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ABSTRACT

This paper focuses on the change in the selection behavior of lottery players in Tai-

wan. First, we test the structural change in the time series of the sales to find the break

point of the selection strategy. By estimating a generalized rollover probability function

set by Scoggins (1995), we indicate that the lottery players initially pick numbers by way

of conscious selection and later change their behavior to random selection. The results

also show the demand elasticity under conscious selection is significantly larger than

that under random selection, and both are larger than 1.
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1. INTRODUCTION

There has been some literature that focuses on the decision-making of lottery players.

Quiggin (1991) and Garrett and Sobel (1999) model the lottery player’s expected utility

to determine a lottery player’s behavior. Jullien and Salanié (2000) and Bradley (2003)

consider prospect theory to assess risk attitudes of lottery players. In this paper, we

study this issue from the lottery demand side, which may have more policy implica-

tions.

There have been a number of studies to estimate demand functions for lottery

games. The most popular empirical approach to lottery demand employs effective

price, computed as the face value of a ticket minus the expected value of prize pay-

ments per ticket, to explain the variation in lottery sales. Cook and Clotfelter (1993),

Gulley and Scott (1993), Mason et al. (1997), Walker (1998), and Forrest et al. (2000)

all follow this approach. These researchers compute the expected value under the as-

sumption that the lottery players pick numbers at random. However, many lottery

players select their combinations through some other process. In other words, they be-

lieve there are some combinations that are much more popular than others. Cook and

Clotfelter (1993) refer to this behavior as “conscious selection”.

When selection is conscious, the probability distribution of numbers chosen by

lottery players does not follow a uniform distribution. Therefore, the coverage rate,

defined as the proportion of possible combinations purchased at least once, is less than

which would result from random selection. Furthermore, the expected value function

is different from earlier studies.

To allow for possibility of nonrandom selection, Scoggins (1995) specifies a gener-

alized form to estimate the probability function of not winning the jackpot on a draw.

Consequently, the hypothesis that the lottery players pick numbers randomly is re-

jected. Conscious selection provides for an unbiased estimate of expected revenue, and

this bias is approximately ten percent. Farrell et al. (2000) also found strong evidence

showing that lottery players choose their numbers nonrandomly. Under the assump-

tion of conscious selection, however, the estimated demand elasticity is not significantly
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different from the result of random selection.1 Similarly, Walker (1998) noted that con-

scious selection has little effect on expected value and the estimated price elasticity.

In this paper, we take into account the possibility that lottery players will shift

their selection strategies. We argue that lottery players may change their behavior from

conscious selection to random selection (or vice versa) through a learning process. Fur-

thermore, we investigate the effect on demand elasticities under these two selection

strategies. Our empirical study uses data of the Taiwan lottery because it has not been

in operation for very long.2 It is reasonable to assume that the learning process of lot-

tery players is short and quick because of the availability of information. Therefore,

using fresh data from a new lottery is more appropriate to our study. Many previous

studies on the Taiwan lottery, however, focused on the influence of demographic fac-

tors such as sex, age, and income. There is very little literature that follows the effective

price approach. Thus, it is meaningful to model the Taiwan lottery demand from the

viewpoint of effective price as has been widely applied in foreign lottery studies.

Our empirical study follows three stages. The first stage is to find the break date

when lottery players shift their selection strategies. In the second stage, we compute

the expected values before and after the break date found previously. Comparing the

expected value in these two periods helps us to explain why lottery players change their

behavior. Last, we estimate the demand functions for the lottery during these two pe-

riods separately and propose to test whether the demand elasticities are significantly

different. The empirical result of our study shows that the lottery players initially pick

numbers by way of conscious selection and later change their behavior to random selec-

tion. Moreover, the results also show the demand elasticity under conscious selection

is significantly larger than that under random selection, and both are larger than 1.

This conclusion that the demand elasticities are significantly different between these

two strategies will have some implications for policy makers. It implies that the Tai-

wan lottery agencies should raise the percentage of stakes allocated to the jackpot, and

the extent of the raise could be less when the lottery players pick numbers by random

selection.

The rest of the article is as follows. In the next section, we set the probability

function of not winning the jackpot and then describe the expected value function.

1 Farrell et al. (2000) compared their estimated result with that of Cook and Clotfelter (1993).

The latter have stated the possibility of nonrandom selection. Their estimation, however, is under the

assumption of random selection.
2 The Taiwan lottery was launched in January 2002.
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The third section is the result of our empirical study. The last section summarizes our

conclusions.

2. THE MODEL

2.1 Rollover Probability Function

For each draw, the lottery player selects n different numbers from one through m. The

probability of any one ticket winning the jackpot, π , is π = n!(m − n)!/m!.

Therefore, the probability of any one ticket not winning the jackpot is 1 − π .

We assume the probability of rollover follows a binomial distribution when the lottery

players pick numbers randomly, and thus we employ the probability function intro-

duced by Scoggins (1995).

Pt = (1 − π)St , (1)

where Pt is the rollover probability, St is the number of tickets sold, and t denotes

period t . Scoggin generalizes equation (1) to allow for the probability of conscious

selection as follows:

Pt = (1 − π)α+βSt . (2)

We can estimate equation (2) to test the joint hypothesis α = 0, β = 1. If the

joint hypothesis is accepted, it implies the lottery players select numbers randomly.

On the other hand, the joint hypothesis will be rejected when the lottery players select

numbers by way of conscious selection.

2.2 The Expected Value and Lottery Demand

To simplify our problem, we assume there is a single prize pool.3 If there is no matching

ticket to win the jackpot on a given draw, the jackpot is rolled over into the jackpot of

the next period. Consequently, the jackpot is constituted by the sales revenue net of

the take-out rate (proportion of stakes not returned in prizes) and the rollover (if any)

3 Walker (1998) and Mason et al. (1997) suggest that this assumption is harmless provided smaller

prize pools do not roll over. The small prize pools are unlikely to roll over in theory and unheard of in

practice. This simplified assumption is common in most literature.
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from the previous draw. Furthermore, the jackpot, Jt , is determined by the following

rule:

Jt = (1 − τ )kSt + Rt−1, (3)

where τ is take-out rate, k is the face value and Rt−1 is rollover amount from previous

draw.

The expected value, EVt , of a ticket can be written as:

EVt =
Jt (1 − Pt )

St

, (4)

Thus, the effective price of a ticket is k − EVt . We specify a short-run lottery demand

function in which the drawing demand is determined largely by the effective price. The

demand function can be represented in log-linear form as:

St = a0 + a1 × LTt + a2 × ln (k − EVt ) + εt , (5)

where LTt is a log-linear time trend and εt is an error term. The notation of ln indicates

natural logarithm. The time trend, an explanatory variable, is designed to capture other

factors that systematically affect the sales over time.4 All the variables are transformed

to natural logarithmic form, which allows us to measure the demand elasticity by the

absolute value of coefficient a2.

3. THE EMPIRICAL RESULTS

We use the above model to analyze the Taiwan lottery, which is operated by the Taipei

Bank. The Taiwan lottery is a 6/42 game played twice a week, and the face value is fifty

N.T. dollars a ticket. Therefore, the probability of winning the jackpot, π , is 1/5,245,786

(= 6!36!/42!). Our data are from the first 203 draws that started on January 22, 2002

and ended on December 30, 2003, when a new lottery game was introduced.5 All the

data are found on the Taipei Bank Web site.6

4 Mikesell (1987), Clotfelter and Cook (1989), and Miers (1996) find that lottery sales decline as a

lottery game grows older. Therefore, it is reasonable to include the time trend in the regressions.
5 The introduction of a new game leads to substitution effect that is beyond the scope of this paper.
6 The web site is at http://www.roclotto.com.tw.

54



Number Selection Strategy of Lottery Players (Jue-Shyan Wang and Mei-Yin Lin)

3.1 Test of Selection Strategy

Data on the distribution of numbers chosen is seldom published and thus researching

popular combinations is difficult. Consequently, we suggest analyzing the lottery play-

ers’ selection strategies by examining the time series data of the sales. In other words,

the switch in selection behavior will include some relationship with the change in the

sales. Suppose lottery players select numbers nonrandomly and they prefer certain

combinations of numbers. Thus the expected value of a ticket with a popular com-

bination will be lower than that with an unpopular combination.7 Consequently, the

players may change their behavior to random selection. Moreover, some lottery players

may even withdraw from the game because of the frequent rollovers generated by the

selection of unpopular combinations. Therefore, we conjecture that when the players

shift their selection strategies, the sales will result in a structural change as well. In

this section, we will prove this conjecture by some empirical results. First, we find the

structural change point in the sales. If this point is really the break date that players,

on average, change their behavior, the roll probability function before and after this

point will be different. Moreover, we will show the shift in roll probability function is

correlated with the change of expected value.

We simplify the test developed by Bai (1999) to investigate structural change. His

method is implemented by Papell (2002), and we follow Papell’s setting. Suppose there

is one break,8 we start by estimating the following regression:

ln St = b0 + b1 × LTt + b2 × DTt +

n∑

j=1

b3,j × ln St−j + εt , (6)

where the break occurs at time TB and the slope dummy variable DTt = (t − TB) if

t > TB; 0 otherwise. This setting allows the slope of ln St to be different before and

after the break point. If the coefficient of the slope dummy variable, b2, is positive, it

implies that the change in the sales is intensified. On the other hand, the negative of b2

indicates that the change in the sales becomes more moderate.

7 This is because the return on a winning ticket will be diluted by the shares of other lottery players.
8 Bai and Papell apply this method to test multiple structural changes. In this paper, we discuss the

shift between two selection strategies. It is more convenient to assume only one break to explain our

problem more precisely.
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Figure 1 Log of the sales

The optimal location of the break, TB, is chosen globally by minimizing the sum

of squared residuals (SSR) of equation (6). We take the natural log of the sales as

the dependent variable and use ordinary least squares to estimate equation (6). The

optimal lag length n is 2, which is chosen by the Schwarz Information Criteria.

The estimated result shows the SSR is minimum when TB=108, and the value of

SSR at this point is 13.4375. The estimated coefficient of LTt is −0.1113, and DTt is

−0.0012. The time series data of the sales in natural log form is presented in Figure

1. The negative trend is obvious, and the change of the sales becomes moderate after

about the middle of the period, which are both correlated with the negative coefficients

of LTt and DTt .

Next, we split the sample periods into two parts: period 1 includes the first 108

draws and period 2 contains the last 95 draws. We estimate the rollover probability

function stated in equation (2) during these two periods. Equation (2) is like a limited-

dependent-variable model. We can estimate the coefficients by maximizing the log-
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Table 1 Estimation of rollover probability function

Period 1 Period 2

0.4951 × 107 −0.6855 × 107
α

(0.4732 × 107) (0.7853 × 107)

0.3426 1.6154∗∗

β
(0.3282) (0.9208)

Log-likelihood −44.4493 −43.8656

Note: 1. Standard errors are in parentheses.

2. ∗∗ denotes significance at 10%.

likelihood function (ln L) set by the following equation:

ln L =

T∑

t=1

[
RPt × ln Pt + (1 − RPt) × ln (1 − Pt )

]
, (7)

where RPt is a latent variable: RPt = 1 when the jackpot rolls over in period t , and

RPt = 0 otherwise. The estimated result of equation (7) is presented in Table 1.

We test the joint hypothesis α = 0, β = 1 by conducting a likelihood ratio

test. The resulting χ 2 statistics is 10.2588 in period 1 and 2.8735 in period 2. The

95 percent critical value with two degrees of freedom is 5.9915. Consequently, the

hypothesis that the lottery players pick numbers randomly is rejected in period 1 and

is accepted in period 2. According to these results, we conclude that the lottery players

initially select numbers by way of conscious selection and later change their behavior

to random selection.

Why do the players change their selection strategies? The answer can be found in

the differences of expected value between these two periods. We compute the expected

value as stated in equation (4) and summarize the statistics in Table 2.

The statistics suggest that the expected value under conscious selection in period

1 is lower than that under random selection. The lottery players realize that picking

numbers nonrandomly will result in a lower return. Thus, they change their strategies

to random selection. We also find that the expected value under random selection is

more volatile. Lottery players that pick their combinations by random selection face

more uncertainty and risk than conscious selection lottery players. There has been
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Table 2 Summary statistics of expected value

Period 1 Period 2

Mean 19.6470 19.8069

Standard error 2.0799 2.9398

Minimum 17.9067 16.4566

Maximum 26.1439 28.3079

Skewness 1.7633 1.0575

Kurtosis 1.8197 0.0341

some literature that discusses why risk-averse individuals take unfair gambles (see Gar-

rett and Sobel, 1999; Bradley, 2003). This issue requires a more complicated model that

is beyond the scope of our paper. Hence, this paper only describes the uncertainty that

the lottery players face.

3.2 Estimation of Demand Function

We note that the sales depend on the effective price, k − EVt . Moreover, the expected

value (i.e., jackpot) defined in equation (4) is determined by the sales. To avoid the

simultaneity problem, we estimate this model by two-stage least squares with expected

value endogenous. We generate an expected effective price series in the first stage. This

price series will be included as a regressor of demand function in the second stage. The

coefficient of expected price is used to measure the demand elasticity.

Substituting the jackpot rule and the probability function into equation (4), the

expected value depends on the previous rollover and the current sales. We take the

previous sales as predicted value for the current sales, and we transform the formula

for expected value into a linear reduced form written as the following equation:

EVt = c0 + c1 × Trendt + c2 × Rt−1 +

m∑

j=1

c3,j × St−j + εt , (8)

where Trendt is the linear time trend. Equation (8) describes expected value as a func-

tion of the previous rollover, Rt−1, and the relevant previous sales, St−j . The lag length

of the previous sales m is chosen by the significance of the coefficient estimate. All the

variables are in level form because the logarithm of rollover is missing when the value
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Table 3 The estimation of expected value

Period 1 Period 2

18.0584∗ 18.9200∗

Constant
(0.3136) (0.7766)

−0.3336 × 10−2 −0.0169∗

Trendt (0.2531 × 10−2) (0.3883 × 10−2)

0.3834 × 10−7∗ 0.7513 × 10−7∗
Rt−1 (0.1382 × 10−8) (0.2603 × 10−7)

0.2530 × 10−7∗ 0.7279 × 10−7∗
St−1 (0.1128 × 10−7) (0.2561 × 10−7)

0.3913 × 10−7∗ 0.5811 × 10−7∗
St−2 (0.1129 × 10−7) (0.2603 × 10−7)

0.5811 × 10−7∗
St−3 (0.2603 × 10−7)

R̄2 0.8854 0.9008

DW 1.9302 1.6092

SSR 48.1921 76.3315

Log-likelihood −108.1030 −124.4070

Note: 1. Standard errors are in parentheses.

2. ∗ denotes significance at 5%.

is zero. Equation (8) is estimated by ordinary least squares method and the result is

shown in Table 3.

The optimal lag, St−2, for previous sales is 2 in period 1 and is 3 in period 2.

The negative trend in the sales is significant in period 2. However, this trend effect

is insignificant in period 1. Hence, people stop playing the lottery because they are

discouraged by the frequent rollovers. The previous rollover and the previous sales all

have significantly positive relations with the current sales.

The fitted value, denoted by ÊVt , generated in equation (8) and the predicted

effective price, k − ÊVt (k = 50), as an explanatory variable are used to estimate the

demand function. Before we begin this estimation, it is necessary to test whether the

time series is stationary to avoid a spurious regression problem.9

We use the Augmented Dickey-Fuller test to identify the order of integration of the

data. The results reject the null hypothesis of a unit root for the sales and the expected

9 See Granger and Newbold (1974).
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value (both in log form).10 Therefore, the two time series are stationary, and it is valid

to estimate the demand function using these variables.

Gulley and Scott (1993) and Forrest et al. (2000), by means of a dummy vari-

able, test the difference in sales between Wednesday drawings and Saturday drawings.

Forrest et al. (2002) also set a dummy variable to study the influence of the increased

ticket sales. To capture such factors that may affect the lottery demand, we add some

dummy variables into the estimation of equation (5). Dayt is a dummy variable that

takes the value of one for the drawings scheduled for Tuesday and zero for Friday. The

four types of drawings promoted by the Taipei Bank are denoted as D1t , D2t , D3t , and

D4t . D1t is a dummy variable set equal to one for the jackpot of the specific draws with

sales of one hundred million N.T. dollars. D2t is a dummy variable that is equal to one

for the jackpot of specific draws to increase sales by 15% as the special number is larger

than the other six numbers. D3t is a dummy variable that takes the value of one for the

jackpot of specific draws to increase the sales by 15% without any condition. D4t is a

dummy variable set equal to one for the jackpot of specific draws guaranteed to reach

one hundred million N.T. dollars. The first and the second promotions, D1t and D2t ,

are only carried out in period 1. The third and the fourth promotions, D3t and D4t , are

performed in period 2. To avoid the singularity, only Dayt , D1t and D2t are included

as the regressors in the estimation for demand function in period 1. Dayt , D3t and

D4t are included as the dependent variables in the estimation for demand function in

period 2. Table 4 reports results of the estimation for the demand function.

The results indicate the decline trend of the natural log of the sales is significant

in period 1 and is insignificant in period 2. This is consistent with our previous finding

that structural change of the sales becomes more moderate in period 2. The demand

elasticities measured by the absolute value of coefficients on predicted effective price are

both larger than 1 in these two periods. Consequently, reducing the take-out rate will

increase the sales revenue. Moreover, the demand elasticity under conscious selection is

larger than that under random selection.11 The reason is that the effective price under

conscious selection is higher than that under random selection.

The dummy variable Dayt is not significant. Hence, the sales are not different

between the drawings on Tuesday and Friday. This result differs from that of Gulley

10 The test statistics for ln St is −6.8885 which is run with a constant, a trend and four augmenting

lags. The test statistics for ln EVt is −4.8452 which is also run with a constant, a trend but with three

augmenting lags.
11 This result is similar to that of Lin and Wang (2004).
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Table 4 The estimation of the demand function

Period 1 Period 2

27.7162∗ 22.9374∗

Constant
(0.5596) (2.3292)

−0.1684∗ −0.0481
LTt (0.0348) (0.4544)

−3.0989∗ −1.9447∗

ln(k − ÊVt ) (0.1632) (0.0555)

0.0174 −0.0338∗

Dayt (0.0165) (0.0080)

0.2545∗

D1t (0.1044)

0.0178
D2t (0.0628)

0.7145∗

D3t (0.0833)

0.1678∗

D4t (0.0378)

0.8814∗

ρ
(0.0521)

R̄2 0.8384 0.9408

SSR 1.6158 0.4845

Log-likelihood 68.9877 114.2150

Note: 1. Standard errors are in parentheses.

2. ∗denotes significance at 5%.

3. The estimation uses the Cochrance-Orcutt method to correct for the first order serial corre-

lation.

and Scott (1993) and Forrest et al. (2000) where the Wednesday drawings have lower

popularity. The dummy variables indicate the promotions are positively significant for

D1t , D3t , and D4t . Thus, these promotions, except the second promotion, are effective.

We test the null hypothesis that the demand elasticities in these two periods are

equal. The demand function is rewritten as the following form:12

12 We could not test this null hypothesis directly from the result of Table 4 because the estimations

for these two periods do not have the same regressors.
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ln St = a0 + a1 × LTt + a2 × ln
(
k − ÊV1t

)
+ a′

2 × ln
(
k − ÊV2t

)

+ a3 × Dayt +

4∑

i=1

a4i × Dit + εt , (9)

k − ÊV1t is the effective price for period 1 and is set to zero in period 2. k − ÊV2t

is the effective price for period 2 and is equal to zero in period 1. We will estimate this

equation for the whole period, not separately for two periods. Because of the nonexis-

tence of the singularity problem, we include all the dummy variables in the estimation

for demand function. The null hypothesis for our test is a2 = a′
2. When the null

hypothesis is true, the restricted regression can be expressed as:

ln St = a0 + a1 × LTt + a2 × ln
(
k − ÊVt

)
a3 × Dayt +

4∑

i=1

a4i × Dit + εt , (10)

k − ÊVt denotes the effective price in restricted regression. We set k − ÊVt =

(k − ÊV1t ) in period 1 and k − ÊVt = (k − ÊV2t ) in period 2. The results for the

restricted regression and unrestricted regression are presented in Table 5.

The major conclusions for these coefficients are not different in quality from the

results in Table 4. The estimated demand elasticities for unrestricted regression are

2.3198 in period 1 and 2.3723 in period 2. The estimated demand elasticity for re-

stricted regression is 2.3377. All the estimated elasticities are significantly larger than

one. The log-likelihood value for unrestricted regression and restricted regression are

137.933 and 134.562. The resulting likelihood ratio statistic is 6.742. The critical value

for chi-squares statistic with one degree of freedom is significant at any conventional

level. Thus, we reject the null hypothesis that a2 = a′
2 on the basis of this test. It im-

plies that the demand elasticities are significantly different for conscious selection and

random selection. This conclusion is converse to the results of Farrell et al. (2000) and

Walker (1998), which are both empirical studies of the U.K. game.
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Table 5 The estimation of demand function for the whole period

Period 1 Period 2

25.1668∗ 25.4444∗

Constant
(0.3313) (0.3183)

−0.1974∗ −0.2661
LTt (0.0362) (0.0305)

−2.3198∗

ln(k − ÊV1t ) (0.0863)

−2.3723∗

ln(k − ÊV2t ) (0.0866)

−2.3377∗

ln(k − ÊVt ) (0.0849)

−0.0013 −0.0028∗

Dayt (0.0107) (0.0105)

0.2003∗ 0.2050∗

D1t (0.0991) (0.0977)

0.0573 0.0816
D2t (0.0640) (0.0654)

0.7667∗ 0.6552∗

D3t (0.1065) (0.1011)

0.1085∗∗ 0.1029∗∗

D4t (0.0587) (0.0623)

0.6217∗∗ 0.6784∗

ρ
(0.0592) (0.0561)

R̄2 0.8950 0.8906

SSR 2.9455 3.0643

Log-likelihood 137.9330 134.5620

Note: 1. Standard errors are in parentheses.

2. ∗, ∗∗ denote significance at 5% and 10%.

3. The estimation uses the Cochrance-Orcutt method to correct for the first order serial corre-

lation.

4. CONCLUSION

Our analysis focuses on the change in the selection strategies of lottery players. We find

that lottery players in Taiwan initially pick numbers by way of conscious selection and

later change their behavior to random selection. The lottery players change their be-

havior because they realize that conscious selection brings a lower return. This finding
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is interesting. To further our research, we can study the fresh lottery data from other

countries to test whether this process of learning to select numbers is similar every-

where. It may help us to understand more about the behavior of lottery players.

In this paper, we compare the differences in demand elasticities under these two

selection strategies. The results show the demand elasticity under conscious selection

is significantly larger than that under random selection, and both are larger than 1. It

implies that the Taiwan lottery agencies should raise the percentage of stakes allocated

to the jackpot. In addition, the extent of the raise could be less than in previous studies

because the lottery players have turned to random selection. Furthermore, we suggest

that it is more realistic to take account of the possibility of change in selection strategy

while studying the issue of lottery demand.

We try to find some factors to explain why the lottery players change their se-

lection strategies. We argue that it results from some learning process and prove this

conjecture by the empirical results in this paper. However, this explanation may not

be completely satisfactory, and there must be more interesting factors that can better

account for the change in selection strategies. Our paper is an initial study. A complete

theoretical model should be established to address this issue.
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摘 要

本文主要研究臺灣樂透彩券參與購買者選號策略之轉變。 首先, 從銷售量

的時間序列資料來尋找結構轉變點, 並利用 Scoggins (1995) 所設定的累積頭

彩機率密度函數進行實證資料的估計。 結果發現初期彩券購買者偏好採用自

覺性的選號策略, 隨之轉變為隨機選號的購券方式。 實證結果並顯示自覺性選

號策略下的需求彈性顯著大於隨機選號下的需求彈性, 而且兩種選號策略下

的需求彈性均大於1。
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