = 3:208 R2 = 67:0%

Similarly, under the signi.cant level H = 0:3, for
all the upper points of sample (xi ; yUi), we get the
following upper regression model by the use of least
square error method:

yU(xi) =
3∑

m=0

Umxmi = 20:2 + 0:550x1i

+0:125x2i + 0:211x3i ; (4.3)

where the statistics of parameters are illustrated in
Table 3.
According to Eq. (3.12), the fuzzy parameter of Am

is

A0 = 〈17:3687; 4:0919〉; A1 = 〈0:4992; 0:0727〉;
A2 = 〈0:1205; 0:0057〉; A3 = 〈0:1963; 0:0206〉:
Then we get the regression fuzzy model

Ỹ (xi) = 〈17:3687; 4:0919〉+ 〈0:4992; 0:0727〉x1i
+ 〈0:1205; 0:0057〉x2i + 〈0:1963; 0:0206〉x3i :

(4.4)

We use the fuzzy regression model to explain the
input–output variables among index of business cycle
(Ỹ (xi)), growth rate of M1b (x1), growth rate of export
volume and growth rate of industry production. Under
this model, the explanation of business cycle will not
be limited to the Business lights. We will have more
Qexible methods to explain the business cycle. For
instance, the increasing rate of M1b (x1) from October
1997 is 12.87%, the increasing rate of export volume
x2 is 5.9%, and the industry production (x3) is 11.05%.
The o:cial recorded green light. If we put the above
three exogenous variables in model (4.4), we get the
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Fig. 5. The memberships of business cycle of Taiwan in October
1997.

memberships of business cycle Ỹ (xi) as

�Ỹ (xi)(t) = max{1− |t − 26:27|=5:28; 0}: (4.5)

The memberships are illustrated in Fig. 5, where,
instead of the traditional business light, t is the index
value which stands for the state of the whole period.
This kind of representation seems to give us more
information about the period of time.
In the analysis of business cycle, we can .nd the

correlation among the business index and the exoge-
nous variables from the estimated regression model
parameters. In the empirical study, it is easy to .nd
that the fuzzy regression model renders a better expla-
nation for the real case than the traditional one. More-
over, under the fuzzy set theory we can make use of
all the information and demonstrate the data which
people often ignore in the traditional analysis.

5. Conclusion

In this research we proposed a new method for pa-
rameters estimation of linear regression models inte-
grated with statistical theory and the concept of fuzzy
logic. The presented procedure to .nd the #-level of
fuzzy parameter for a set of regression data is care-
fully discussed. Experimental results show that the
proposed method of estimated fuzzy parameters is ef-
.cient and practical in explanation of the real data
with the signi.cant #-level. The results of this research

present a feasible application and a new promising
area for constructing regression models.
The conventional method for parameters estimation

of linear regression rested on the concept of linear
programming. Hence, if we use fuzzy statistical con-
cept to analyze the relationships among the endoge-
nous variables Y and exogenous variables X , we will
get a better explanation for those variables. Especially
from the statistical point of view, the least square
method to estimate the boundaries of fuzzy variable is
more appropriate and its computation is also more e:-
cient than the traditional linear programming method.
Though the least square method can be infected by
certain outliers, we used the nonparametric technique
to reduce the inQuence of those data and make the es-
timator more robust.
Finally, linguistic value estimation by the use of re-

gression data is very complicated, involving entities
with many features and parts which interact with each
other and their environment in intricate ways. The pro-
posed method is also suitable for dealing with histori-
cal data, which include linguistic values. The method
of fuzzy parameter estimation does not require precise
knowledge about the structure in the data and can take
full advantage of the model-free approach. However,
there still remain many problems for future studies,
such as the following:

(i) In the traditional regression models construction,
the estimation based on the least square is best
linear unbiased estimate (BLUE). Is our estima-
tor BLUE? How to de.ne the BLUE from the
fuzzy statistics point of view?

(ii) How to identify the fuzzy endogenous and ex-
ogenous variables as well as detect the interven-
tion among them?

(iii) How to extend the estimated parameter methods
to the seasonal regression models?

(iv) How much precision is required in construct-
ing the fuzzy parameters under the signi.cant #-
level?
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