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Abstract

From the perspective of the agent-based model of stock markets, this paper examines

the possible explanations for the presence of the causal relation between stock returns

and trading volume. Using the agent-based approach, we find that the explanation for

the presence of the stock price–volume relation may be more fundamental. Conven-

tional devices such as information asymmetry, reaction asymmetry, noise traders or tax

motives are not explicitly required. In fact, our simulation results show that the stock

price–volume relation may be regarded as a generic property of a financial market, when

it is correctly represented as an evolving decentralized system of autonomous interacting

agents. One striking feature of agent-based models is the rich profile of agents’ behavior.

This paper makes use of the advantage and investigates the micro–macro relations

within the market. In particular, we trace the evolution of agents’ beliefs and examine

their consistency with the observed aggregate market behavior. We argue that a full

understanding of the price–volume relation cannot be accomplished unless the feedback

relation between individual behavior at the bottom and aggregate phenomena at the top

is well understood.
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1. Motivation and introduction

The agent-based modeling of stock markets, which originated at the

Santa Fe Institute [2,47], is a fertile and promising field that can be thought
of as a subfield of agent-based computational economics (ACE). 1Up to the

present, most of the research efforts have been devoted to the analysis of the

price dynamics and/or market efficiency of the artificial markets (e.g.

[13,14,44,57]). Some studies have focused on the price deviation or mis-

pricing in the artificial stock markets (e.g. [2,8,10,12,43,44,47,56]). Some

have gone further to explore the corresponding micro-structure of the

markets, such as the aspect of traders’ beliefs and behavior (e.g. [11,13,14]).

Nevertheless, few have ever visited the univariate dynamics of trading vol-
ume series [43,56], and, to our best knowledge, none has addressed joint

dynamics with prices. 2

As Ying [58] noted almost 40 years ago, stock prices and trading volume are

joint products from one single market mechanism. He argued that ‘‘any model of

the stock market which separates prices from volume or vice versa will inevi-

tably yield incomplete if not erroneous results’’ [58, p. 676]. In similar vein,

Gallant et al. [25] also asserted that researchers can learn more about the very

nature of stock markets by studying the joint dynamics of prices in conjunction
with volume, instead of focusing on price dynamics alone. As a result, the stock

price–volume relation has been an interesting subject in financial economics

for many years. 3

While most of the earlier empirical work focused on the contemporaneous

relation between trading volume and stock returns, some more recent studies

began to address the dynamic relation, i.e. causality, between daily stock returns

and trading volume following the notion of Granger causality proposed by

Wiener [55] and Granger [27]. In many cases, a bi-directional Granger causality
(or a feedback relation) was found to exist in the stock price–volume relation,

although some other studies could only find evidence of a uni-directional

causality: Either returns would Granger-cause trading volume, or the opposite

situation would prevail [1,37,48,49,51].

As noted by Granger [28], Hsieh [35], and many others, we live in a world

which is ‘‘almost certainly nonlinear’’. We cannot be satisfied with only
1 As Farmer and Lo [22] mentioned, ‘‘Evolutionary and ecological models of financial markets is

truly a new frontier whose exploration has just begun’’. By modeling financial markets ‘‘as evolving

systems of autonomous interacting agents’’, the agent-based approach in finance, indeed, follows

this evolutionary paradigm [54]. Visit the ACE website maintained by Leigh Tesfatsion for a

comprehensive guide to the field of ACE. <URL:http://www.econ.iastate.edu/tesfa-

tsi/ace.htm>.
2 See Chen [9] or LeBaron [42] for reviews of the field of artificial financial markets.
3 See the survey article by Karpoff [40].

http://www.econ.iastate.edu/tesfatsi/ace.htm
http://www.econ.iastate.edu/tesfatsi/ace.htm
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exploring the linear causality between stock prices and trading volume. Non-

linear causality would naturally be the next step to pursue. Baek and Brock [3]

argued that traditional Granger causality tests based on vector autoregression

(VAR) models might overlook significant nonlinear relations. As a result, they
proposed a nonlinear Granger causality test by using nonparametric estimators

of temporal relations within and across time series. This approach can be applied

to any two stationary, mutually independent and individually i.i.d. series.

Hiemstra and Jones [32] modified their test slightly to allow the two series

under consideration to display ‘‘weak (or short-term) temporal dependence’’.

Several researchers have already adopted this modified Baek and Brock test to

uncover price and volume causal relation in real world financial markets

[23,32,50]. In most of the cases, they found bi-directional nonlinear Granger
causality in the prices and trading volume. In other words, not only did stock

returns Granger-cause trading volume, but trading volume also Granger-

caused stock returns. The significance of this finding is that trading volume can

help predict stock returns, or as an old Wall Street adage goes, ‘‘It takes vol-

ume to make price move’’.

There are several possible explanations for the presence of a causal relation

between stock returns and trading volume in the literature. First, Epps [20]

gave an explanation based on the asymmetric reaction of two groups of
investors––‘‘bulls’’ and ‘‘bears’’––to the positive information and negative

information.

The second explanation, which is referred to as the mixture of distribu-

tions hypothesis, considers special distributions of speculative prices. For

example, Epps and Epps [21] derived a model in which trading volume is

used to measure disagreement among traders concerning their beliefs with

regard to the variance of the price changes. On the other hand, in Clark’s

[16] mixture of distributions model, the speed of information flow is a latent
common factor which influences stock returns and trading volume simul-

taneously.

A third explanation is the sequential arrival of information models (see, for

example, Copeland [17], He and Wang [31], Jennings et al. [38], and Morse

[46]). In this asymmetric information world, traders possess differential pieces

of new information in the beginning. Before the final complete information

equilibrium is achieved, the information is disseminated to different traders

only gradually and sequentially. This implies a positive relationship between
price changes and trading volume.

Lakonishok and Smidt [41] proposed still another model which involves tax-

and nontax-related motives for trading. For the sake of window dressing,

portfolio rebalancing, or the optimal timing for capital gains, traders may have

some special kinds of trading behavior. As a result, Lakonishok and Smidt [41]

showed that current trading volume can be related to past price changes

because of these motives.
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In moving away from the traditional representative agent models stated

above, recent theoretical works have started to model financial markets

with heterogeneous traders. Besides informed traders (insiders), DeLong

et al. [18] introduced noise traders with positive-feedback trading strategies
into their model. Noise traders do not have any information about the

fundamentals and trade solely based on past price movements. As a result,

a positive causal relation from stock returns to trading volume appears. In

Brock’s [5] nonlinear theoretical noise trading model, the estimation errors

made by different groups of traders are correlated. Under these settings, he

could find that stock price movements and volatilities are related nonlin-

early to volume movements. Campbell et al. [6] developed another heter-

ogeneous agent model, in which there are two different types of risk-averse
traders. In their frameworks, they are able to explain the autocorrelation

properties of stock returns in terms of a nonlinear relation with trading

volume.

In light of these explanations, this paper attempts to see whether we can

replicate the causal relation between stock returns and trading volume via the

agent-based stock markets (ABSMs). We consider the agent-based model of

stock markets to be highly relevant to this issue. First, the existing expla-

nations mentioned above were based on assumptions either related to the
information dissemination schemes or to the traders’ reaction styles in regard

to information arrival. Since both of these factors are well encapsulated in

ABSMs, it is interesting to see whether ABSMs are able to replicate the

causal relation. Secondly, information dissemination schemes and traders’

behavior are known as emergent phenomena in ABSMs. In other words, these

factors are endogenously generated rather than exogenously imposed. This

feature can allow us to search for a fundamental explanation for the causal

relation. For example, we can ask, ‘‘without the assumption of information
asymmetry, reaction asymmetry, or noise traders, and so on, can we still

have the causal relation?’’ Briefly, ‘‘is the causal relation a generic phe-

nomenon?’’

Thirdly, we claim that the agent-based models of financial markets are

‘‘true’’ heterogeneous agent models, which depict the real markets more

faithfully. We might think of the models proposed by DeLong et al. [18] and

their successors as having pre-specified representative agents of two different

types, say, a representative rational informed trader and a representative
uninformed noise trader. These settings might overlook some important fea-

tures of financial markets, for example, the interaction and feedback dynamics

of traders. In the agent-based approach, we, however, do not assign any agent

as being of any specific type exogenously. As a matter of fact, we do not even

have the device of representative agents. Hundreds of agents in the model can

all have different behavioral rules which they themselves evolve (adapt) over
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time. 4 How many types there are by which they can be distinguished and what

these types should be named are difficult issues to be addressed within this

highly dynamical evolving environment. However, this is the reality of the real

world, isn’t it?
Finally, in ABSMs, we can also observe what agents (artificial traders)

really believe in the depths of their minds when they are trading. This explo-

ration is probably the most striking feature of the agent-based social simulation

paradigm. Not only can we observe the macro-phenomena of our artificial

society, e.g., the joint dynamics of prices and trading volume, but we can also

watch the micro-behavior of every heterogeneous agent down to the details of

their thought processes, e.g., the forecasting models or trading strategies that

these agents use. Via this feature, we can then trace how the behavior and
interaction of agents at the mirco-level can generate macro-level phenomena.

Furthermore, we may see whether the agents observing macro-phenomena

would change their behavior, and hence may transform the whole financial

dynamics into different scenarios (the so-called regime change). These complex

feedback relations cannot be well captured by the traditional representative

agent model.

The rest of the paper is organized as follows: Section 2 describes the ABSM

considered in this paper. Section 3 outlines the experimental designs. Section 4
introduces the concept of Granger causality and two different econometric

tests used in this paper. Section 5 gives the simulation and testing results both

for the ‘‘top’’ and the ‘‘bottom’’, followed by the concluding remarks in

Section 6.
2. The agent-based artificial stock market

The ABSM considered in this paper is the AIE-ASM, Version 3, developed

by the AI-ECON Research Center [13,15]. The basic framework of the AIE-

ASM is the standard asset pricing model in the vein of Grossman and Stiglitz

[29]. The dynamics of the market are determined by the interactions of many
heterogeneous agents. Each of them, based on his forecast of the future,

maximizes his expected utility.
4 This model of agents follows the notion mentioned by Lucas [45, p. S401], ‘‘. . .we view or

model an individual as a collection of decision rules. . .These decision rules are continuously under

review and revision; new decision rules are tried and tested against experience, and rules that produce

desirable outcomes supplant those that do not’’ (italics added). To model these kinds of adaptive

agents, agent-based computational economists borrow multi-agent techniques and artificial

intelligence (AI) tools from the field of computer science. See Holland and Miller [33] for the

foundations for building artificial adaptive agents in economic models.
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2.1. Traders

For simplicity, we assume that all traders share the same constant absolute

risk aversion (CARA) utility function,
UðWi;tÞ ¼ � expð�kWi;tÞ; ð1Þ
where Wi;t is the wealth of trader i in period t, and k is the degree of absolute

risk aversion. Traders can accumulate their wealth by making investments.

There are two assets available for traders to invest in. One is the riskless
interest-bearing asset called money, and the other is the risky asset known as

the stock. In other words, in each period, each trader has two ways of keeping

his wealth, i.e.
Wi;t ¼ Mi;t þ Pthi;t; ð2Þ
where Mi;t and hi;t denote the money and shares of the stock held by trader i in
period t, respectively, and Pt is the price of the stock in period t. Given this

portfolio (Mi;t,hi;t), a trader’s total wealth Wi;tþ1 is thus
Wi;tþ1 ¼ ð1þ rfÞMi;t þ hi;tðPtþ1 þ Dtþ1Þ; ð3Þ
where Dt denotes the per-share cash dividends paid by the companies issuing the

stocks and rf is the riskless interest rate. Dt can follow a stochastic process not
known to traders. Given these wealth dynamics, the goal of each trader is to

myopically maximize the one-period expected utility function,
Ei;tðUðWi;tþ1ÞÞ ¼ Eð� expð�kWi;tþ1ÞjIi;tÞ; ð4Þ
subject to Eq. (3), where Ei;tð�Þ is trader i’s conditional expectations of Wtþ1

given his information up to t (the information set Ii;t).
It is well known that, under CARA utility and Gaussian distributions for

the forecasts, trader i’s desired demand, h�i;tþ1, for holding shares in the risky

asset is linear in terms of the expected excess return:
h�i;t ¼
Ei;tðPtþ1 þ Dtþ1Þ � ð1þ rfÞPt

kr2
i;t

; ð5Þ
where r2
i;t is the conditional variance of ðPtþ1 þ Dtþ1Þ given Ii;t.

The key point in relation to the agent-based artificial stock market is the

formation of Ei;tð�Þ. In this paper, the expectation is modeled by genetic

programming. The details are described in the next subsection.
2.2. Price determination

Given h�i;t, the market mechanism is described as follows: Let bi;t be the

number of shares trader i would like to submit a bid to buy in period t, and let
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oi;t be the number of shares trader i would like to offer to sell in period t. It is
clear that
bi;t ¼
h�i;t � hi;t�1; h�i;t P hi;t�1;
0; otherwise;

�
ð6Þ
and
oi;t ¼
hi;t�1 � h�i;t; h�i;t < hi;t�1;
0; otherwise:

�
ð7Þ
Furthermore, let
Bt ¼
XN
i¼1

bi;t and Ot ¼
XN
i¼1

oi;t
be the totals of the bids and offers for the stock in period t, where N is the

number of traders. Following Palmer et al. [47], we use the following simple

rationing scheme:
hi;t ¼
hi;t�1 þ bi;t � oi;t if Bt ¼ Ot;
hi;t�1 þ Ot

Bt
bi;t � oi;t if Bt > Ot;

hi;t�1 þ bi;t � Bt
Ot
oi;t if Bt < Ot:

8<: ð8Þ
All of these cases can be subsumed into
hi;t ¼ hi;t�1 þ
Vt

Bt
bi;t �

Vt

Ot
oi;t; ð9Þ
where Vt 	 minðBt;OtÞ is the volume of trade in the stock.
According to Palmer et al.’s rationing scheme, we can have a very simple

price adjustment scheme, based solely on the excess demand Bt � Ot:
Ptþ1 ¼ Ptð1þ bðBt � OtÞÞ; ð10Þ

where b is a function of the difference between Bt and Ot. b can be interpreted

as the speed of adjustment of prices. The b function we consider is
bðBt � OtÞ ¼
tanhðb1ðBt � OtÞÞ if Bt POt;
tanhðb2ðBt � OtÞÞ if Bt < Ot;

�
ð11Þ
where tanh is the hyperbolic tangent function:
tanhðxÞ 	 ex � e�x

ex þ e�x
:

The price adjustment process introduced above implicitly assumes that the

total number of shares of the stock circulated in the market is fixed, i.e.
Ht ¼
XN
i¼1

hi;t ¼ H : ð12Þ
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In addition, we assume that dividends and interest are all paid with cash,

so that
5 Th

to Che
6 Se
Mtþ1 ¼
XN
i¼1

Mi;tþ1 ¼ Mtð1þ rfÞ þ HtDtþ1: ð13Þ
2.3. Formation of expectations

As to the formation of traders’ expectations, Ei;tðPtþ1 þ Dtþ1Þ, we assume
the following functional form for Ei;tð�Þ: 5
Ei;tðPtþ1 þ Dtþ1Þ ¼
ðPt þ DtÞð1þ h1fi;t 
 10�4Þ if � 104 6 fi;t 6 104;
ðPt þ DtÞð1þ h1Þ if fi;t > 104;
ðPt þ DtÞð1� h1Þ if fi;t < �104:

8<:
ð14Þ
The population of fi;t ði ¼ 1; . . . ;NÞ is formed by genetic programming. That

means the value of fi;t is decoded from its GP tree gpi;t.
6

As to the subjective risk equation, we modified the equation originally used

by Arthur et al. [2]:
r2
i;t ¼ ð1� h2Þr2

t�1jn1 þ h2 Ptð þ Dt � Ei;t�1ðPt þ DtÞÞ2; ð15Þ
where
r2
t�1jn1 ¼

Pn1�1

j¼0 ðPt�j � P tjn1Þ
2

n1 � 1
and
P tjn1 ¼
Pn1�1

j¼0 Pt�j

n1
:

In other words, r2
t�1jn1 is simply the historical volatility based on the past n1

observations.

Given each trader’s expectations, Ei;tðPtþ1 þ Dtþ1Þ, according to Eq. (5) and

his own subjective risk equation, we can obtain each trader’s desired demand,

h�i;tþ1 shares of the stock, and then determine how many shares of the stock each

trader intends to bid or offer based on Eq. (6) or (7).
ere are several alternatives to model traders’ expectations. The interested reader is referred

n et al. [15].

e Chen and Yeh [13] for more details about the GP-based evolutionary forecasting processes.
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3. Experimental designs and data description

3.1. Experimental designs

As mentioned earlier, our simulations are based on the software, AIE-ASM,

Version 3. A tutorial on this software can be found in [15]. This tutorial ex-

plains most of the parameters shown in Table 1, the details of which we shall

skip except for mentioning that most parameter values are taken from [13]. The

simulations presented in this paper are mainly based on three different designs.

These designs are motivated by our earlier studies on the ABSM, in particular

[10,13,14]. These three designs differ in two key economic parameters, namely,

dividend processes and risk attitude.
In Market A, the baseline market, the dividend process is assumed to be iid

Gaussian and the traders’ degree of absolute risk aversion (k) is assumed to be

0.1. In Market B, the traders are assumed to be more risk-averse, which is

characterized by a higher degree of absolute risk aversion (k ¼ 0:5). As to

Market C, the dividends are assumed to be iid uniformly distributed, while

traders’ attitudes toward risk are assumed to be the same as those in the

baseline market. Three runs were conducted for each of the three markets, each

with 5000 generations. Table 2 is a summary of our experimental designs.
3.2. Data description

The data generated from each run of the simulations is then used to test for

the existence of the price–volume relation. As we mentioned in Section 1,

Granger causality is employed to define the dynamic relation between prices

and trading volume. Following the standard econometric procedure, we first

applied the augmented Dickey–Fuller unit root test to examine the stationa-

rities of the price series, Pt, and the trading volume series, Vt . Based on the

testing results, the difference transformation was taken to make sure that all

time series were stationary:
7Th

volume
rt ¼ lnðPtÞ � lnðPt�1Þ; vt ¼ Vt � Vt�1;
7

where rt is also known as the stock return. We then examined the causal

relation between rt and vt. To test whether there is any uni-directional causality

from one variable to the other, we followed the conventional approach in

econometrics, i.e. the linear Granger causality test and, for the nonlinear case,
e reason why we did not take the log-difference transformation for volume is that trading

may be zero in some trading periods.



Table 1

Parameters of the stock market

The stock market

Shares per capita (h) 1

Initial money supply per capita (m) 100

Risk-free interest rate (rf ) 0.1

Stochastic process (Dt) i.i.d. Normal (l ¼ 10; r2 ¼ 4) [Market A, Market B]

i.i.d. Uniform (5, 15) [Market C]

Price adjustment function tanh

Price adjustment (b1) 10�4

Price adjustment (b2) 0.2· 10�4

Traders

Number of traders 500

Degree of ARA (k) 0.1 [Market A, Market C], 0.5 [Market B]

Criterion of fitness (traders) Increments in wealth

Sample size of r2
t 10

Evaluation cycle 1

Sample size 10

Search intensity 5

h1 0.5

h2 10�4

h3 0.0133

Business school

Number of faculty members 500

Proportion of trees initiated

By the full method 0.5

By the grow method 0.5

Function set fþ;�;
;�,
p
, sin; cos; exp;Rlog; absg

Terminal set fPt; Pt�1; . . . ; Pt�10; Vt�1; . . . ; Vt�10; Pt�1 þ
Dt�1; . . . ; Pt�10 þ Dt�10g

Selection scheme Tournament selection

Tournament size 2

Proportion of offspring trees created

By reproduction (pr) 0.1

By crossover (pc) 0.7

By mutation (pm) 0.2

Probability of mutation 0.0033

Mutation scheme Tree mutation

Replacement scheme Tournament selection

Maximum depth of tree 17

Number of generations 5000

Maximum in the domain of RExp 1700

Criterion of fitness (faculty) MAPE

Evaluation cycle 20

Sample size (MAPE) 10
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the modified Baek and Brock test. We briefly present these notions of causality

and the associated implementation procedures in the next section.



Table 2

Experimental designs

Market Case Stochastic process of

dividends

Measure of ARAa

Market A A1, A2, A3 i.i.d. Normal (l ¼ 10;r2 ¼ 4) 0.1

Market B B1, B2, B3 i.i.d. Normal (l ¼ 10;r2 ¼ 4) 0.5

Market C C1, C2, C3 i.i.d. Uniform (5, 15) 0.1

aNote that ARA stands for ‘‘absolute risk aversion’’.
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4. Wiener–Granger causality: definition and testing

The concept of causality plays a crucial role in many empirical economic

studies, and is particularly important for our understanding and interpretation

of dynamic economic phenomena. Nevertheless, it is difficult to give a formal

notion of causality. This issue, in fact, is a philosophical one (see, e.g., Geweke

[26]). Wiener [55], however, proposed a widely accepted concept of causality

based on the predictive relation between the two time series in question. This

notion of causality, known as Wiener–Granger causality (or simply Granger

causality), was then introduced to economists by Granger [27].
In this section, we first review the definition of causality in the Wiener–

Granger sense, followed by introducing two different versions of Granger-

causality tests proposed by Granger himself [27] and Hiemstra and Jones [32].

The former can only be applied to test the linear causal relation, whereas the

latter is the extension of the former to the nonlinear case.
4.1. Definition

Suppose that we have two stationary time series, i.e. fXtg and fYtg, where
t ¼1; 2; . . ., in hand. Without loss of generality, we shall illustrate Wiener–

Granger’s definition and testing procedures by showing how to conduct uni-

directional causality tests from fYtg to fXtg. Based on Wiener–Granger’s

definition [27,55], fYtg fails to cause fXtg if we remove the past values of Yt from

the information set, we can get no worse prediction of present and future values

of Xt, only provided by lagged values of Xt itself. Formally, it is defined as

follows:
Definition 1 (Wiener–Granger causality). Let F ðXtjI�Þ be the conditional

probability distribution of Xt given some information set I�. Under certain lag

lengths of Lx and Ly, fYtg fails to cause fXtg in the Wiener–Granger sense if
F XtjIt�1ð Þ ¼ F Xtj It�1

��
� YLy

t�Ly

��
; t ¼ 1; 2; 3; . . . ; ð16Þ
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where It�1 	 XLx
t�Lx;Y

Ly
t�Ly

� �
is the bi-variate information set consisting of an Lx-

length lag vector of Xt and an Ly-length lag vector of Yt, i.e. XLx
t�Lx 	

ðXt�Lx;Xt�Lxþ1; . . . ;Xt�1Þ and YLy
t�Ly 	 ðYt�Ly ; Yt�Lyþ1; . . . ; Yt�1Þ.

Conversely, if the lagged values of Yt have predictive power for the present

and future values of Xt, then we conclude that the time series fYtg Wiener–
Granger-causes (or simply Granger-causes) the time series fXtg.

4.2. Linear Granger causality testing: vector autoregression (VAR) approach

Based on the definition given above, Wiener–Granger causality refers to a

historical path of one time series which influences the probability distribution
of the present and future path of another time series. However, the definition in

Eq. (16) is not easy to test. Granger [27], therefore, proposed a testable form by

restricting the original concept to a linear prediction model. In other words, he

assumed that predictors are least-squares projections, and the mean square

error (MSE) is adopted to be the criterion for comparing predictive power.

Definition 2 (Linear Granger causality). Given certain lag lengths of Lx and Ly,
fYtg fails to linearly Granger-cause fXtg (denoted by Yt9Xt) if
MSE bE XtjIt�1ð Þ

 �

¼ MSE bE Xtj It�1

��

� YLy

t�Ly

���
; ð17Þ
where MSE bEðXtjI�Þ

 �

denotes the MSE for a prediction of Xt based on some

information set I�.

According to the definition of (linear) Granger causality given above,

we now consider the following well-known bi-variate VAR equations:
Xt ¼ cþ
XLx
i¼1

aiXt�i þ
XLy
j¼1

bjYt�j þ et; ð18Þ

Yt ¼ c0 þ
XLy0
i¼1

a0
iYt�i þ

XLx0
j¼1

b0
jXt�j þ gt; ð19Þ
where the disturbances, fetg and fgtg, are two uncorrelated series following the

conventional assumptions of white noises, say, they are i.i.d. with zero mean
and some common variance of r2 such that
EðetesÞ ¼ EðgtgsÞ ¼ 0 8 s 6¼ t;
and
EðetgsÞ ¼ 0 8 s; t:
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It has been shown by Granger [27] that if fYtg does not Granger-cause fXtg
(linearly), then this is equivalent to saying that bj ¼ 0 for all j ¼ 1; 2; . . . ; Ly
(Eq. (18)). Similarly, fXtg does not Granger-cause fYtg (linearly) if, and only if,

b0
j ¼ 0 for all j ¼ 1; 2; . . . ; Lx0 (Eq. (19)).
In this linear framework, we can then conduct the Wald test (an F or an

asymptotically equivalent v2-test) for the null hypothesis:
8 Th

309], f
9 Se

specify
H0 : b1 ¼ b2 ¼ � � � ¼ bLy ¼ 0
in Eq. (18), or equivalently,
H0 : Yt9Xt:
8

If the coefficients of the Ly-length lagged series of Yt are jointly significantly

different from zero, then we can conclude that the time series fYtg Granger-

causes the time series fXtg, or, equivalently, that lagged Yt has statistically

significant linear forecasting power for current Xt. By following the same pro-

cedure, we can also test whether fXtgGranger-causes fYtg (denoted by Xt ! Yt)
or not.

Unfortunately, in order to conduct the tests illustrated above, we face a

knotty problem of lag-length selection. More specifically, we need to choose

appropriate lag lengths of Xt and Yt, that is, the values of Lx, Ly, Lx0 and Ly0. In
the earlier empirical studies, researchers often chose the lag-length by some

rules of thumb (ad hoc methods). Nevertheless, as Hsiao [34] has shown, it

would often be the case that the distributions of test statistics, and hence the

results of the (linear) Granger causality tests, are sensitive to the choice of lag
lengths. To cope with this technical issue, several statistical search criteria, viz.

AIC, FPE, BEC, etc., are used to determine the optimal lag structure of Eqs.

(18) and (19) in the related literature. 9
4.3. Nonlinear Granger causality testing: modified Baek and Brock approach

The earlier studies on the price–volume relation focused exclusively on linear

causalities [1,37,48,49,51], and the test procedure stated in the last subsection

has been widely adopted by economists in empirical studies to detect causal

relationships between two time-dependent variables of interest. Such a VAR
ose who are not familiar with these test procedures are referred to Hamilton [30, pp. 302–

or a comprehensive reference.

e Jones [39] for a survey of the nonstatistical ad hoc methods and those statistical criteria for

ing optimal lag lengths in (linear) Granger causality testing.
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approach, nevertheless, has low power in terms of uncovering nonlinear cau-

salities (see Brock [4] and Baek and Brock [3]).

Following the definition of Wiener–Granger causality presented in Eq. (16),

Baek and Brock [3] proposed a nonparametric statistical counterpart for
detecting nonlinear causal relations. To this end, their technique was based on

the correlation integral, which is an estimator of spatial dependence across

time. By first filtering out linear predictive power with the VAR model in Eqs.

(18) and (19), they argued that any remaining predictive power existing be-

tween the two residual series of fêtg and fĝtg could be considered to be non-

linear. Their test is built upon the assumptions that the two series of residuals

are mutually independent and individually i.i.d. This method was modified by

Hiemstra and Jones [32] to allow for the residuals being weakly dependent.

Definition 3 (Modified Baek and Brock approach). Consider the two estimated

residual series from the VAR model in Eqs. (18) and (19), i.e. fêtg and fĝtg.
Assume that they are strictly stationary and weakly dependent. We then define

the following notations:
Em
t 	 êt; êtþ1; . . . ; êtþm�1


 �
; m ¼ 1; 2; . . . ; t ¼ 1; 2; . . . ;

ELx
t�Lx 	 êt�Lx; êt�Lxþ1; . . . ; êt�1


 �
; Lx ¼ 1; 2; . . . ; t ¼ Lxþ 1; Lxþ 2; . . . ;

HLy
t�Ly 	 ĝt�Ly ; ĝt�Lyþ1; . . . ; ĝt�1


 �
; Ly ¼ 1; 2; . . . ; t ¼ Ly þ 1; Ly þ 2; . . .
Given certain lag lengths of Lx and Ly P 1, fYtg fails to nonlinearly Granger-

cause fXtg (denoted by Yt;Xt) if
Pr kEm
t

�
� Em

s k < e kELx
t�Lx

�� � ELx
s�Lxk < e; kHLy

t�Ly �H
Ly
s�Lyk < e

�
¼ Pr kEm

t

�
� Em

s k < e kELx
t�Lx

�� � ELx
s�Lxk < e

�
; ð20Þ
for some pre-designated values of lead length m and distance e > 0. Note that

Prð�Þ denotes probability and k � k denotes the sup norm.

In order to transform Eq. (20) into a testable form, we denote the joint and

marginal probabilities by
C1ðmþ Lx; Ly; eÞ 	 Pr EmþLx
t�Lx

� � EmþLx
s�Lx

 < e; HLy
t�Ly

 �HLy
s�Ly

 < e
�
;

C2ðLx; Ly; eÞ 	 Pr Et�Lx
Lx

� � Es�Lx
Lx

 < e; HLy
t�Ly

 �HLy
s�Ly

 < e
�
;

C3ðmþ Lx; eÞ 	 Pr EmþLx
t�Lx

� � EmþLx
s�Lx

 < e
�
;

C4ðLx; eÞ 	 Pr ELx
t�Lx

� � ELx
s�Lx

 < e
�
:

ð21Þ
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By the definition of conditional probability, say PrðAjBÞ ¼ PrðA \ BÞ=PrðBÞ,
we can modify Eq. (20) slightly into
10 F

[32, p.
11 In

approa

bootst
12 T

distrib

brief il
C1ðmþ Lx; Ly; eÞ
C2ðLx; Ly; eÞ

¼ C3ðmþ Lx; eÞ
C4ðLx; eÞ

ð22Þ
for some given values of m, Lx, and Ly P 1 and e > 0. This implies that fYtg
does not Granger-cause fXtg (nonlinearly) if Eq. (22) holds.

Baek and Brock [3] suggested correlation-integral estimators for the joint
and marginal probabilities in Eq. (21)––denoted as bC1ðmþ Lx; Ly; eÞ,bC2ðLx; Ly; eÞ, bC3ðmþ Lx; eÞ, and bC4ðLx; eÞ––to test the condition (22). 10

Then Baek and Brock [3] constructed the following asymptotic test statistic

for given values of m, Lx, and Ly P 1 and e > 0: 11
ffiffiffi
n

p bC1ðmþ Lx;Ly; eÞbC2ðLx; Ly; eÞ

 
�
bC3ðmþ Lx; eÞbC4ðLx; eÞ

!
�a Nð0; r2ðm; Lx; Ly; eÞÞ: ð23Þ
The asymptotic Gaussian distribution of this test statistic holds under the null
hypothesis that fYtg does not Granger-cause fXtg (nonlinearly), i.e. H0 : Yt;Xt.

By further using the delta method, 12 Hiemstra and Jones [32, pp.1660–1662]

suggested using a consistent estimator for r2ðm; Lx; Ly; eÞ in Eq. (23) to conduct

the test empirically.

Note that a significant positive value in Eq. (23) suggests that fYtg does

Granger-cause fXtg (nonlinearly). Nevertheless, a significant negative test

statistic is indicative that ‘‘knowledge of the lagged values of Y confounds the

prediction of X ’’ (see Hiemstra and Jones [32, p. 1648], italics added). Thus,
we conduct the modified Baek and Brock test only with right-tailed critical

values. Like the VAR approach in linear Granger-causality testing, we face

the same difficulty in choosing appropriate lagged lengths of Lx and Ly.
Unfortunately, unlike linear Granger-causality testing, there is no literature

discussing how to specify the optimal values of those parameters, i.e. m, Lx,
Ly, and e. In this paper, we simply follow Hiemstra and Jones [32] to tackle

this issue.
or the definition and details of these correlation-integral estimators, see Hiemstra and Jones

1647].

stead of asymptotic distribution theory, Diks and DeGoede [19] proposed another

ch to test the equivalence in Eq. (22) based on bootstrap methods. They reported that their

rap tests and the modified Baek and Brock test performed almost equally well.

he delta method is a prevailing tool in econometric studies. It helps to derive asymptotic

utions for arbitrary nonlinear functions of an estimator. See Cambpell et al. [7, p. 540] for a

lustration.



Table 3

Basic descriptive statistics

Case HREEP P MAPE (%) MPE (%) rP

A1 96 104.72 9.21 9.08 5.004

A2 96 103.84 8.39 8.16 5.085

A3 96 104.54 9.07 8.90 5.054

B1 80 84.25 6.01 5.31 3.967

B2 80 84.53 6.16 5.66 3.762

B3 80 84.21 5.93 5.26 3.838

C1 91.667 108.32 18.16 18.16 5.350

C2 91.667 108.24 18.08 18.08 5.359

C3 91.667 108.54 18.42 18.41 5.666
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5. Results of experiments

We first summarize some basic descriptive statistics of our simulation results

in Table 3. 13 Some essential features, such as price deviation (or price discov-

ery) and excess volatility, were already studied in our earlier papers [10,12]. The

summary statistics reported in this table show nothing significantly different

from what we found there. We therefore focus exclusively on the price–volume

relation in this paper. The presentation of our results proceeds as follows: First,
we start from the aggregate data (the macro-level). At this level, the issue that

concerns us is whether price–volume causality exists. Second, we then go down

to the ‘‘bottom’’ level, and examine the micro-structure of traders. Finally, what

we find at the ‘‘top’’ is compared with what we found at the ‘‘bottom’’ to see

whether the micro–macro relation is consistent.

5.1. Aggregate outcomes: Granger causality at the ‘‘top’’

Table 4 gives the test results for linear causality. The results are mixed. In

some cases, the causal relation is not found to exist in both directions. In some

other cases, uni-directional causality is found. Clearly, the existence of the
causal relation is not definite. This picture is somewhat in line with what we
13 Note that HREEP stands for homogeneous rational expectations equilibrium price. In the

model which we construct in Section 2, it can be derived that

HREEP ¼ 1

rf
�d
�

� kr2
d

H
N

�
;

by further incorporating the assumptions of a representative agent with rational expectations and

perfect foresight. See Chen and Liao [10] for the proof. We further define P ¼ 1
T

P
Pt, MAPE ¼

1
T

P
j Pt�HREEP

HREEP
j, and MPE ¼ 1

T

P
ðPt�HREEP

HREEP
Þ to show how far the artificial stock prices deviate from

the HREE price. Also note that rP , the standard deviation of prices, shows the price volatility of

the artificial stock markets.



Table 4

Linear Granger causality test

Case H0: Volume changes do not cause

stock returns (vt9rt)
H0: Stock returns do not cause

volume changes (rt9vt)

# of lags F -value p-value # of lags F -value p-value

A1 16 1.942 0.0134� 20 1.030 0.4218

A2 7 1.154 0.3261 18 1.243 0.2166

A3 16 1.398 0.1324 18 1.246 0.2145

B1 10 1.262 0.2459 20 1.020 0.4331

B2 10 4.832 0.0000� 20 1.074 0.3701

B3 10 2.510 0.0052� 18 1.314 0.1672

C1 7 0.579 0.7733 20 0.503 0.9671

C2 14 0.650 0.8244 20 0.987 0.4744

C3 8 2.519 0.0099� 17 0.897 0.5778

Note that � represents the rejection of the null at the 5% significant level.
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learned from the literature: Some found the existence of linear causality, while

some did not.

Table 5 shows the results for nonlinear causality, and the results are also

inconclusive, which is also in line with what we experienced in the literature.

The bi-directional nonlinear causality is found only in cases B2 and B3, while
the uni-directional causality from returns-to-volume exists in many cases. The

returns-to-volume causal relation is in general much stronger than the volume-

to-returns causality.

5.2. Traders’ behavior: Granger causality at the ‘‘bottom’’

Coming down to the ‘‘bottom’’ of the ABSM, we are interested in knowing the

beliefs of agents. Did agents believe in the price–volume relation? Did they actu-

ally apply volume to their forecasts of prices (returns)? To answer these questions,

we have to check how many traders in fact used past trading volume to forecast

future prices. That is to say, we have to check whether the traders incorporated

trading volume into their expectations-generating formula (their GP trees).

To make the discussion convenient, we refer to those who believe that
trading volume is useful information for predicting future prices as price–vol-

ume believers. By applying the technique invented by Chen and Yeh [14], we

counted the number of price–volume believers. Since the counting work is very

computationally demanding, a concession was made only after every 500

generations. This number is given in Table 6. In some cases, say B3, C1, and

C2, the belief in the price–volume relation prevails among the public from the

beginning right through to the end of the simulations. In some other cases,

such as A1, A3, and C3, price–volume believers finally die out. Note that the
number of price–volume believers may fluctuate during the whole of the



Table 5

Nonlinear Granger causality test

Case H0: Volume changes do not cause

stock returns (vt;rt)
H0: Stock returns do not cause

volume changes (rt;vt)

# of lags TVAL p-value # of lags TVAL p-value

A1 1 0.091 0.4638 1 1.030 0.1515

2 0.652 0.2573 2 1.932 0.0267�

3 0.878 0.1899 3 1.502 0.0666y

4 1.169 0.1212 4 0.238 0.4060

5 0.668 0.2520 5 1.029 0.1518

6 0.117 0.4533 6 1.436 0.0755y

7 )0.314 0.6234 7 0.905 0.1827

8 )0.382 0.6487 8 0.951 0.1708

9 )0.067 0.5267 9 1.028 0.1519

10 )0.109 0.5434 10 0.956 0.1695

A2 1 )0.582 0.7196 1 )0.409 0.6586

2 )1.413 0.9212 2 1.114 0.1327

3 )0.775 0.7809 3 0.273 0.3923

4 )1.252 0.8947 4 0.300 0.3821

5 )0.383 0.6493 5 )0.087 0.5345

6 )0.428 0.6656 6 0.802 0.2112

7 0.770 0.2207 7 0.187 0.4258

8 1.046 0.1479 8 0.518 0.3022

9 0.648 0.2585 9 0.152 0.4397

10 0.575 0.2825 10 )0.122 0.5486

A3 1 )0.636 0.7377 1 2.180 0.0146�

2 )0.678 0.7512 2 1.837 0.0331�

3 )0.141 0.5560 3 2.191 0.0142�

4 )0.213 0.5844 4 2.303 0.0106�

5 )1.008 0.8432 5 1.230 0.1095

6 )0.905 0.8173 6 0.654 0.2565

7 )1.407 0.9202 7 1.841 0.0328�

8 )1.569 0.9416 8 0.983 0.1628

9 )1.811 0.9649 9 1.813 0.0350�

10 )1.350 0.9115 10 2.907 0.0018�

B1 1 )0.999 0.8412 1 )0.198 0.5783

2 )1.043 0.8515 2 0.019 0.4925

3 )1.534 0.9374 3 1.139 0.1274

4 )0.933 0.8245 4 0.873 0.1914

5 )0.447 0.6724 5 0.617 0.2685

6 )0.094 0.5373 6 0.235 0.4071

7 )0.158 0.5626 7 0.212 0.4161

8 )0.052 0.5208 8 0.182 0.4278

9 0.013 0.4950 9 )0.117 0.5468

10 )0.227 0.5899 10 )0.916 0.8201

B2 1 4.193 0.0000� 1 3.490 0.0002�

2 5.344 0.0000� 2 2.419 0.0078�

3 4.938 0.0000� 3 2.377 0.0087�
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Table 5 (continued)

Case H0: Volume changes do not cause

stock returns (vt;rt)
H0: Stock returns do not cause

volume changes (rt;vt)

# of lags TVAL p-value # of lags TVAL p-value

4 4.560 0.0000� 4 2.799 0.0026�

5 5.564 0.0000� 5 2.917 0.0018�

6 5.244 0.0000� 6 2.384 0.0086�

7 5.083 0.0000� 7 2.294 0.0109�

8 4.017 0.0000� 8 2.256 0.0120�

9 3.256 0.0006� 9 2.650 0.0040�

10 3.179 0.0007� 10 2.920 0.0018�

B3 1 1.492 0.0678y 1 2.147 0.0159�

2 1.847 0.0324� 2 2.204 0.0138�

3 1.759 0.0393� 3 2.326 0.0100�

4 2.375 0.0088� 4 3.724 0.0001�

5 2.925 0.0017� 5 3.259 0.0006�

6 2.297 0.0108� 6 3.699 0.0001�

7 2.542 0.0055� 7 3.570 0.0002�

8 1.467 0.0712y 8 3.498 0.0002�

9 1.166 0.1218 9 2.234 0.0128�

10 1.259 0.1041 10 2.335 0.0098�

C1 1 0.322 0.3738 1 0.451 0.3260

2 0.885 0.1880 2 )0.512 0.6957

3 1.234 0.1085 3 )0.436 0.6686

4 1.377 0.0843y 4 0.560 0.2877

5 1.265 0.1030 5 0.625 0.2659

6 1.003 0.1580 6 1.084 0.1393

7 0.506 0.3065 7 0.239 0.4057

8 0.537 0.2955 8 0.341 0.3664

9 0.248 0.4022 9 0.097 0.4612

10 0.089 0.4644 10 0.158 0.4371

C2 1 0.829 0.2035 1 )2.073 0.9809

2 )0.462 0.6779 2 )0.149 0.5594

3 )0.381 0.6484 3 )0.001 0.5003

4 0.039 0.4845 4 0.282 0.3889

5 0.518 0.3023 5 )0.358 0.6400

6 0.219 0.4133 6 )0.518 0.6979

7 0.178 0.4294 7 )0.421 0.6632

8 )0.084 0.5334 8 0.709 0.2390

9 )0.264 0.6040 9 1.238 0.1078

10 )0.515 0.6967 10 0.860 0.1948

C3 1 )0.833 0.7975 1 )0.686 0.7536

2 )0.247 0.5976 2 )1.797 0.9639

3 )0.381 0.6483 3 )0.878 0.8100

4 )0.854 0.8035 4 0.009 0.4964

5 )0.983 0.8373 5 0.712 0.2382

6 )0.751 0.7738 6 0.967 0.1667

(continued on next page)
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Table 5 (continued)

Case H0: Volume changes do not cause

stock returns (vt;rt)
H0: Stock returns do not cause

volume changes (rt;vt)

# of lags TVAL p-value # of lags TVAL p-value

7 )0.177 0.5702 7 0.873 0.1912

8 )0.084 0.5336 8 1.320 0.0934y

9 )0.316 0.6241 9 2.453 0.0071�

10 )0.511 0.6955 10 2.069 0.0193�

Note that � represents the rejection of the null at the 5% significant level, whereas � represents the

same at the 10% significant level.

Table 6

Number of price–volume believers among a total of 500 agents

Generation Case

A1 A2 A3 B1 B2 B3 C1 C2 C3

1 200 179 278 180 187 241 188 187 250

500 45 106 322 387 176 431 325 317 263

1000 0 28 371 297 0 415 281 302 94

1500 0 0 170 124 69 398 313 313 192

2000 0 0 86 208 92 382 237 496 182

2500 0 3 23 134 470 496 350 500 7

3000 0 0 125 0 279 465 351 500 3

3500 0 3 32 0 133 500 477 499 0

4000 0 0 0 42 1 492 416 446 0

4500 0 0 0 16 0 476 325 498 0

5000 0 3 0 24 0 498 273 483 0
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simulation period, e.g., B1 and B2. A striking phenomenon is that price–vol-

ume believers may revive even after some periods of noughts. A2 is a case in

point. We are now ready to check whether the macro-phenomenon of the

price–volume relation we observed at the ‘‘top’’ matches what we observed at

the ‘‘bottom’’. This issue, called consistency, is discussed in the next subsection.
5.3. The micro–macro relation

In the agent-based modeling framework, we are particularly interested in

the so-called micro–macro relation. 14 Based on the simulation results we have,
14 This issue, however, is the key to unlock the mysteries of emergent properties in all kinds of

complex adaptive systems (CASs). Trying to understand the aggregate phenomena via the adaptive

behavior of interacting agents at the bottom level is the essence of the science of complexity. One

may still wish to trace how individual agents could receive feedback from the macro-phenomena

and further adapt themselves to form far richer micro–macro dynamic scenarios. Not too

surprisingly, agent-based models in economics, following the paradigm of CASs, have paid great

attention to the micro–macro relation in recent studies [11,24,36,52,53].



Table 7

Micro–macro relation

Market participants used the

volume to forecast price

Market participants did not use

the volume to forecast price

vt ! rt or vt ) rt B3 A1, B2, C3

vt9rt and vt;rt C1, C2 A2, A3, B1
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four basic patterns stand out. These can be roughly divided into two cate-

gories, namely, consistent patterns and inconsistent ones. A pattern is called

consistent if the macro-behavior tends to lend support to what most indi-

viduals believe or come to believe. A pattern is called inconsistent if the

macro-behavior tends to invalidate what most individuals believe or come to
believe (see Table 7).

In a more technical way, let the hypothesis that the volume does not

Granger-cause returns be the null hypothesis. If this null hypothesis is rejected

(or fails to be rejected) by the aggregate market outcome based on econometric

tests, then we say that the pattern is consistent if it is also rejected (or fails to be

rejected) by most or by an increasing number of market participants. Other-

wise, it is called inconsistent.

According to the definition above, the cases A2, A3, B1 and B3 exhibit
consistent patterns (the main diagonal boxes of Table 7), whereas the cases A1,

B2, C1, C2 and C3 demonstrate inconsistent patterns (the off-diagonal boxes

of Table 7).

Among the consistent patterns, B3 is the case where the null hypothesis is

consistently rejected by both macro- and micro-behavior. Its number of price–

volume believers is persistently high during the entire simulation. In particular,

for the second half of the trading session, almost all agents rejected the null by

forecasting returns with volume (see Table 6).
A2, A3 and B1 are the other consistent patterns. In these three cases, the null

failed to be rejected in both the linear and nonlinear tests, and our traders’

beliefs were in line with this test result. The number of participants who be-

lieved the null hypothesis continuously decreased. For example, consider case

A3. At the beginning, there were a great number of traders who used volume

in their forecasts of returns. Nonetheless, after period 1500, the number

dramatically fell from 300 to 100, and further to nil.

Among the inconsistent patterns (patterns in the off-diagonal boxes of Table
7), C1 and C2 share the feature that the market is composed of hundreds of

price–volume believers, while the causality test shows that the volume cannot

help predict returns. This result is particularly striking in case C2, where the

market reached a state where all market participants are price–volume

believers.

Equally interesting inconsistent patterns are cases A1, B2 and C3. In these

cases, the causality test did indicate the significance of volume in return
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forecasting, but traders eventually gave up the use of this variable in their

forecasts of returns.
5.4. Discussion

The analysis so far is mainly driven by the aggregate outcome. Basically, we

are asking whether the individual behavior is consistent with our econometric
tests. In other words, if our tests suggest the existence of a causal relation,

did our ‘‘smart’’ and ‘‘adaptive’’ agents also notice it to be so?

The real issue is whether these inconsistent patterns are unanticipated or

whether they are puzzling us. The answer is not necessarily so. There are, in

effect, some arguments that would predict why these inconsistent patterns may

appear. For example, consider cases C1 and C2. A supportive argument would

be the following: It is the intensive search, characterized by a large number of

price–volume believers, over the hidden relation between volume and returns
that eventually nullifies the effect of volume on returns and makes volume

become a useless variable. In this case, the micro and macro relation observed

in cases A3 and B3 is actually also in harmony. As a matter of fact, using this

argument, one can question whether these ‘‘consistent’’ patterns are really

consistent. For instance, if no one gives the volume variable a try, would it be

possible for the volume-to-price relation to finally emerge as a secret which has

never been disclosed?

The argument which we have just been through points out one serious
limitation in the analysis of micro and macro relations that we proposed above.

In this analysis, we treat the whole micro-process as one sample, and the whole

macro-process as the other sample. We then look into the consistency between

the two samples. However, what is neglected is the complex dynamic feedback

relation existing between aggregate outcome and individual behavior, as aptly

depicted by Farmer and Lo [22, p. 9992]:

Patterns in the price tend to disappear as agents evolve profitable strate-
gies to exploit them, but this occurs only over an extended period of time,

during which substantial profits may be accumulated and new patterns

may appear.

As for cases A1 and C3, we saw that there exists only linear Granger cau-

sality between returns and trading volume at the macro-level. Nevertheless,

from the micro-viewpoint, traders were not aware of this. One possible

explanation for observing such inconsistency is the huge search space defined
by GP. The linear function set has only a measure of zero in it. If we restrict

our attention only to the nonlinear causality test, then there is no inconsistency

in cases A1 and C3. It follows that traders may overlook the usefulness of
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linear models, and perform most of their trials over the space for nonlinear

models. As we may expect, they will eventually give up their attempts, because

nonlinear causality does not exist. However, this explanation cannot be applied

to case B2, in which the nonlinear causal relation is also shown to be statis-
tically significant.

To sum up, there is no definite relation between micro- and macro-behavior.

The appearance of the patterns in the off-diagonal entries shows that the

Neoclassical economic analysis, which generally assumes consistency between

the micro- and macro-behavior, does not have a solid basis. It is in this agent-

based economic model that we show how easy it is to have aggregate results

which are not anticipated based on individual behavior. The reason why one

can have such a large variety of patterns is mainly because of complex dynamic
interactions between individuals and the market.

Financial market dynamics is path-dependent, highly complex and nonlin-

ear because it is the outcome of continuously evolving and interacting

behavior, which is largely driven by survival pressure. It is therefore difficult to

draw a simple conclusion on the relation between micro- and macro-behavior.

To fully trace their interactions, an analysis based on high-frequency sampling

(or a census) of traders’ behavior is required. Statistical analysis based on small

samples is also useful for investigating the potential time variant relation, due
to the real time survival pressure.
6. Conclusions

One distinguishing feature of ACE (and thus ABSMs) is that some inter-
esting macro-phenomena of financial markets could emerge (be endogenously

generated) from interactions among adaptive agents without exogenously

imposing any conditions like unexpected events, information cascades, noise or

dumb traders, etc. In this paper, we show that the presence of the stock price–

volume causal relation does not require any explicit assumptions like infor-

mation asymmetry, reaction asymmetry, noise traders, or tax motives. In fact,

it suggests that the causal relation may be a generic property in a market

modeled as an evolving decentralized system of autonomous interacting agents.
We also show that our understanding of the appearance or disappearance of

the price–volume relation can never be complete if the feedback relation be-

tween individual behavior and aggregate outcome is neglected. This feedback

relation is, however, highly complex, and may defy any simple analysis, as in

the case of the one we proposed initially. Consequently, econometric analysis

which fails to take into account this complex feedback relation between the

micro- and macro-aspects may produce misleading results. Unfortunately, we

are afraid that this is exactly what mainstream financial econometrics ended up
doing in a large number of empirical studies.
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