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Summary. Using an agent-based multi-asset artificial stock market, we simulate
the survival dynamics of investors with different risk preferences. It is found that
the survivability of investors is closely related to their risk preferences. Among the
eight types of investors considered in this paper, only the CRRA investors with
RRA coefficients close to one can survive in the long run. Other types of agents are
eventually driven out of the market, including the famous CARA agents and agents
who base their decision on the capital asset pricing model.

1 Introduction

The paper is concerned with a part of the debate on the market selection
hypothesis. The debate, if we trace its origin, started with the establishment
of what become known as the Kelly criterion ([8]), which basically says that
a rational long-run investor should maximize the expected growth rate of his
wealth share and, therefore, should behave as if he were endowed with a log-
arithmic utility function. Alternatively speaking, the Kelly criterion suggests
that there is an optimal preference (rational preference) which a competitive
market will select and that is logarithmic utility. The debate on the Kelly
criterion has a long history, so not surprisingly, there is a long list of both
pros and cons standing alongside the developments in the literature.?

The Kelly criterion may further imply that an agent who maximizes his
expected utility under the correct belief may be driven out by an agent who
maximizes his expected utility under an incorrect belief, simply because the
former does not maximize a logarithmic utility function, whereas the latter

3 See [11] for a quite extensive review.



2 Shu-Heng Chen and Ya-Chi Huang

does. [1] were the first to show this implication of the Kelly criterion in a
standard asset pricing model. As a result, the market selection hypothesis
fails because agents with accurate beliefs are not selected. A consequence of
this failure is that asset prices may not eventually reflect the beliefs of agents
who make accurate predictions, and hence may persistently deviate from the
rational expectations equilibrium and violate the efficient market hypothesis.

However, a series of recent studies indicates that the early analysis of
[1] is not complete. [10] shows that, if the saving behavior is endogenously
determined, then the market selection hypothesis is rescued, and in the long
run, only those optimizing investors with correct beliefs survive. The surviving
agents do not have to be log-utility maximizers, and they can have diverse
risk preferences. [10]’s analysis is further confirmed by [2] in a connection of
the market selection hypothesis to the first theorem of welfare economics. [2]
show that in a dynamic and complete market Pareto optimality is the key to
understanding selection either for or against traders with correct beliefs: in
any optimal allocation the survival or disappearance of a trader is determined
entirely by beliefs, and not by risk preferences.

Despite the rigorousness of these theoretical studies, there exists a fun-
damental limitation, which may make it difficult to grasp their empirical
counterparts, namely, they are non-constructive.* Take [10] as an example.
First, the analysis crucially depends on the appearance of agents who even-
tually make accurate predictions or eventually make accurate next period pre-
dictions. Nevertheless, the process that shows the emergence of these sages
is unknown. It is, therefore, not clear how these agents emerge, or whether
they will ever emerge.® Second, maximizing expected utility is equivalent to
assuming that agents are able to solve any infinite-time stochastic dynamic
optimization problem implied by their utility function. However, current dy-
namic optimization techniques, regardless of whether they include stochastic
optimal control or stochastic dynamic programming, can only help us solve
a very limited subset of the whole problem space. As for the rest of them, it
is necessary to rely on numerical approximations, and their effectiveness to a
large extent is also unknown.

Given these practical limitations, we are motivated to re-examine the is-
sue from a more realistic perspective or, technically speaking, a computational
perspective. By remaining in the general equilibrium analysis framework, we
replace the rational agents with bounded-rational agents. More precisely, these
agents are constructed in terms of what is known as autonomous agents in
agent-based computational economics ([12]). Basically, these agents are able
to learn to optimize and to forecast in an autonomous manner. So, they are
not necessarily utility-maximizers. Instead, they use adaptive computing tech-
niques to approximate the optimal solution. In this sense, they are Herbert

4 This kind of issue is generally shared in many general equilibrium analyses.
5 Back to the real world, we have not been convinced that these agents have ever
appeared in human history.
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Simon’s satisfying agents. Similarly, they base their decisions upon beliefs
which may not be and may never be correct, but are reviewed and revised
continuously ([9]).

By introducing autonomous agents, we are getting closer to the world of
flesh and blood, and enhancing the study of the empirical relevance of risk
preference to survival dynamics.

2 A Simple Multi-Asset Model

The simulations presented in this paper are based on an agent-based version
of the multi-asset market as per the studies of [1] and [10]. The market is
complete in the sense that the number of states is equal to the number of
assets, say M. At each date t, the outstanding volume of each asset is exoge-
nously fixed at one unit. There are I investors in the market, with each being
indexed by i. At time t asset m will pay dividends w,, if the corresponding
state m occurs, and 0 otherwise. The behavior of these states follows a finite-
state stochastic process, which does not have to be stationary. The dividends
wy, will be distributed among the I investors proportionately according to
their owned shares of the respective asset. The dividends can only be either
re-invested or consumed. Hoarding is prohibited. If agent ¢ chooses to con-
sume ¢, her satisfaction is measured by her utility function u(c). This simple
multi-asset market clearly defines an optimization problem for each individual
as follows:

oo
B 6i+r}£?ya{§i+rmo}E{;)(ﬁ’)’“w(cw) | Bi_1} (1)
subject to
M
Chyr + Z O‘i;:tJrr '523:} Wiy SWi,y Vr >0, (2)
m=1

M
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m=1

In equation (1), u® is agent 4’s temporal utility function, and ¢, also called
the discount factor, reveals agent i’s time preference. The expectation E( ) is
taken with respect to the most recent belief By, which is a probabilistic model
used to represent agent i’s subjective belief regarding the stochastic nature of
the state. The maximization problem asks for two sequences of decisions, one
related to saving, and the other to the portfolios, denoted by

{{6z+r}7?105 {aiJrr}??iO}a

where &7 is the saving rate at time ¢, and
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O‘% = (azl,ta 0‘12,ta 3% ah,t)
is the portfolio comprising the M assets.

Equations (2) and (3) are the budget constraints. W/ is the wealth of
agent 7 at time ¢, which is earned from the dividends paid at time ¢. Notice
that these budget constraints do not allow agents to consume or invest by
borrowing.

The equilibrium price py, ; is determined by equating the demand for asset
m to the supply of asset m, i.e.

I i
2 —

By rearranging Equation (4), we obtain the market equilibrium price of asset
m:

51* i
21, m=1,2,.., M. (4)

I
_ 0,% % i
Pmt = E s 0 - Wiy, (5)
i=1

3 The Agent-Based Multi-Asset Artificial Stock Market

An agent-based version of the Blume-Easley-Sandroni standard multi-asset
model is developed in [4]. There they ([4]) propose a sliding-window adap-
tation scheme to approximate the original infinite-time horizon optimization
problem (Equations (1) — (3)) by a finite-time horizon optimization problem.
The stochastic optimization problem (1) has two mainstays: first, finding an
appropriate belief, and second, under that belief, searching for the best de-
cisions regarding saving and portfolios. To distinguish the two, [3] calls the
former “learning how to forecast,” and the latter learning how to optimize.
Genetic algorithms are then applied to evolve both beliefs and investment
strategies.®

To simulate this agent-based multi-asset artificial stock market, a software
called AIE-ASM Version 5.0 is written using Delphi, Version 6.0. In each
single run, we generate a series of artificial data. At the micro level, it includes
the dynamics of agents’ beliefs, investment behavior, and the associated wealth

{B’* 5;, %,Wﬁ tlool, i=1,..,1.
At the aggregate level, we observe the asset price dynamics
{pmyt}%gola m = ]., ceny M.

Figure 1 displays the time series plot of prices in a five-asset market. In
this specific simulation, the state follows an i.i.d. process.

6 Details can be found in [4].



Risk Preference and Survival Dynamics 5

—— Price of Asset 1
—8— Price of Asset 2
Price of Asset 3
Price of Asset 4
—*— Price of Asset 5

Fig. 1. Time Series Plot of the Prices of Assets; M =5.
By multiplying the dividends by the associated probabilities, we can obtain the
expected dividends for each asset, and they are 0.004, 0.419, 0.373, 0.069 and 0.133
in this case. The mean prices taken over the entire sample periods are 0.0191, 0.558,
0.530, 0.099 and 0.196, respectively. It can then be clearly seen that the prices do
reflect the underlying dividends.

4 Experimental Design

Since the main focus of this paper is to examine the relevance of risk preference
to survivability, we shall assume that the autonomous agents are identical in all
aspects except in terms of their preferences over risk. With this assumption, we
run two series of experiments. These two experiments differ in their constituent
agent types. In Experiment 1, the market is composed of eight types of agents,
and they are distributed evenly among 40 market participants, i.e. five agents
for each type. These eight types of agents are agents with the seven utility
functions specified in Table 1 plus the CAPM (capital asset pricing model)
believers.

The type-one agent has the logarithmic utility function. We are very much
interested in knowing whether this type of agent has any advantage over
others in the long-run wealth share. As to types two to six, they are also
frequently used in economic analysis.” Among them, type four has the well-
known CARA (constant absolute risk aversion) utility function. In addition
to these six familiar types of utility functions, we also consider any arbitrary
utility function. By using Taylor’s expansion, an arbitrary analytical utility

7 See, for example, [6], pp. 27-33.
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function can be approximated by a finite-order polynomial function. Here, we
consider the approximation only up to the sixth order.

Notice that types 3 to 7 refer to a class of parametric utility functions.
Parameters of these types of utility functions, namely, a1, ..., aq, (1, ..., O3, and
ap, a1, ..., ag, can in principle be randomly or manually generated as long as
they satisfy the regular first- and second-order conditions: v >0andu’ <O.
Since each type of utility function is assigned to five agents, parameter values
are generated for each agent for each type separately. So, type 3 agents may
have different values of (a1, 31), type 4 agents have different values of (az, 52),
and so on and so forth.

Table 1. Types of the Utility Function u(c): Experiment 1

Utility Type Relative Risk Aversion (RRA)

Type 1 u(c) = log(c) 1
Type 2 u(c) = /e 0.5
Type 3 u(c) = a1 + Pic 0
Type 4 u(c) = 32 exp {fac} —f2c

_ _ 1 v3+1 — B3
Typed | a0 = oo (as + fac)” 5
Type 6 u(c) =c— 27 li‘fm

6 ] asct+6azc’ (‘a 3 a5c4 agc’

Type 7 U(C) = o + Zi:l aicl B 51 iQZSciBatc122+%la4t§i5aqcﬁiOGa(:;c5

In Experiment 2, all agents are restricted to the family of the CRRA
(constant relative risk aversion) utility functions,

D

They, however, differ in terms of their RRA coefficients, i.e. 1 — p. The smaller
the p, the larger the risk aversion coefficient. Eleven different ps, starting from
0, 0.1., 0.2.,..., to 0.9, and 1.0, are distributed evenly to all 55 agents, with
five agents for each p.

5 Experimental Results

Figure 2 shows the wealth-share dynamics of the eight types of investors in
Experiment 1. Notice that each line is based on the average of 100 simulations.
The results clearly indicate the strong dominance of the type-one investors,
i.e. the agents who have a log utility function. While in some cases type-
two investors are still hanging in there for the first 100 periods, their shares
eventually decline toward zero. Maybe the most striking result is the extinction
of the CARA type of agents (type-4 agents). It is striking because the CARA



Risk Preference and Survival Dynamics 7

1.2
—— Type 1
1 —=— Type 2
08 Type 3
Type 4

06

—*— Type 5
0.4 —— Type 6
—+—Type 7

0.2
—— Type 8

0

1 100 200 300 400 500

Fig. 2. Time Series Plot of the Wealth Share of Eight Types of Investors: Experiment
1

utility function has been used so extensively in the finance literature that
one can hardly cast any doubt on its appropriateness.® Equally surprising is
the fiding that CAPM believers also fail to survive. This result is consistent
with an earlier finding by [11], who shows that a sufficient condition to drive
CAPM traders to extinction is that an investor endowed with a logarithmic
utility function enters the market.

Since the type-one investors have a constant relative risk aversion coeffi-
cient that is one, our experimental results also lend support to Blume and
Easley’s main argument: the market selects those investors whose coefficient
of relative risk aversion is nearly one.’ To further examine this claim, the
wealth share dynamics of Experiment 2 is depicted in Figure 3.

As can be seen from Figure 3, the wealth share seems to be positively
correlated with the RRA coefficient. Agents with very low values for their the
RRA coefficients are driven out of the market at different speeds. The lower
the RRA, the faster the evaporation. Towards the end of this 100-period
simulation, all agents with RRA values of less than 0.6 are driven out of the
market. However, when the RRA coefficient increases to 0.9, the respective

8 For example, it was used to develop the standard asset pricing model ([5]), and
was also used in agent-based artificial stock market simulations ([7]).

See [1], Theorem 5.4, pp. 23-24. The words in italics shown in the main text are
not quoted exactly from that theorem, which was originally made by controlling
saving rates. Since saving rates are treated endogenously in our paper, our finding
suggests that the theorem can still hold true even if the assumption of saving rates
is relaxed.

9
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Fig. 3. Time Series Plot of the Wealth Shares of Eleven Types of Investors: Exper-
iment 2

agents perform equally well, and sometimes even better, in terms of their
wealth shares, as compared with the log-utility agents.

6 Concluding Remarks

The irrelevance of risk preference to the survivability of agents is dismissed in
this paper. Our first experiment indicates that the only agents who survive in
the long run (up to a 500-period simulation) are the log-utility agents. The
rest are all driven out, including the CARA agents and the CAPM believers.
In the second experiment, we further test for the significance of the RRA
coefficient by assuming that all agents are CRRA types, and it is found that
the agents’ wealth share is affected by how close their RRA coefficients are to
1.
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