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A NOTE ON SIMPLE EIGENVALUES OF MATRIX
POLYNOMIALS IN QUEUEING MODELS WITH ERLANG

DISTRIBUTIONS

HSING LUH∗ AND HSIN-YI LIU

Abstract. In this note, we study an Ek/Em/1 queueing model where in-
terarrival and service times are Erlang distributions with parameters k and
m respectively. We prove that the roots of the characteristic polynomial
associated with Erlang distributions are simple if the arrival and service
rates are real. Based on this result, a general solution space of vectors for
stationary probabilities is easily constructed.
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1. Introduction

We study an Ek/Em/1 queueing model where interarrival and service times
are Erlang distributions with parameters k and m respectively. Customers are
served under the First-come First-served discipline (FCFS). A state of system
is denoted by (n, i, j) where n is the number of customers in the service or in
the waiting room, n ≥ 0, and i (resp. j) is the phase of the customer presenting
in the interarrival fictitious center (resp. the service center), 1 ≤ i ≤ k, 1 ≤
j ≤ m. Denote by FTa(·) and (β1,S1) the interarrival time distribution and its
representation of dimension k respectively where the β1 = (1, 0, . . . , 0) is a 1×k
row vector and S1 is a squared matrix of dimension k, i.e., The average arrival
rate is simply λ/k. The distribution function is given by

FTa(t) = 1 − β1exp(S1t)1,
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S1 =




−λ λ
−λ λ

. . . . . .
−λ λ

−λ




.

where 1 is a column vector of all entries equal to 1. Denote by f∗
Ta

(x) the Laplace
Stieltjes Transform of FTa(t).
Similarly, the service time distribution FTs(·) has average service rate µ/m and
representation (β2,S2) of dimension m, where β2 is a 1 ×m row vector and S2

is the squared matrix of dimension m. The distribution is given by

FTs(t) = 1 − β2exp(S2t)1.

This model is known as a classic Quasi-Birth-and-Death (QBD) process with
phase-type probability distributions. We arrange the states (n, i, j) in lexico-
graphic order, i.e., (0, 1), . . . , (0, k), (1, 1, 1), . . . , (1, 1, m), (1, 2, 1), . . . , (1, 2, m),
. . . . Then the transition rate matrix (or infinitesimal generator) Q is of the
block-tridiagonal form and can be written as

Q =




B0 A0

C0 A1 A0

A2 A1 A0

A2 A1
. . .

A2
. . .
. . .




.

The submatrices can be written as Kronecker products and Kronecker sums
which were defined by Bellman [2] and denoted by ⊗ and ⊕ respectively. They
are expressed by

B0 = S1, A0 = γ1β1 ⊗ I2

C0 = I1 ⊗ γ2, A1 = S1 ⊕ S2

A0 = γ1β1 ⊗ β2, A2 = I1 ⊗ γ2β2

γ1 = −S11, γ2 = −S21,

where Ai, i = 0, 1, 2 are squared matrices of dimension mk, B0 is a squared
matrix of dimension k, C0 a matrix of dimension mk by k, and A0 a k by mk
matrix.

Suppose the stationary probability of system state is denoted by π as

π = (π0, π1, π2, . . . ),

where πn is a row vector of stationary probability when there are n customers
in the system. To assure a stable system we assume λ/µ < k/m implying the
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existence of π. For solving π which satisfies the state balance equations πQ = 0
and the normalization condition π1 = 1, it gives the following equations:

π0B0 + π1C0 = 0, (1)

π0A0 + π1A1 + π2A2 = 0, (2)
πn−1A0 + πnA1 + πn+1A2 = 0, n ≥ 2, (3)

π1 = 1. (4)

There are a number of methods to find the stationary probabilities of recurrent
QBD processes. Matrix analytic methods have been proved useful in the study
of Markov chains of phase-type distributions, providing a solution tool which is
relevant for queueing theory and computing probability distributions in many
applications. The general approach was introduced by Neuts in [11] where the
matrix-geometric method relies on determining the minimal nonnegative matrix
solution R of a matrix-quadratic equation; some stationary probability vectors
are expressed in terms of powers of R. Recently, instead of solving R, one solves
(3) as a homogeneous difference equation in which the coefficients are no more
scalars. To use this method, one must compute the spectral expansion of the
stationary state distribution of the system. This representation requires explicit
knowledge of eigenvalues and eigenvectors. It requires finding all singularities
of a given matrix function in the unit disk and then plugging them into (4)
to obtain a set of linear equations in a finite number of unknown boundary
probabilities in (1). The remaining probabilities and other measures of interest
are then computed from the boundary probabilities. Based on this approach,
unboundary state probabilities can be written as a linear combination of vector
product-forms, thereupon considerably reducing the computational complexity
of solving a complicated problem in QBD processes.

A fundamental idea of this approach is to substitute independent identical
distributions by conditional independence and conditional distributions given a
QBD process. The efficiency of the method is derived from an algebraic theory
which gives the exact decomposition of the eigenvalue problem into small cou-
pled problems and expresses the eigenvectors in Kronector product form. Thus,
when the arrivals and servers are identical or can be grouped into classes, the
eigenvalues are given as roots of polynomials of small degree and the eigenvec-
tors are given in closed form. A number of authors have given different names
for this method. Liefvoort [8] introduced a coupling matrix whose eigenvalues
are solutions to the functional equation

f∗
Ta(x)f∗

Ts(−x) = 1. (5)

Bertsimas [3] used (5) which is deduced in Ck/Cm/s where both interarrival
times and service times have phase type probability distributions and proved
that the stationary probability of n customers in system is a linear combination
of geometric terms when n ≥ s. Le Boudec [4] studied a PH/PH/1 queue. He
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showed that the stationary solution is a linear combination of Kronecker product-
forms which can be expressed in terms of roots of the associated characteristic
polynomial. Luh [9] used a similar approach to derive stationary probabilities in
terms of linear combinations of product-forms in studying a system of two sta-
tions in tandem. In short, we concentrate on what will be called the Kronecker
vector approach. These results are useful in deriving bounds as well as approxi-
mations of tail probabilities. Particularly, it will greatly reduce the computation
time.

In general, (5) may induce multiple roots. However, there was no theoretic
discussion of such a case in [1,3,4,9]. They all presented that the transforms of
interarrival and service times distributions satisfy an equation of a simple form,
and used the roots of the equation to express the stationary solution under
the assumption all the roots are distinct. Lately, Grassmann adopted (5) to
find zeros in order to study two specified queueing models [5,6]. Again, it was
assumed that there is no multiple root in (5). In order to investigate the property
of (5), we study a specific queueing model of QBD process in this note. We prove
that for any positive integer k and m, except zero there are only simple roots
in (5) derived from Ek/Em/1. For the case of multiple roots arising in general
queueing models, readers may refer to [10].

2. Singularities of Q(w) in the open unit disk

We consider the equations of the stationary states for n ≥ 1 and study the
special solution in (3) of the homogeneous difference equations. We assume the
associated stationary probabilities are of the form

ϕn = wny, n ≥ 1,

where w 6= 0 is a complex number and y is a 1×mk vector. Initially, set πn=ϕn.
From (3), we have for n ≥ 1

wny(A0 + wA1 + w2A2) = 0. (6)

Define a fundamental matrix polynomial

Q(w)
4
= A0 + wA1 + w2A2.

If wo satisfies detQ(wo) = 0, then wo is called a singularity of Q(w).
Denote by wi and yi the singularities and corresponding left vectors of Q(w),

respectively. It implies

yiQ(wi) = 0, for i = 1, 2, ..., d,

where d is the degree of detQ(w). At the study in [8], it has been proved that
d is a finite number. Clearly, for every wi and a corresponding vector yi, the
sequence

{wn
i yi : n ≥ 1}

satisfies (6).
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In what follows, we look for the nonzero roots of detQ(w) = 0 and the cor-
responding vectors. Replace A0, A1, A2 in (6) by γ1β1 ⊗ I2, S1 ⊕ S2 and
I1 ⊗ γ2β2, then (6) becomes

wn−1y[(γ1β1 ⊗ I2) + w(S1 ⊕ S2) + w2(I1 ⊗ γ2β2)] = 0,

which is equivalent to

y[(wS1 + γ1β1) ⊕ (wS2 + w2γ2β2)] = 0,

since 1
w (γ1β1 ⊗ I2) = ( 1

w γ1β1 ⊗ I2) and w(I1 ⊗ γ2β2)=(I1 ⊗wγ2β2). Our goal
is to find nonzero w satisfying the condition in which the determinant of Q(w)
is zero. Define

σ(A) = the set of eigenvalues of A.

Theorem 1. If ε ∈ σ(wS1 +γ1β1) is an eigenvalue whose corresponding eigen-
vector is u ∈ Ck and if ξ ∈ σ(wS2 + w2γ2β2) is also an eigenvalue whose corre-
sponding eigenvector is v ∈ Cm, then ε+ξ is an eigenvalue of the Kronecker sum,
(wS1 +γ1β1) ⊕ (wS2 +w2γ2β2), and u⊗v ∈ Ckm is a corresponding eigenvec-
tor. If σ(wS1 +γ1β1) = {ε1, · · · , εk} and σ(wS2 +w2γ2β2)={ξ1, · · · , ξm}, then
σ((wS1 + γ1β1) ⊕ (wS2 + w2γ2β2))= {εi + ξj |i = 1, 2, · · · , k, j = 1, · · · , m}.

The proof is given in Theorem 4.4.5 in section 4.4 of [7]. Define

a(w)
4
= wS1 + γ1β1,

b(w) 4= wS2 + w2γ2β2.

Thus, it is easy to prove Q(w) = a(w) ⊕ b(w).
Given w, there is a close connection between the singularity of Q(w) and an

equation involving the Laplace transforms which is defined by (5). Since the
eigenvalue of Kronecker sum of a(w) ⊕ b(w) is the sum of the eigenvalues of
a(w) and b(w), we shall prove detQ(w) = 0 if and only if there exists x such
that det (a − xI1) = 0 and det (b + xI2) = 0. In other words, given w 6= 0,
det (a(w) ⊕ b(w)) = 0 if and only if w = f∗

Ta(x) where x satisfies (5). It is
because

det(a(w) ⊕ b(w)) = wmkdet

(
1
w

a(w) ⊕ 1
w

b(w)
)

= 0

if and only if there exists x such that
{

det ( 1
wa(w) − xI1) = 0

det ( 1
wb(w) + xI2) = 0.

(7)

Lemma 1. Let w 6= 0. We shall show

(1) det ( 1
wa(w) − xI1) = (1 − 1

wf∗
Ta(x))(−λ − x)k ,

(2) det ( 1
wb(w) + xI2) = (1 − wf∗

Ts(−x))(x − µ)m.
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Proof. (1) Compute det ( 1
wa(w) − xI1) and it gives

det ( 1
w γ1β1 + S1 − xI1) =




−λ − x λ 0 · · · 0
−λ − x λ · · · 0

...
...

. . .
. . .

...
0 0 −λ − x λ

1
w

λ 0 0 0 −λ − x




= (−λ − x)k + (−1)k+1 λk

w

= (−λ − x)k

[
1 + (−1)k+1 1

w

λk

(−λ − x)k

]

= (−λ − x)k

[
1 − 1

w
f∗

Ta
(x)

]

A similar argument is applied to prove (2). It may be skipped here. �

Lemma 2. Let w 6= 0, det(a(w)⊕b(w)) = 0 if and only if w = f∗
Ta(x) where x

satisfies (5).

Proof. For x 6= −λi, µi for all i, then (7) holds if and only if w = f∗
Ta(x) where

x satisfies (5) by Lemma 1. To show it holds for x = −λi or µi, one needs to
consider S1 − εI1 or S2 + εI2 in place of S1 and S2 with a small constant ε, and
by continuity argument, the lemma is proved. �

3. Simple roots in Ek/Em/1

In this section, we show that in Ek/Em/1 system nonzero roots of (5) are
simple. Without loss generality, we assume that the arrival rate λ and service
rate µ are positive real numbers. The following theorem holds true.

Theorem 2. For any λ > 0 and µ > 0, the nonzero roots of (5), i.e.,
(

λ

x + λ

)k (
µ

µ − x

)m

= 1

are simple.

Before proving this result, we first recall the Jensen’s inequality theorem.

Theorem 3. (Jensen’s inequality) Let φ be convex over real line (a,b). Let
{xj}N

j=1 be points of (a, b) and {pj}N
j=1 satisfy pj ≥ 0 and

∑
pj > 0. Then we

have

φ

(∑
pjxj∑
pj

)
≤

∑
pjφ(xj)∑

pj
.
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Proof of Theorem 2. It is sufficient to consider the function

g(x)
4
= λkµm − (x + λ)k(µ − x)m.

Since

g′(x) = (λ + x)k−1(µ − x)m−1[(m + k)x − (kµ − mλ)],

it follows that the possible multiple roots only occur at x = −λ, µ, and kµ−mλ
m+k .

Obviously, g(−λ) 6= 0 and g(µ) 6= 0. We only need to consider kµ−mλ
m+k and

denote it by x0.

Let

t
4
=

m

k
.

Then t is a positive real number and

g(x0) = (λµt)k −

[(
λ + µ

1 + t

)1+t

tt

]k

.

Since λ, µ, and t are real, g(x0) = 0 leads to

λµt =
(

λ + µ

1 + t

)1+t

tt.

That is, g(x0) = 0 if and only if λ, µ, and t satisfy the equation

λ
(µ

t

)t

=
(

λ + µ

1 + t

)1+t

. (8)

In the following argument, we use the Jensen’s inequality to verify that (8)
holds for any properly selected positive real numbers λ, µ, and t.

Given any t > 0, let

φ(x) = e(t+1)x.

Because of

φ′(x) = (t + 1)e(t+1)x > 0

and

φ′′(x) = (t + 1)2e(t+1)x > 0,

it follows that φ(x) is convex over (−∞,∞). Let x1 = ln λ
1

t+1 , x2 = ln
(

µ
t

) 1
t+1 ,

p1 = 1
t+1 , and p2 = t

t+1 . Jensen’s inequality theorem implies

φ

(
p1x1 + p2x2

p1 + p2

)
≤ p1φ(x1) + p2φ(x2)

p1 + p2
. (9)
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Left of (9) = φ

(
1

t + 1
ln λ

1
t+1 +

t

t + 1
ln

(µ

t

) 1
t+1

)

= eln λ
1

t+1 +t ln(µ
t )

1
t+1

= eln λ
1

t+1 · eln(µ
t )

t
t+1

=
[
λ

(µ

t

)t
] 1

t+1

.

Right of (9) =
1

t + 1
e(1+t) ln λ

1
t+1 +

t

t + 1
e(t+1) ln( µ

t )
1

t+1

=
1

t + 1
eln λ +

t

t + 1
eln(µ

t )

=
1

t + 1

[
λ + t

(µ

t

)]

=
1

t + 1
(λ + µ) .

We obtain

λ
(µ

t

)t

≤
(

λ + µ

t + 1

)t+1

.

Since φ(x) is convex, the equality holds in (9) if and only if x1 = x2. Hence, it
yields

λ
(µ

t

)t

=
(

λ + µ

t + 1

)t+1

if and only if µ
t = λ, i.e., x0 = 0. �

It implies if there exists any multiple root of (5), it must be x = 0. Hence,
any other nonzero root of (5) is simple.

Theorem 4. In Ek/Em/1, there are no multiple roots except zero of (5). As-
sume there are d nonzero roots of it. Let w1,. . . ,wd be distinct singularities of
Q(w) in the open unit disk where yi are the corresponding eigenvectors. Given
wi, let ϕn(wi) = wn

i yi, n ≥ 1. Then the stationary probability πn is easily
constructed by

πn =
d∑

i=1

ciϕn(wi), for n ≥ 2

where ci are determined such that the boundary equation (1) and the normalized
condition (4) are satisfied.

4. Illustrative examples

To describe the theorems presented before, we give numerical examples for
showing the solution procedure in this section.



A note on simple eigenvalues of matrix polynomials in queueing models 65

4.1. An example of M/M/1 system

The system has the following features:

λ = 4, µ = 5.

Step 1. Solve equation (5), f∗
Ta

(x)f∗
Ts

(−x) = 1. Let x be a solution with the
positive real part of (5). Because

f∗
Ta

(x) =
( 4

x + 4

)
, f∗

Ts
(x) =

( 5
x + 5

)
,

the solutions of f∗
Ta

(x)f∗
Ts

(−x) = 1 is

x1 = 1.0000.

Step 2. For solutions w, u, v defined in Theorem 1. Obtain w = 0.8000, u=
1.0000, and v= 1.0000.

Step 3. Compute ϕn(w) defined in Theorem 4, i.e., ϕn(w) = wn(u⊗ v), n ≥ 1.

ϕ1(w) = 0.8000,

ϕ2(w) = 0.6400,

ϕ3(w) = 0.5120,

ϕ4(w) = 0.4096,

ϕ5(w) = 0.3277,

ϕ6(w) = 0.2621.

...
Step 4. Let πn be a linear combination of ϕn(w) that is πn = cϕn(w), c ∈ C.
Step 5. Set a linear nonhomogeneous system consisting of equations (1), (2), and

(4).
Step 6. Obtain coefficient c and π0.

π0 = 0.2000,

c = 0.2000.

Step 7. Substitute coefficients c and obtain stationary probabilities πn by The-
orem 4.

π1 = 0.1600,

π2 = 0.1280,

π3 = 0.1024,

π4 = 0.4096,

π5 = 0.3277,

π6 = 0.2621.

...
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4.2. An example of E2/E2/1 system

The second example pertains to the E2/E2/1 System. The system has the
following features:

β1 = β2 = (1, 0), λ1 = λ2 = 4, µ1 = µ2 = 5.

Step 1. Let xi be a solution with positive real parts of (5), i = 1, 2. Because

f∗
Ta

(x) =
(

4
x + 4

)2

, f∗
Ts

(x) =
(

5
x + 5

)2

,

the solutions of f∗
Ta

(x)f∗
Ts

(−x) = 1 are

x1 = 1.0000, x2 = 6.8443.

Step 2. Compute
(1)

w1 = f∗
Ta

(x1) = 0.64,

w2 = f∗
Ta

(x2) = 0.1361.

(2) by ui = e1(S1−xiI1)β
′

1β1(S1−xiI1)−1.

u1 = (1.0000, 0.8000),

u2 = (1.0000, 0.3689).

(3) by vi= e2(S2+xiI2)β
′

2β2(S2+xiI2)−1.

v1 = (1.0000, 1.2500),

v2 = (1.0000,−2, 7111).

Step 3. Compute ϕn(wi) = wn
i (ui ⊗ vi).

ϕ1(w1) = (0.6400, 0.8000, 0.5120, 0.6400),

ϕ2(w1) = (0.4096, 0.5120, 0.3277, 0.4096),

ϕ3(w1) = (0.2621, 0.3277, 0.2097, 0.2621),

ϕ1(w2) = (0.1361,−0.3689, 0.0502,−0.1361),

ϕ2(w2) = (0.0185,−0.0502, 0.0068,−0.0185),

ϕ3(w2) = (0.0025,−0.0068, 0.0009,−0.0025),

...

Step 4. Let πn be a linear combination of ϕn(wi) that is πn =
2∑

i=1

ciϕn(wi),

ci ∈ C.
Step 5. Set a linear nonhomogeneous system consisting of equations (1), (2), and

(4).
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Step 6. Obtain coefficients ci, i = 1, 2, and stationary probabilities π0.

π0 = (0.0631, 0.1369),

c1 = 0.1171, c2 = 0.1171.

Step 7. Substituting coefficients ci, i = 1, 2, and obtain πn.

π1 = (0.0909, 0.0505, 0.0658, 0.0590),

π2 = (0.0501, 0.0541, 0.0392, 0.0458),
π3 = (0.0310, 0.0376, 0.0247, 0.0304).

...
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