
On Probabilistic Methods in Fuzzy Theory
Hung T. Nguyen,1,* Tonghui Wang,1,† Berlin Wu2,‡

1Department of Mathematical Sciences, New Mexico State University, Las
Cruces, NM 88003-8001
2Department of Mathematical Sciences, National Chengchi University,
Taipei, Taiwan

This lecture is mainly a survey of useful probabilistic methods in the theoretical analysis of fuzzy
theory for modeling and design of intelligent systems. The probabilistic methods also are useful
for fusing domain knowledge with numerical data in the field of intelligent data analysis. © 2004
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1. INTRODUCTION

By Fuzzy theory we mean Zadeh’s mathematical theory of generalized sets and
their associated logics. At this state of the art, fuzzy theory has provided significant
contributions to artificial intelligence via a broader umbrella of soft computing. Like
other theories of mathematics, such as number theory and potential theory, fuzzy
theory has its own agenda, concepts, and techniques. However, just like number theory
and potential theory, probabilistic methods can be proved to be useful for fuzzy
analysis. In fact, this is somewhat plausible because fuzzy theory also aims at solving
decision-making problems under complex uncertainties.

In the following, because of the limited space, we will simply display the
essentials of probabilistic ingredients that are useful in making fuzzy theory a
quality science, i.e., providing guidelines of system designs and theoretical justi-
fications of fuzzy inference procedures.

2. FUZZY SETS AS COVERING FUNCTIONS OF RANDOM SETS

Let U be a set. Generalizing indicator functions of (crisp) a subset of U, a
fuzzy subset of U is a map A: U 3 [0, 1]. For each u � U, the value A(u) is the
degree of membership of u in A and hence the map A is called the membership
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function of the fuzzy subset defined by A and the ordinary (crisp) set is this. For
� � [0, 1], the �-level set of A is A� � {u � U : A(u) � �}. Thus,

A�u� � �
0

1

A��u�d� @ u � U (1)

where we write A�� for the indicator function of the set A�. Now, if we choose
� at random, then A has the following probabilistic flavor. We view � as a random
variable, defined on a probability space (�, �, P) and uniformly distributed on [0,
1]. Then, the �-level sets are in fact random sets, i.e., sets obtained at random.
Specifically, the map SA : � 3 �(U) (power set of U), defined by

SA��� � �u � U : A�u� � ����� � A����

is a random element. Now, for each fixed u � U,

�� � � : u � SA���� � �� � � : ���� � A�u�� � �

Thus, the relation in Equation 2.1 is replaced by the following relation between a
fuzzy set A and the random set SA:

A�u� � P�u � SA� @ u � U (2)

In more formal terms, if we specify a �-field � of subset of �(U), then a random
set S is a map S: � 3 �(U), which is �-� measurable (a random element is a
map from � to an abstract space E, which is �-� measurable, where � is a �-field
on E). In the case in which {� � �: u � S(�)} � � for any u � U, as in the
case of SA shown previously, the map

u � U 3 �S�u� � P�u � S�

is called the covering function of the random set S. Obviously, a covering function
of a random set defines a membership function, i.e., a fuzzy subset of U. For a
history of this connection between fuzzy sets and random sets, see, e.g. Ref. 1.

Several interesting observations can be drawn from the relation in Equation 2.

2.1. Fuzziness Is a Weakened Form of Randomness

Without going into philosophical issues, we stay with the mathematics! The
randomness of a random set S is modeled by its distribution, i.e., by the probability
measure (law) PS � PS�1 on �; from it �S� can be determined. Now, if we are
able only to specify �S�, can we deduce PS? Except in special cases (see Section
2.2), the answer is no. This is somewhat similar to the moment problem of random
variables. To see this, we recall the following formula.2

Let S be a random set, defined on (�, �, P), with values in � � �(ℜd)
(Borel subsets of ℜd). Let �(�) be a �-field on �. Let � denote the Lebesgue
measure on ℜd. Suppose that �(S) is a random variable. Then, the moments of
�(S) can be obtained from the knowledge of multiple covering functions of S.
Specifically, for each n � 1, let �n : ℜnd 3 [0, 1] be defined by
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�n�u1, . . . , un� � P�� : �u1, . . . , un� � S����

where ui � ℜd, i � 1, . . . , n. Then, under some measureability conditions,

E���S�	n � �
ℜnd

��u1, . . . , un�� � i�1
n ��d�1, . . . , d�n�

where Ri�1
n is the product measure � R � R . . . R � on ℜnd.

2.2. Choquet Capacities

Unlike random elements taking values in Banach spaces, it seems that the
analysis of random sets is somewhat delicate, perhaps because of its set nature. The
complete theory of random sets is formulated for random closed sets on ℜd or,
more generally, on local compact, Hausdorff, separable topological spaces (see,
e.g. Ref. 3). For such random sets, their probability laws are determined completely
by their capacity functionals (Choquet capacities) via the Choquet theorem,
namely, Let � and � denote the classes of compact and closed sets of ℜd,
respectively. Let �(�) denote the Borel �-field on � generated by the so-called
“hit-and-miss” topology of �. Then, a set function T : � 3 [0, 1] determines
uniquely a probability PS on �(�) such that

T�K� � PS�F � � : F � K 	 A� @ K � �

if and only if T satisfies
(a) T(�) � 0
(b) If Kn 2 K in �, then T(Kn) 2 T(K)
(c) T is alternating of infinite order, i.e., T is monotone increasing [i.e., K1 � K2

implies that T(K1) � T(K2)] and for any n � 2, K1, . . . Kn � �,

T� �
i�1

n

Ki� � �
A
I��1, . . . ,n�

��1��I��1T� �
i�I

Ki�
where �I� denotes the cardinality of the set I.

Here is a situation in which a fuzzy subset A of ℜd determines the distribution
(i.e., the capacity functional) of the random set SA. For SA to be a random closed
set, it suffices to suppose that A� is upper semicontinuous (USC, i.e., @t � ℜ, the
set { x � ℜd : A( x) � t} is a closed set of ℜd.

Recall that SA(�) � A�(�). Let K � �, and then because A is USC, we have

P�SA��� � K 	 A� � P�� : ���� � A�x� for some x � K�

� P�� : ���� � sup
x�K

A�x�� � sup
x�K

A�x� � T�K�

Thus, it suffices to show that T satisfies clauses (a)–(c) in Choquet theorem. Clause
a is obvious and Clause b is left as an exercise! What is interesting is that Clause
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c follows from a general property of set functions called maxitivity (a property
shared by possibility measures). Indeed, observe that the foregoing T is maxitive,
i.e., T(K1 � K2) � max(T(K1), T(K2)). And any maxitive set functions are
alternating of infinite order (for a proof, see e.g., Ref. 4).

2.3. A Connection with Fuzzy Logics

The concept of t-norms is used in fuzzy logics to model the logical connective
“AND.” They are related to the concept of copulas in probability and statistics (see,
e.g., Ref. 5). Roughly speaking, copulas are functions that combine marginal
distributions into joint distributions of random vectors (see, e.g., Ref. 6). Specially,
if F is a distribution function on ℜd with marginals F1, . . . , Fd, then there exists
an n-copula C : [0, 1]d 3 [0, 1] such that

F�x1, . . . , xd� � C�F1�x1�, . . . , Fd�xd�� @ �x1, . . . , xd� � ℜd

For example, copulas are t-norms if and only if they are associative. Copulas can
be used to show that the random set SA associated with the fuzzy set A is canonical
in the sense that SA is a nested random set. Specifically, among all possible random
sets in which their covering functions are precisely A, SA is the only nested random
set representing A. For a proof, see, e.g., Ref. 7.

3. FUZZY SETS AS POSSIBILITY DISTRIBUTIONS

Among many situations in which membership functions of fuzzy concepts (in
a natural language) can be interpreted as distributions of variables, perhaps fuzzy
control provides the most plausible one. Fuzzy control is an example of successful
industrial applications in which almost all concepts developed in fuzzy theory
(except perhaps fuzzy measures) are in use, especially inference procedures.
Fuller8 gives an excellent introduction to neurofuzzy control.

Consider a controlled system where the input variable x � ( x1, . . . , xd) is
taking values in 	 � ℜd, 	 � Ri�1

d 	i, and the output variable y is taking values
in 
 � ℜ.

By a fuzzy rule base �, we mean a collection of “If. . . , Then . . . ,” rules in
natural language modeled by fuzzy sets of the form

Rj: If x1 is Aj1, . . . , xd is Ajd then y is Bj, j � 1, . . . , k

where Aji’s and Bj’s are fuzzy subsets of 	i and 
, respectively.
In standard fuzzy control, the purpose is to infer a control law y � f(x) from

�. Now, setting Aj � �i�1
d Aji, i.e.,

Aj�x1, . . . , xd� � t�Aj1�x1�, . . . , Ajd�xd��

where t is some t-norm, we see that � is a data set of the form ( Aj, Bj), j �
1, . . . , k of pairs of fuzzy numbers. Each pair ( Aj, Bj), generalizing numerical
data, is a relation between x and y, rather than a causality. In control context, Bj

is a recommendation for action where the input is Aj rather than Aj is the cause of
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Bj. In other words, one should view each �j as a fuzzy relation on 	  
 of a
general nature rather than interpreting literally “if . . . , then . . . ,” as an (fuzzy)
implication operator.

Remark. The situation might be different in some domain of expert systems. For
example, in medical expert systems, a rule � might express a causal relationship
and hence could be modeled by an implication operator.

Let Rj be the relation on 	  
 determined by

Rj�x, y� � s�Aj�x, Bj�y��

where s is some function from [0, 1]23 [0, 1]. Thus, for an observed input x, the
rule �j produces a fuzzy subset of 
: y 3 Rj(x, y), y � 
. The meaning of this
membership function is clear: it is information on possible values of y to be taken,
in other words, it is a possibility distribution on the output y. If we want to obtain
a specific value y(x), then we can defuzzify Rj(x, � ), i.e., summarizing the
possibility distribution Rj(x, � ) into a single value. This can be done in several
ways. Now, a possibility distribution needs not be a probability density function,
but it can be transformed into such a function, say, by normalizing. This reminds
us of various probabilistic proofs in analysis, e.g., that of the Weierstrass theorem
on approximating continuous functions on intervals by polynomials. The popular
defuzzification method in fuzzy control, namely, the center-of-gravity method, is a
form of statistical expectation or, more specifically, a conditional mean given the
input x. Note also that in Sugeno’s model, the overall output is a conditional mean
of a fuzzy random variable.

It is interesting to note at this point that the concept of possibility measures,
which are derived from the concept of possibility distributions also has some
probability interpretation in terms of random sets. For example, let S be a random
set taking values as subsets of a finite set U. Suppose that the values of S form a
nested collection of subsets of U, i.e., A1 � . . . � An � U with �i � P(S � Ai),
¥i�1

n �i � 1. Then, 
: �(U) 3 [0, 1] defined by 
( A) � 1 � ¥Ai�A��i (where
A� denotes the set complement of A in U) is a possibility measure, i.e., 
(A) �
0, 
(U) � 1, and for any family {Bj : j � J} of subsets of U we have


� � j�JBj� � max�
�Bj� : j � J�

where 
 is a maxitive set function.
This is in fact a well-known general result,9 namely, an upper probability is

a possibility measure if and only if its focal elements are nested.

Remark. In reasoning with imprecise probabilities, the framework is this. The
true law P0 on (�, �) is only known to belong to a class of probability measures
�. The upper and lower probabilities are

G�A� � sup�P�A� : P � ��, F�A� � inf�P�A� : P � ��

When � is finite and � � {P : F � P}, then F is the distribution function of some
random set S in which its probability “density” f is the Mobius transform of F: f(A) �
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¥B�A(�1)�A�B�F(B). Such F’s are called belief functions and the dual G(A) � 1 �
F(A�) is called a plausibility function. For a discussion on the case where � is infinite,
see Ref. 10. The focal elements of F are nothing more than the support of S.

4. VAPNIK-CHERVONENKIS DIMENSION

When using fuzzy theory in intelligent technologies, it is necessary to assess
the capability and the performance of fuzzy systems (control or expert systems).
After all, these are learning machines. As such, the general framework of statis-
tical learning theory is useful. This is exemplified by neural networks (see, e.g.,
Ref. 11), in which concepts from statistics are used in evaluating generalization
capacity, in particular, the concept of Vapnik-Chervonenkis dimension (VC-dimen-
sion) is essential (see, e.g., Ref. 12). To the best of our knowledge, VC-dimension
of classes of functions still has not been used in the study of fuzzy systems. In
forthcoming work, we will detail our findings. Here, we simply indicate the setup.

In a simple design of a fuzzy controlled system, the inference mechanism can
be put in a statistical learning setting. Indeed, with fuzzy partitions of input and
output spaces modeled by triangular membership functions and with appropriate
chosen t-norms and t-conorms for logical connectives involved in the fuzzy rules,
the derivation of a successful control law is nothing more than choosing a function
f0 in a (parametric) class � of functions. To judge the performance of f0, we need
to specify a criterion, just like in the case of neural networks where the back-
propagation algorithm is judged with respect to the minimization of a risk
functional. In this context, important issues such as control capacity and perfor-
mance need to be addressed. Mathematically, these are related to the problem of
convergence of the algorithm and its rate of convergence.

Basically, we need to inquire about the “size” of the class � of functions in
a fuzzy system design. The following concept of dimension or index due to Vapnik
and Chervonenkis in pattern recognition is essential. Here, we choose to introduce
this concept to researchers in fuzzy theory.

Stochastic processes are random elements that take values in functional spaces
such as C[0, 1], the Banach space of continuous functions defined on the unit
interval (sample paths of Brownian motion). Thus, classical the framework of
Euclidean space ℜd should be extended to arbitrary spaces. Roughly speaking, a
random element X is defined as follows.

Let (�, �) and (	, �) be two measurable spaces. A random element X is a
map � 3 	, which is �-� measurable. If P is a probability measure on (�, �),
then the law of X is the induced probability measure X � PX�1 on (	, �). The
fundamental problem in statistics is this. Can we estimate the unknown law PX

from the random sample X1, . . . , Xn drawn from X?
This problem was solved in the case of ℜ or ℜd. Essentially, this is because

of the structure of ℜ. First, in view of the Lebesgue-Stieljes measure theory, each
law PX on (ℜ, �(ℜ)) can be identified with a distribution function F: ℜ3 [0, 1],
F( x) � P(X � x), Thus, we consider only the problem of estimating a function
rather than a measure. Second, because ℜ is separable, an uncountable supremum
of random variables is a random variable.
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The solution is the celebrated Glivenko-Cantelli theorem (1933); let the
empirical distribution function Fn( x) � 1/n ¥j�1

n I(��, x](Xj), where IA denotes
the indicator function of the set (event) A. Then, Fn( x)3 F( x), as n3 �, almost
surely (a.s.) and uniformly in x � ℜ, i.e., P(supx�Fn( x) � F( x)� 3 0) � 1.

To consider the general setup where (	, �) is arbitrary, we need to use the
measure (laws) at the place of distribution functions. Now, observe that

Fn�x� � Fn�f� � �
ℜ

f�y�dFn�y�

where Fn denotes the law associated with the distribution function Fn and f( y) �
I(��, x]( y). We also can write Fn � 1/n ¥j�1

n �Xj
, where �Xj

is the (random) Dirac
measure �Xj

( A) � IA(Xj), A � �. Similarly, F( x) � F( f ). Thus, instead of
f( y) � I(��, x]( y), we can take any arbitrary measurable real-valued function f
defined on 	 and consider the population f(X) to investigate uniform laws of large
numbers in the general setting provided that Ef(X) is finite. Note also that the
uniform version of Glivenko-Cantelli theorem is with respect to the class � of
subsets (��, x], x � ℜ, or by identification, the class � of indicator functions
I(��, x], x � ℜ. Thus, we have, as n 3 �,

�Fn � F�� 3 0, a.s. or �Fn � F�� 3 0, a.s.

where �F�� � supC���F(C)� and �F�� � supf���F( f )�. Of course, for general 	,
we need to worry about the measureability of the quantity �Fn � F��.

To have Glivenko-Cantelli result in a general setting, we need to find suffi-
cient conditions for it.

Let � be a class of sets of 	. For any finite subset A of 	, let #c( A) � #{A
� C : C � �}, i.e., the cardinality of the set of subsets of A picked out by �. If
#c( A) � 2#( A), then we say that � shatters A, i.e., � picked out all subsets of the
finite set A.

The growth function of � is defined to be

g��n� � max�#c�A� : #�A� � n�, n � 0, 1, 2, . . .

Note that g�(n) � 2n. The VC-dimension of � is defined as

D��� � �� if �n : g��n�  2n� � A
inf�n : g��n�  2n� if not

Thus, D(�) is the smallest integer n for which no set of cardinality n is shattered
by �.

Examples.
(i) � � {(��, x] : x � ℜ} has VC-dimension two, because � can shatter sets

of one element but can not shatter any one set of two elements. This situation
is general: any class � of subsets (with at least two elements) of an arbitrary
set 	 that is nested has D(�) � 2.
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(ii) � � {(y, x] : x, y � ℜ} has VC-dimension three because � can not pick
out the subset {x, z} of any set {x, y, z}, where x � y � z.

(iii) 	 � ℜ2, � � {all closed disks} has VC-dimension four.
(iv) 	 � ℜd, � � {all convex subsets} has VC-dimension �.

To extend the concept of VC-dimension for classes of sets or, equivalently,
for classes of indicator functions to classes of real-valued functions, we can use
various ways to identify functions with collections of a set.

For example, we can use the concept of a subgraph of a function f, namely,
the subset S( f ) � {( x, t) : t � f( x)} � 	  ℜ, and define the VC-dimension
of a class of function �calF to be the VC-dimension of its class of subgraphs {S( f )
: f � �}.

The general statistical problem is this. Given a random sample X1, . . . , Xn

drawn from X with unknown law Q on (	, �), we wish to estimate the law Q, e.g.,
by the sequence of empirical measures Qn, which is defined by Qn( A) � 1/n ¥j�1

n

IA(Xj). Then, for the estimation to be useful, we need at least two things:
(i) Qn is uniformly consistent for Q, i.e., supA���Qn(A) � Q(A)� 3 0 a.s.

(ii) The rate of the uniform convergence in Item (i)

However, in general, even Item i is not satisfied for arbitrary Q and �. For
small � (finite �), of course, Item (i) holds; because

sup
A��

�Qn�A� � Q�A�� � �
A��

�Qn�A� � Q�A�� 3 0, a.s.

by the strong law of large numbers, the sum being finite.
In the other extreme (see, e.g., Ref. 12), consider (	, �) � ((0, 1), �1) with

Q � dx [Lebesgue measure on (0, 1)]. Let X1, . . . , Xn be drawn according to dx.
For any � � 0, we can find an event A* � �1 such that Qn( A*) � 1 and
dx( A*) � � (take A* to be the union of n small intervals Aj each centered at Xj,
of length � �/n).

Consequently, for any n, P(supA��1
�dx( A) � Qn( A)� � 1) � 1. Thus, in

this case, Item (i) does not hold.
Therefore, the general problem of statistics should be formulated as follows:

(a) For which Q is the Foregoing Item (i) possible?
(b) If Item (i) is not possible, can we obtain a “partial” result, i.e., determine

subclasses � (not necessarily sub–�-algebras) of � such that Item (i) holds
on �? In this case, we say that Qn provides partial uniform convergence to Q
determined by �. We have seen that partial uniform convergence can take
place when uniform convergence fails (Glivenko-Cantelli theorem).

For Question (b), it turns out that the condition D(�) � � is sufficient (VC
theorem). The condition clearly is not necessary as the foregoing example shows:
D(�1) � �. Note that if we consider a subclass � of �1, e.g., � � {(0, x] :, x �
(0, 1)}, which is nested, and then Question (b) holds with D(�) � 2. Moreover,
we need the value D(�) to specify the rate of convergence.
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When D(�) � n � �, then n � 1 is the largest cardinality of a set shattered
by �, specifically, D(�) � 1 � sup{n : g�(n) � 2n}.

Noting that g�(n) � 2n means that there exists a set of size n that can be
shattered by �. Note also that D(�) � 0 if and only if � is empty and � � �
implies D(�) � D(�).

Now, let us look at D(�) for a class of functions �. Recall that by definition,
D(�) � D(S(�)).

Examples.
(i) Let 
 : ℜ 3 ℜ be monotone, e.g., nonincreasing, and let � be the class of

functions fh � 
(x � h), for h � ℜ. Then, D(�) � 2. Indeed, for any h �
h�, 
(x � h) � 
(x � h�) so that the subgraphs are nested: S(fh) � S(fh�),
i.e., S(�) is a class of nested subsets of ℜ2 and, hence, has D(�) �
D(S(�)) � 2.

(ii) Let � be a finite dimensional real vector space of real-valued and measurable
functions defined on 	, e.g., dim(�) � d � �. Let {(xi, ti), i � 1, . . . ,
n} � A be a subset in 	  ℜ of cardinality n. Consider the class � of vectors
in ℜn of the form {(f(x1) � t1, . . . , f(xn) � tn) : f � �}. Then, there exists
a nonzero vector a � (a1, . . . , an) � ℜn orthogonal to �. Of course, this
vector a will depend on the xi’s and ti’s but not on f. It suffices to take a to
be a solution of the system of d � 1 � n � 1 linear equations for n variables
ai, i � 1, . . . , n:

�
i�1

n

aiti � 0, �
i�1

n

aigj�xi� � 0, j � 1, . . . , d

where gj, j � 1, . . . , d is a basis for � so that any f � � is of the form f �
¥j�1

d cjgj. Thus, taking such an a with at least one component ai � 0, we
have, for any f � �, ¥i�1

n ai(f(xi) � ti) � 0 or, equivalently,

�
ai�0

ai�f�xi� � ti� � � �
ai�0

ai�f�xi� � ti� (3)

Then, the subset {(xi, ti) : with i such that ai � 0} of A can not be picked
out by S(�), i.e., this subset is not of the form {(xi, ti) : such that ti � f(xi)}
for some f in �. Because if it is so, then the left side of Equation 3 is strictly
positive, the right side is nonpositive (with the convention that the sum over
an empty set is zero). Thus, D(�) � d � 2.

5. FUSION OF FUZZY DOMAIN KNOWLEDGE WITH
STATISTICAL DATA

The use of probabilistic methods is apparent in building intelligent systems
when we wish to take into account all available information, in any form, to reach
better decisions. This is the essence of the new field of intelligent data analysis
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(see, e.g., Ref. 13). One form of this analysis is the problem of combining domain
knowledge with measurement data. In fuzzy control or expert systems, this will
happen when, e.g., we have a linguistic (fuzzy) rule base and numerical measure-
ments ( xi, yi), i � 1, . . . , m on the behavior of the system. To combine these two
different types of data (linguistic and numerical), we need to transform one type to
the other. Because linguistic information is richer, it is desirable to transform
numerical data into linguistic rules. This is exemplified by procedures known in
fuzzy control as extracting fuzzy rules from learning examples.

We will give an example for fusing domain knowledge with statistical data in
the framework of Bayesian statistics.

As testified by the recent workshop on combining data with domain knowl-
edge at Stanford University, June 2000, this problem is of central importance in
intelligent decision making where one should use all kinds of information and
numerical information from measurements as well as perception, to reach better
decisions in complex situations. Domain knowledge is expressed in general lin-
guistic terms, and as such, fuzzy modeling is necessary. In fact, this is precisely
why fuzzy control is considered in the first place; one common and practical aspect
to domain knowledge is the behavior of a system under consideration. This
behavior is captured by a set of fuzzy rules on training samples. Here, to illustrate
the probabilistic method, we look at a simple example.

Consider the case in which the numerical information comes from the ob-
served values of a random variable X, which follows, e.g., a parametric model
{ f( x, � ) : � � �}. Suppose we wish to estimate the true parameter �0 with the
following data.

(i) A random sample (X1, . . . , Xn) drawn from X
(ii) Domain knowledge: some additional information about �0 before performing

the experiment

This situation is idealistic for Bayesian statistics if the additional information
is modeled as a prior distribution of � viewed as a random variable. Now, consider
the case in which the additional information about �0 is linguistic of the form “�0

is small,” where we model the linguistic label “small” as a fuzzy subset with
membership function A on, e.g., ℜ�. Note that if several experts give different
opinions about �0, then we will use the fuzzy logic connective “and” (via some
t-norm operator) to combine them into a single fuzzy set.

The question of interest is how to fuse the nonstatistical data, namely, the
membership function A (not a probability density function) with the statistical data
in order to better estimate �0?

One obvious way is to transform this situation into a Bayesian framework by
simply normalizing A to obtain a bona fide prior probability density function:

(� ) � A(� )/�ℜ� A(�)d�.

Now, we show that this normalization procedure does have a probabilistic
interpretation in terms of random sets. To be simple, suppose the parameter space
� is finite with cardinality N. Let Y : � 3 � be uniformly distributed. We show
that 
(�) is nothing more than the updated version of a uniform prior on � by
experts’ opinion A. Indeed, let S denote the random set associated with A. Then,
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A���

�
���

A���
�

A���/N

�
���A���/N

�
P�� : Y��� � � � S����

P�� : Y��� � S����
� P�Y � ��Y � S�

assuming Y and S are independent.
Here is another example where fuzzy information can be combined with

statistical data in a probabilistic setting. Consider the normal density function

f�x, �� �
1

�2��
exp�� �x � ��2

2�2 �
The likelihood that we observed the statistical data x (e.g., for sample of size n �
1) and experts assigned A(� ) as the degree to which � is compatible with A is

L�x, �� �
1

�2��
exp�� �x � ��2

2�2 �A���

The maximum likelihood estimator of �0 is obtained by maximizing L( x, � ) or,
equivalently, minimizing � log L( x, � ) over � � �, which is �̂ � x �
�2A�(� )/A(� ), exhibiting the correcting term �2A�(� )/A(� ) because of the ad-
ditional information A given by experts. Note that a random size n in the foregoing
estimator is replaced by the sample mean.
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