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Abstract

An agent-based computational modeling of the lottery market is established in this paper to study the design issue, in terms of
the lottery tax rate, as well as the emerging market behavior. By using genetic algorithms and fuzzy logic, lottery participants are
modeled as autonomous agents who may endogenously adapt to exhibit behavioral properties consistent with well-noticed behavior
of lottery markets. Three major findings are presented. First, as anticipated, a Laffer curve is found in this model; nonetheless, the
Laffer curve has a flat top, which indicates the non-uniqueness of the optimal lottery tax rate. Second, conscious selection behavior
is also observed, but it becomes weaker as time goes on. Third, for the halo effect, we observe exactly the opposite. Each of these
three findings are then compared with available empirical results, and the mechanism of genetic algorithms is further examined in
light of the anti-halo effect.
© 2008 Elsevier B.V. All rights reserved.
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1. Introduction

Agent-based computational modeling has become a very promising new research tool in economics. One of its main
advantages is its encapsulation of the idea of autonomous agents. Through modern techniques of agent engineering,
the researcher is now endowed with the rich expressive power of the life of agents. This rich expressive power not only
helps us bridge the gap between the artificial world and the real world but also enables us to evaluate the consequences
of some external interventions when the route from cause to effect becomes so complicated that it is hard to trace every
step of it. Over the past decade, fresh and interesting insights have been brought to economic analysis in some active
application areas of agent-based computational modeling, such as the artificial financial market (LeBaron, 2006). As
an extension of studies in artificial stock markets, this paper addresses an agent-based model of lottery markets.

Like the artificial stock markets, the research paradigm based on the representative agent already existed in the study
of the lottery markets before the launch of agent-based modeling, such as Morgan and Vasché (1979, 1982), Mikesell
(1994), Mason et al. (1997), McConkey and Warren (1987), Walker (1998), and Purfield and Waldron (1999). These
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Table 1
The lottery tax rates

Nation Official issuer Tax rate (percent) Commission rate (percent) Net tax rate (percent)

Austria Austrian Lotteries 54.6 9.30 45.3
Belgium Lotterie Natlonale 48.4 6.60 41.8
Brazil Caixa Econômica Federal Bank 68.4 8.20 60.2
Canada Loto-Quebec 48.7 6.80 41.9
Canada Ontario Lottery Corp. 51.2 7.40 43.8
France La Francaise 42.3 5.00 37.3
Germany Westdeutsche 53.0 8.30 44.7
Italy Lottmatica S.P.A. 48.4 10.00 38.4
Italy Sisal Sport Italia 65.4 7.90 57.5
Japan Dai-Ichi Kangyo Bank 54.2 7.40 46.8
Spain ONCE 50.4 16.50 33.9
Sweden Svenska Spel 48.8 9.60 39.2
Taiwan Taipei Bank 40.0 8.40 31.6
UK U.K. National Lottery 53.4 5.10 48.3
USA Ohio State 40.3 6.40 33.9
USA Michigan State 45.4 7.00 38.4
USA Georgia State 45.9 7.00 38.9
USA Maryland State 46.1 5.70 40.4
USA Illinois State 45.9 5.10 40.8
USA Texas State 46.4 5.20 41.2
USA New Jersey State 47.2 5.40 41.8
USA California State 49.3 6.70 42.6
USA New York State 49.4 6.00 43.4
USA Florida State 50.0 5.60 44.4
USA Pennsylvania State 49.1 4.70 44.4

Data sources: “U.S. Lotteries’ Unaudited FY00 Sales by Game,” La Fleurs Lottery World (http://www.lafleurs.com/); Taiwan Lotto
(http://www.roclotto.com.tw/) (the data for Taiwan are from the year 2002, whereas the data for other markets are for the year 2000).

earlier studies treated the demand for lottery tickets as an individual rational choice problem and used demographic
and socioeconomic data to estimate lottery demand. Nevertheless, our departure from the conventional research device
to the agent-based modeling is motivated by the following two empirical observations.

First, Table 1 surveys the lottery tax rates of 25 lottery markets in the world. We see quite a wide distribution of the
tax rate (the takeout rate).1 From the lowest rate of 40 percent in Taiwan to the highest rate of 68.4 percent in Brazil,
the difference is almost as high as 30 percent. Even in the U.S., there is a 10 percent gap from the lowest to the highest.
The difference, which is also reflected in Fig. 1, brings us closer to the design issue. However, the tax rate is only one
dimension of the complex lottery design. Starting from the numbers offered to be selected, the matching rules, to the
money to be awarded for different prizes (such as the jackpot), one can face a great number of combinations (designs).
Nevertheless, in the literature, we see that little effort has been made to evaluate the impact of different designs, such
as their effects upon lottery revenue.2

Since the lottery revenue is a major source of funding for good causes, it is imperative to have a reason to explore
an extensive class of “what-if” scenarios. In this paper, agent-based modeling, as an effective tool for dealing with
“what-if” scenarios, is used to analyze the effect of the tax rate on tax revenue. More specifically, we are interested in
knowing whether there is a Laffer-curve phenomenon in the lottery market. Stated slightly differently, is tax revenue
globally sensitive to the tax rate? If so, what is the optimal tax rate? If not, within what range is it insensitive, and is it
wide enough to justify the empirical range shown in Fig. 1?

1 The tax rate here refers to the gross tax rate, including what is reserved for bookmakers’ commission. It is called the takeout rate, to be
distinguished from the net tax rate. In this paper, the two terms, the tax rate and the takeout rate, will be used interchangeably.

2 The only studies known to us are Scoggins (1995), Hartley and Lanot (2003), and Paton et al. (2003). That the design of the United Kingdom
National Lottery was not maximizing tax revenue was suggested by Hartley and Lanot. Interestingly enough, in October 2001, the U.K. government
implemented a dramatic shift in the taxation of gambling that resulted in a substantial decline in taxes levied on U.K. bookmakers. An empirical
study conducted by Paton et al. (2002) indicated that the tax reduction caused a one-third reduction in duty receipts.

http://www.lafleurs.com/
http://www.roclotto.com.tw/
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Fig. 1. The distribution of tax rates. Data source: see Table 1.

The other empirical observation that motivates an agent-based model of lottery markets is the psychology of the
lottery market. Ordinary gamblers seem to be not so much concerned with the probabilistic calculation of winning
odds; instead, they rely on heuristic strategies for handling the available information. Despite the fact that the series
of the winning numbers is by all means generated by a random mechanism, they tend to believe that future predic-
tions can be made on the basis of past history, and they tend to choose numbers in a non-random manner, called
conscious selection. There are even professional people who make a living by detecting “patterns.” Griffiths and
Wood (2001) provide a splendid review of various heuristics and biases involved in the psychology of lottery, such
as the hindsight bias, representation bias (gambler’s fallacy), the availability bias, and so on. These heuristics and
biases are, however, not easily captured by the standard rational analysis. Nonetheless, in agent-based modeling,
agents can be initialized with various cognitive considerations: the description and design of agents is basically
open-ended.

In this paper, our agents will be initialized with two heuristics and one psychological force. The first heuristic
indicates agents’ portfolio strategies (betting stake) based on their perception of the winning odds and yields the
general observation that the agents’ betting momentum increases with the jackpot prize. This heuristic, however, may
have nothing to do with the sophisticated calculation of the winning probability. In reality, the grand prize is generally
well publicized, which creates an additional excitement referred as to lottomania (Beenstock et al., 2000). Lottomania
takes possession of the public and attracts their greater involvement.3 The second heuristic reveals agents’ perception
of the winning-numbers pattern. No matter how fairly or how randomly the winning lottery numbers were generated,
gamblers tend to believe that some sequences of numbers are less likely than others. For example, a sequence of
consecutive numbers, say, 1, 2, . . ., 6, is considered more improbable than other sequences.

Finally, a psychological force added to the agents’ initialization is a feeling of regret, which is known as the aversion
to regret in the literature (Statman, 2002). Usually, when the mass media intensively reports the winners with their
gigantic prizes, it may make those people who did not gamble feel regret: had they bet, the prize would have been
theirs.4 This psychological force referred as to the regret effect indicates the interdependence of the agents’ utility
functions.

The two above-mentioned heuristics and psychological characteristics are first randomly generated to initialize the
agents’ characteristics. These characteristics will evolve over time as agents are presumably utility-maximizers. As has
been popularized in the literature on agent-based economic models, the evolution will be driven by genetic algorithms.

The remainder of this paper is organized as follows. Section 2 introduces an agent-based model of the lottery
market. Section 3 describes in detail the use of the genetic algorithm. Section 4 outlines the experimental designs. The
simulation results together with a discussion are given in Sections 5 and 6, respectively. Section 7 wraps up the paper
with concluding remarks.

3 In a way, this observation can be related to the availability bias as initially proposed by Kahneman and Tversky (1973).
4 Similarly, if the winner is absent, those who did not gamble may now have a degree of comfort as “I knew it”.
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2. An agent-based model of the lottery market

2.1. The lottery market and its design

Typically, an agent-based model is comprised of two parts, namely, the environment and the agent engineering. The
environment is characterized by a set of rules of the game, governing how agents are connected to the system and to
other agents in the system. Here, we are concerned with a set of rules for a lottery game or design for a lottery game.5

Generally speaking, a lottery game can be parameterized by two parameters (x, X). In an x/X lottery game, we required
both a gambler and the lottery agency to pick x numbers out of a total of X numbers, and then different prizes are set for
different numbers matched. Let y denote the numbers matched. Clearly, y = 0, 1, . . ., x. Let Sy be the prize pool reserved
for the winners who matched the y numbers. A special term is given to the largest pool, Sx, namely, the Jackpot.

Each prize pool, Sy, is to be shared by the number of players who match y numbers, say Ny. In the event that Ny = 0,
Sy is added to the next draw. A particularly interesting case is Nx = 0. A common feature of lotteries is that if there are
no winners in a given draw, the jackpot prize pool from that draw is added to the pool for the next draw, referred to
as a rollover. Rollovers usually enhance the attractiveness of the next draw, called the rollover draw. The prize pool is
defined by the lottery tax rate, τ, which is the proportion of sales that is not returned in the form of prizes. Thus, the
overall prize pool is (1 − τ)S, where S is sales revenue and 1 − τ is also called the pay-out rate. The overall prize pool
will then be distributed to each separate pool based on a distribution (s0, . . ., sx:

∑x
0sy = 1), that is, Sy = sy(1 − τ)S. It

is anticipated that sy will be increasing in y. To recap, a lottery game and its design can be represented by the following
x + 4-tuple vector:

L = (x, X, τ, s0, . . . , sx). (1)

One purpose of this agent-based simulation of the lottery market is to see how the changes in the design L can affect
sales revenue and more importantly, tax revenue.6 This brings us to another dimension of the lottery market, the likely
size of the market can be determined by a series of economic and demographic factors. However, in this paper, we
restrict our attention to only two factors, namely, population size and income. Both variables are treated as control
variables in our agent-based lottery market. Let N denote the number of agents in the market, with each of them being
indexed by ι (ι = 1, 2, . . ., N). For simplicity, one can assume that their income yι is exogenously given and fixed. In the
simplest case, yι is further assumed to be identical among all agents, yι = ȳ, ∀ι. (N × ȳ) gives us only an upper limit
on the market size. Lottery draws take place at regular intervals, and at each draw, agents decide how many tickets
to purchase. Therefore, the actual market size is determined by agents’ participation, which is the aggregation of the
behavior of individual agents.

In the literature, there are two approaches used to analyze agents’ participation in the lottery markets. The first
approach is to use the empirical data to model the principal features of the observed aggregate behavior.7 The second
approach is to start from a rational model of representative agents, and to then aggregate these representative agents.8

The agent-based model is closer to the latter, while not using the devices of rationality and homogeneity. Agents are
initially heterogeneous and boundedly rational, but they are autonomous and learning over time. Their details are left
for the next subsection.

2.2. Agent engineering

What motivates agents to gamble, and how much to bet? We do not think that there is a unique answer or unique
approach to this issue. Therefore, there are a number of possibilities in agent engineering. Nevertheless, a sound
principle is to ground agent engineering with theoretical and empirical observations. By doing so, one can minimize
the degree of arbitrariness. Our efforts in this agent-based model are in order to capture the following three “stylized

5 We would like to draw readers’ attention to Walker and Young (2001) for an excellent introduction to the design of a lottery game. They also
stimulated discussion on the issue of an optimal design.

6 This way of formulating the design issue is very similar to Walker and Young. However, the issue they addressed is different from ours. They
addressed the effect of lottery design on lottery sales (lottery revenues), whereas we address the effect of lottery design on lottery tax revenues.

7 Papers belonging to this category are Farrell and Walker (1999) and Farrell et al. (1999).
8 The number of papers in this category is much smaller. Hartley and Lanot is the only one known to us.
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facts” of the lottery market, namely,

• lottomania and the halo effect,
• conscious selection, and
• aversion to regret.

2.2.1. Lottomania and the halo effect
That the lottery participation level is positively related to the size of the jackpot prize seems to be one of the most

important empirical observations. The phenomenon that sales following a rollover are higher than sales prior to the
rollover is known in the industry as the halo effect (Walker and Young, 2001, Creigh-Tyte and Farrell, 2003). The
halo effect is partially due to considerable media attention being paid to rollovers, which in turn creates a bout of
lottomania. Therefore, we can start building our agents from a participation function that relates the participation level
to the jackpot size,

μ = ρ(J), (2)

where ρ is the participation function, μ is a measure of the participation level, and J is the size of the jackpot. The
exact functional form of ρ depends on the framework within which the problem is formulated. In the standard rational
analysis, μ is related to J via a change in the expected value or, more generally, the expected utility, of the lottery ticket
(Hartley and Lanot). However, here, we take a heuristic approach, and assume that gamblers base their decision on
some heuristics rather than the possibly quite demanding work on expectations computation.9

Based on the heuristic approach, Eq. (2) can be approximated by a few simple if-then rules. For example, “if the
jackpot is unusually high, then I will spend 10 percent of my income to buy lottery tickets,” or “if there is no rollover,
I will spend only a little.” Notice that the antecedent or consequent of the rule contains the use of natural language
that may not have concrete numerical meanings, such as the linguistic terms “high” and “only a little” in the above
example. While natural language has its ambiguities, people seem to be able to reason effectively with added vague
and uncertain information, and very often the decisions they make are the outcome of their approximate reasoning.
Over the last four decades, we see the development of fuzzy logic as a formal approach to deal with these ambiguities.
In this paper, we propose representing the function ρ by a set of fuzzy if-then rules that are manipulated by the standard
mathematical operations of fuzzy sets as prescribed by fuzzy set theory.

We proceed as follows. First, let Jtr be the jackpot prize updated on the rth day of the tth issue, where r = 1, 2, . . . , w.
w denotes the gap between two draws. If we suppose that the lottery draw takes place weekly, then w = 7. Furthermore,
let the set {J}tr be the time series of the jackpot prize up to the time of tr. Second, given the historical data, the
attractiveness of the lottery game can be measured by how unusual the Jtr is as compared to {J}t(r−1} , if r > 1, or
{J}(t−i)w , if r = 1. The agent will then act upon the degree of attraction. For example, if the jackpot is huge, the agent
may react more energetically by betting greatly. Alternatively, if the jackpot is perceived as low, the agent may be not
interested in spending a penny.

Technically, each agent gambles with his/her own fuzzy rule-based system, which comprises a number of fuzzy
if-then rules. Each fuzzy if-then rule within the system can be represented as follows:

If Jtr is Ai, then ai. (3)

The Ai (i = 1, . . ., k) are fuzzy sets representing k different states of the jackpot prize. For example, consider the case
k = 4. Then A1, . . ., A4 can denote the following four linguistic descriptions of the size of the jackpot: “low,” “medium,”
“high” and “huge.” ai is the level at which the agent decides to participate given that the current state is Ai. The
participation level can be measured by the proportion of income that agents would spend to purchase lottery tickets.
Call the vector �a(= (a1, . . . , ak)) the participation vector. Then different heuristics can be captured by different as. For
example, �a = (0.1 percent, 1 percent, 5 percent, 10 percent) characterizes the agent whose betting stake is increasing

9 Many details can complicate the computation of the expected value. First of all, the expected value depends on the expected number of winning
gamblers: the higher the expected number of winners, the lower the share of the jackpot for each winner. On the other hand, the expected number of
winners depends positively on the participation level, by which the size of the jackpot is also positively affected. This circular phenomenon applies
to other non-fixed prize pools. Second, the expected value can differ among different agents, given their conscious-selection behavior.
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Fig. 2. The membership function.

with the size of the jackpot prize. On the other hand, �a = (0.1 percent, 0.1 percent, 0.1 percent, 0.1 percent) indicates
that the agent’s betting stake is independent of the size of J.

Based on our description above, only the input set, Ai, of (3) is fuzzy, and the output set, ai, is a crisp numerical
value. This type of fuzzy rule is known as the Sugeno style of fuzzy rules, as distinguished from the Mamdani style of
fuzzy rules, in which the input and output sets are both fuzzy. Fuzzy sets are distinct from the classical sets (crisp sets)
in the sense that the membership in the latter is all or nothing, whereas that in the former is a matter of degree (more
or less). The degree is mathematically characterized by a membership function.

There is a wealth of membership functions. We, however, see little guidance as to the selection of them.10 Therefore,
before more research is done on this area, we have to accept some degree of arbitrariness. For simplicity, we choose
the frequently used triangular-shaped fuzzy membership function specifically shown in Fig. 2. In Fig. 2, the domain
of J is partitioned into four overlapping intervals by a sequence of base points Q0, Q1, Q2, Q3: [Q0, Q1), (Q0, Q2),
(Q1, Q3), and (Q2, ∞). Let us denote them by I1, . . ., I4, respectively. For each fuzzy set Ai, μAi (J) > 0 if J ∈ Ii;
otherwise μAi (J) = 0, where μAi (J) is the membership function, μAi : R+ → [0, 1]. However, unlike the usual fuzzy
membership functions, the base points upon which the membership functions are defined are not fixed. This is because
all the linguistic terms have no absolute meaning. What is perceived as high or low by agents will depend on what
has happened before. It is the frequency that determines how we describe the event perceived so huge should refer to
some events that happen more infrequently than what the term medium may refer to. This justifies the use of sample
statistics as the base points, such as, quartiles, and Q1, Q2, and Q3 are the first, second and third quartiles of the sample
{J}tr /0. The sample quartiles may converge if {J}tr turns out to follow a stationary distribution; otherwise, they will
change over time.11

The implementation of the fuzzy rules (3) proceeds as follows. For each period of time tr, the agents observe the time
series of the jackpot up to the beginning (the first second) of tr, {J}tr . All Q statistics can be determined accordingly,
as with the membership function μa(J)/J. Given Jtr (i.e. the jackpot at the beginning of this period), the agent can then
figure out the membership degree of each possible state (each fuzzy set), for example, μAi (Jtr ) (i = 1, . . . , k). In the
Sugeno fuzzy model, each corresponding rule is activated to a degree μAi (Jtr ), and the output is a weighted average
of all consequent actions ai, weighted by the membership degree.

αtr = αtr (Jtr ) =
k∑

i=1

μAi (Jtr )ai. (4)

The agents’ involvement in the lottery is defined by the fuzzy if-then rules (3) associated with the participation vectors
�a. Adaptive behavior can be characterized by changes made in �a. In Section 3, we shall show how �a can be encoded
as a bit string and evolved via genetic algorithms.

2.2.2. Conscious selection
To take conscious selection into account, let �b be an X-dimensional vector whose entities take either “0” or “1.”

Consider a number z, where 1 ≤ z ≤ X. If “0” appears in the respective zth dimension, the number z will not be
consciously selected by the agent, while “1” indicates the opposite. Therefore, �b shows a list of numbers that may

10 There are some limited experimental studies conducted by psycholinguists.
11 A similar way of using sample statistics to determine the base points of membership functions can also be found in Draeseke and Giles (2002).
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be consciously selected by the agent. If �b has exactly x 1s, then one and only one combination is defined and the
agent would select only that combination while purchasing the lottery ticket (s). If �b has more than x 1s, then many
more combinations can be defined. The agent will then randomly select from these combinations while purchasing the
ticket(s). Finally, if �b has less than x 1s, then those designated numbers will appear in each ticket bought by the agent,
whereas the rest will be randomly selected from the non-designated numbers.

The agent’s betting heuristic, h, is fully characterized by the vector:

h = (�a, �b).

To make it apparent that the h are different over time (evolving) and are different over space (heterogeneity), we shall
denote the heuristic used by agent ι at time t by hι,t. In Section 3 we will detail the implementation of the evolution of
hι,t via genetic algorithms.

2.2.3. Aversion to regret
Regret is the pain we feel when we find, too late, that a different choice would have led to a better outcome. In the

case of the lottery market, regret simply means that the utility of not gambling depends on whether there are winners.
If nobody wins, that would make those who do not gamble feel no regret; however, if someone does win, they may feel
regret because it could have been a certain person’s had he given it a try. Lottery promoters capitalize on the aversion
to regret when they encourage lottery buyers to keep on buying. If regret does play an important role, then the agent’s
utility function is no longer independent.

For simplicity, let us assume that agent ι has a simple one-period linear utility function of consumption:

u(c) = c, (5)

with the budget constraint:

c ≤ e − α(�a)e + π, (6)

where e is his initial income, α is the proportion of his income spent on the lottery, and π is the lottery prize. For those
agents whose α is zero, their utility depends on whether there is a jackpot winner. The utility function (5) has to be
modified as follows:

u(c) =
{

(1 − θ)c, if α = 0 and Nx = 0,

c, otherwise.
(7)

The θ in the utility function (7) measures how regretful the non-gambler would be if the jackpot were drawn.12 On the
other hand, opposite to regret, the non-gamblers may also derive pleasure from gamblers’ misfortunes, in particular
when the jackpot is not drawn (Nx = 0). As a result, the utility function (7) can be extended as follows:

u(c) =

⎧⎪⎨
⎪⎩

(1 − θ)c, if α = 0 and Nx > 0,

(1 + θ)c, if α = 0 and Nx = 0,

c, otherwise.

(8)

Obviously, the larger the θ, the less independent will agent �’s utility be. While we can treat θ as an exogenous variable,
from the viewpoint of psychology, it would be interesting to see how θ is determined endogenously. In this way, θ is
treated as a personal trait that indicates how agents experience things and how they feel about them.

To sum up, agents in our artificial lottery markets are fully characterized by the vector:

(hι,t, θι,t) = (�aι,t, �bι,t, θι,t), (9)

where θι,t is the preference parameter of agent ι at time period t. The vector (hι,t, θι,t) will be encoded as a bit string,
and then genetic algorithms will be applied to evolve a population of (hι,t, θι,t), which is detailed in the next section.

12 Certainly, regret may work in the reverse direction as well. Nevertheless, since in general mass media will only give a large coverage to the
jackpot winners and are not interested at all in anything happening to the non-gamblers, that asymmetric coverage makes the regret that works in
the reverse direction rather negligible, and hence it is assumed away in this paper.
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Fig. 3. Betting heuristics based on the Sugeno fuzzy inference system.

3. Genetic algorithms

We choose GA in this paper primarily based on the following two considerations. First, the choice of learning model
crucially depends on how the problem (environment) is presented to decision makers. Since in this paper the strategy
space presented to our agent, as in Eq. (9), is large and complex, it makes handling this situation by using GA rather
than other alternatives easier. Second, GA constitutes one of the most important classes of learning models in the ACE
literature. We want to give it a further exploitation and document some useful evidence to enrich our understanding of
it. Therefore, we choose GA not because it is the best learning model, which is still unknown to us, but because we
are satisfied with using it as a starting point and as a benchmark.13

3.1. Representation

In our model, binary coding is applied to the vector (�aι,t, �bι,t, θι,t), which fully characterizes an individual ι at time
t.14 First, let us start with �a, the participation vector that is a k-dimensional vector, (a1, . . ., ak), where ai (1 ≤ i ≤ k) lies
between 0 and 1. Each ai is first coded by a binary string with length la. The decoding is performed in the following
way:

a =
∑la

i=1ci2i−1

2la − 1
, (10)

where ci is the cth bit counted from the right. Thus, totally, a is coded by k, la bits, exemplified as follows.

Fig. 3 illustrates a fuzzy inference system (3) with k = 4 and the corresponding binary string of �a (with la = 4) decoded as
�a = (0.2, 0.6, 0.8, 1.0). The input J is perceived by the agent, and the membership degree of each fuzzy set is calculated
as follows: [μA1 (J), . . . , μA4 (J)] = [0, 0, 0.25, 0.75]. Thus, by Eq. (4), the agent will invest α =∑4

i=1μA4 (J) = ai =
0.95 of his income to purchase the lottery tickets.

13 How to model learning of agents has been an intensive issue over the last decade. In the context of agent-based economic modeling, this research
subject was recently reviewed by Brenner (2006) and Duffy (2006). Various learning models have been proposed, ranging from near zero-intelligent
models to highly sophisticated ones, from non-conscious learning to conscious learning, from individual to social learning, and from statistically
based learning to psychologically based and to biologically based learning. Given these large varieties, the parsimony principle, also known as
the KISS principle, has been suggested as a guideline for model selection. Nonetheless, since ACE models can have different purposes, such as
replicating stylized facts, generating scenarios and facilitating thought experiments, exactly how the KISS principle should be implemented and
which learning model should be selected remain unclear. Even though we focus exclusively on empirical validity, the problem is still present. See
Chen and Tai (2006) for an in-depth discussion of this issue.
14 Binary coding has a problem known as the Hamming cliff. Basically, the Hamming distance defined in the space of binary strings is not

geometrically equivalent to the metric usually used in the Euclidean space. Therefore, a small mutation (perturbation) to a binary string may result
in a large change in its real number counterpart. This may make the binary-coding representation inherently more volatile than the real-coding one.
We, however, have found that these additional volatilities can help the market avoid the fast convergence to a perfectly idle market.
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Fig. 4. An example of agents’ picking numbers.

Second, it is straightforward to code the �b, the number-picking vector. As we mentioned in Section 2.2.2, it is simply
an X-bit string. An example of the case X = 20 is shown in Fig. 4.

Finally, the regret parameter θ, which also lies between 0 and 1, can be encoded in a fashion similar to Eq.
(10) by an l�-string of bits. Therefore, the full characterization is encoded by a string with a total of k la + 20 + lθ
bits.

3.2. Evolutionary cycle

Genetic algorithms start with an initialization of a population of chromosomes (binary strings), called Gen-
eration 1 (GEN 1). The number of chromosomes or the population size, denoted by Pop, is fixed during the
whole evolution. Then a fitness criterion (fitness function) is used to evaluate the performance of each chromo-
some. Based on the performance evaluation, the next generation of chromosomes shall be genetically produced
by the incumbent. The genetic production starts from the selection of a mating pool. There are several differ-
ent selection schemes in GA. However, to have a better focus, only tournament selection will be tried in this
paper. Nevertheless, according to the progress we make, the other selection scheme will be included at a later
stage.

By tournament selection, each individual in the mating pool is determined as follows. We first randomly select
ϕ random chromosomes without replacement and then take the best two of them. The parameter ϕ is known as the
tournament size, and it is also the mating-pool size. Two genetic alterations, crossover and mutation, are operated on
them to produce two offspring.

The crossover (the point crossover) cuts each parent chromosome into κ pieces. Since each chromosome represents
altogether three different aspects of agents’ behavior, the crossover operator is made in a pair-by-pair manner (i.e. by
restricting the exchange only to the paired characteristic, called the paired crossover).

The second genetic alteration is mutation. After the crossover, each bit of the resultant chromosome has a chance
of being flipped from “0” to “1” or “1” to “0.” The offspring will, after the mutation process, then replace the old
generation. Based on the parameter η, the agents belonging to the top 1 − η percent will remain, and the agents
belonging to the bottom η percent will be replaced by offspring.

4. Experimental designs

The agent-based lottery market as introduced in Sections 2 and 3 is summarized by two sets of parameters, the
one associated with the market, and the other associated with the agents. Parameters associated with the market are
encapsulated into the vector M:

M = (x, X, τ, s0, . . . , sx, w, N, ȳ).

This paper studies the possible relationship between the lottery tax rate and the tax revenue by hypothesizing the
existence of a Laffer curve, and hence an optimal interior τ. To do so, different values of τ ranging from 0 to 90 percent
are attempted in this paper. The rest of the market parameters are treated as constants throughout the entire simulation,
and they are listed in Table 2.

The set of prize ratios, s0, . . ., s5, are chosen to be consistent with the Taiwan Lotto. Similarly, the drawing period
for each issue (w) is also motivated by it, assuming that each period is equivalent to 1 day, and there are two issues per
week. The most intriguing part, however, is the setting of x/X, which must be determined simultaneously with N and
y. To run the simulation in a reasonably fast way, N can only be set as a number such as between 5000 and 10,000,
which can hardly match the population size of a real country. This forces us to modify x/X in a such way that it can be
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Table 2
Experimental design

Market parameters
Pick x from X (x/X) 5/16
Lottery tax rate (τ) (percent) 0, 10, . . ., 90
s0, s1, . . ., s5 (percent) 0, 0, 35, 15, 12, 38
Drawing periods (w) 3
Number of agents (N) 5000
Income (y) 200

GA parameters
Number of fuzzy states (k) 4
Number of bits (la, lθ) 4,4
Periods (generations) (T) 500
Crossover rate (Pc) (percent) 90
Mutation rate (Pm) (percent) 0.1
Tournament size (ϕ) 200
Generation gap (η) 100

comparable to a real market, say, Taiwan. This makes us consider a rather smaller X, only 16. A game of 5/16 is then
matched to a market size of N × y = 5000 × 200.15

The second set of parameters is concerned with the control parameters of the genetic algorithm:

A = (k, la, lθ, T, Pc, Pm, ϕ, η).

To have a focus and make our presentation easier, all these parameters are also fixed during the entire simulation, as
shown in Table 2.

Models built upon genetic algorithms are stochastic models in the sense that even the same fixed design may come
up with different results. Therefore, to enhance the validity of what we may conclude from the simulation, multiple
runs of the same design are inevitable. Each set of parameters is run 25 times.

5. Experimental results

5.1. The take-out rate and tax revenue

As shown in Table 2, each run lasted 500 periods (i.e. 500 draws). Tax collected from each game is indexed by Rt

(the tax revenue from the tth issue of the tickets). A time series {Rt}500
t=1 is observed after each run. To make sense of

the results, we further normalize the revenue series by dividing Rt by the total income N × ȳ and call this new series,
{rt}500

t=1, the normalized tax revenue series. Notice that normalized tax revenue can be interpreted as an effective tax
rate. To avoid the possible initialization biases, we took away the first 100 periods of the data and calculated the mean
for the rest of the sample (i.e. {rt}500

t=101). Let us denote it by r̄. Since we have 25 runs for each single lottery tax rate,
we therefore report the median of r̄ over these 25 runs, and the results are shown in Fig. 5.

The figure shows that the (normalized) tax revenue first increases with the lottery tax rate τ, and then decreases
with it. The highest tax revenue appears at τ = 40 percent with an f of 10.5 percent. In addition to the median, it is
also interesting to notice the change in the uncertainty of tax revenue under different tax rates. This is reflected by the
associated box–whisker plot also shown in Fig. 5. The box in the middle of the plot covers 50 percent of the simulated
tax revenue. The longer the box, the more uncertain the tax revenue. From Fig. 5, the tax revenue is relatively low and
stable when the tax rate comes to its two extremes (τ = 10 and 90 percent). However, the box starts to inflate when the tax
rate is away from the two extremes, which signifies the growing uncertainty in tax revenue. The degree of uncertainty
is further compounded by the enlarging whiskers that extend the box to the frontier of the sample distribution.

Another way of describing what is found in Fig. 5 is that the elasticity of changes in tax revenues with respect to
changes in the tax rate is unstable. Tax revenue can be statistically insensitive to a range of the tax rate, say, from

15 These figures are derived from the figures offered by Walker and Young.
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Fig. 5. Tax revenue curve and the associated box–whisker plot.

τ = 0.3 to 0.7.16 This statistically flat Laffer curve makes the determination of the optimum tax rate τ* less certain.
The flat, however, fits roughly well with the range as shown in Fig. 1, namely, from the lowest 40 to 68.7 percent.
Therefore, this ACE lottery model provides a possible explanation for the coexistence of different lottery tax rates as
we summarize in Fig. 1.

The statistically flat Laffer curve can be further pursued by testing whether the product of the lottery sales (S) and
lottery tax rate (τ) is a constant over a range. This can be done by running a simple regression,

lnS = β0 + β1lnτ + ε. (11)

If the constancy relation holds, then β1 should be close to minus one. By pooling all runs with τ from 0.3 to 0.7, it
is found that the null hypothesis that β1 = −1 cannot be rejected.17 The result, therefore, suggests that setting any τ

between 0.3 and 0.7 is at about the right level. This finding can also be related to the empirical study on the elasticity
of the demand for lottery tickets. After adjusting the bias of conscious selection, Farrell et al. (2000) found that the
demand elasticity for the U.K. lottery ticket is also close to one.18

5.2. Rollovers and sales

It is generally assumed that the large size of the rollovers will enhance the attractiveness of the lottery game. The
statistics also tell us that the mean sales conditional upon the rollover draw is normally higher than that of the regular
draw. For example, based on the time series data of the U.K. lottery from 19 November 1994 to 5 March 2003, a total
of 751 draws, the average sales are 56.0 million pounds over the rollover draws, whereas they are 41.4 million over the
regular draws. Nevertheless, exceptions exist. Among a total of 112 rollover draws for the U.K. lottery, it happened on
25 occasions that sales actually fell.

To have a general picture of the empirical relationship between rollovers and sales, Table 3 summarizes some basic
statistics of seven lottery markets, namely, the U.K., Taiwan, South Africa, Ireland, Switzerland, Japan, and Turkey. We
first conduct a statistical test for the significance of the difference between the sales in the rollover draw and the sales
in the regular draw. The t-test statistics are shown in the second column. Below each test statistic is the corresponding
p value. Second, for the rollover draws, we further regress sales against the jackpot size as

St,rollover = α0 + α1Jt−1 + εt. (12)

16 Using ANOVA, we test whether the effective tax rate is the same under different intervals of τ. The test statistics of the interval [0.3,0.7] and
[0.4,0.7] have a p-value of 0.6402 and 0.6847. Further extensions of the intervals to either 0.2 or 0.8 all result in a p-value close to 0.
17 There are a total of 125 observations (5 �s each with 25 runs) involved in this regression. β̂1 = −1.217. The Wald test of the null that β1 = −1

has a F value of 1.36, and the associated p-value is 0.2446.
18 However, whether Laffer curve has a flat top is difficult to address empirically because the lottery administration cannot fine-tune the tax rate too

frequently. As a result, it is difficult to get enough observations to support an estimation. This limitation shows the potential value of agent-based
modeling in policy analysis.
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Table 3
Rollovers and sales: statistics from the real data

Nation/period (periods) t-Statistic (p-value) α1 (p-value) R̄2 Anomalies (percent)

United Kingdom (November 19, 1994 to March 8, 2003) 4.2231 (0.0000) 1.9418 (0.0000) 0.2126 22.32
Taiwan (January 22, 2002 to May 23, 2003) 3.4578 (0.0013) 10.1766 (0.0000) 0.9133 0.00
South Africa (March 11, 2000 to June 4, 2003) 3.6959 (0.0001) 1.3307 (0.0000) 0.2052 27.78
Ireland (January 2, 2002 to June 28, 2003) 5.9171 (0.0000) 0.7451 (0.0000) 0.6371 1.04
Switzerland (January 1, 2003 to June 28, 2003) 5.7976 (0.0006) 9.3881 (0.0015) 0.9227 0.00
Japan (July 4, 2002 to June 26, 2003) 5.9727 (0.0000) 1.1291 (0.0000) 0.9460 6.67
Turkey (June 20, 2001 to July 2, 2003) 0.5384 (0.3067) 12.6762 (0.0713) 0.6196 0.00

where “Jt−1” is the jackpot size rolled in from the t − 1th issue. Eq. (12) is only applied to the sales in the rollover
samples, St,rollover. Sales in the regular draw are not taken into account since the jackpot size must start from 0 for all the
regular draws. The values of the coefficient α1 and R̄2 are reported in Columns 3 and 4. Finally, as mentioned earlier,
it is surprising to see that sales may fall in some rollover draws. To acknowledge the occurrence of this anomalous
relationship, the fifth column gives the percentage of the rollover draws whose sales actually declined rather than rose.
We consider this statistic important because it hints that the underlying agents’ behavior connecting rollovers to sales
may be more complicated than one may hypothesize from a simple linear regression.

Table 3 shows quite consistent patterns for the seven lottery markets. First, the halo effect is evident in all markets.
This is reflected by the significantly positive t-statistic (the second column) that means that sales in the rollover draw
are significantly greater than those in the regular draw. Second, as we expect, the jackpot size significantly prompts
sales. Its positive effect on sales is statistically significant in all markets. The only question is whether its explanatory
power is good enough. In some markets, R̄2 is surprisingly high, reaching up to 90 percent, whereas in the other two
countries, it is only 20 percent. However, what should not be hidden from this general expected result is the existence
of anomalies. The anomalous relationship between rollovers and sales is prevalent in two of the three markets. In South
Africa, sales fell in 28 percent of the rollover draws, whereas in the U.K. they declined in 22 percent of them. What
may cause these anomalies is an issue that we would like to pursue in this line of study.

Based on these references, it is interesting to see whether similar patterns hold for our artificial lottery markets.
Therefore, we look at the same statistics over the simulated data. What we do here is pool together all the simulated
data under the same tax rate and obtain the statistics based on the tax rate. The results are shown in Table 4. Marked
contrasts between Tables 3 and 4 are observed. First, the halo effect disappears. More than that, all t statistics now
become significantly negative. We now have the opposite of the halo effect, namely, the anti-halo effect. Second, the
effect of the jackpot size is by and large positive, which is consistent with what was observed in the real data. However,
its explanatory power diminishes very quickly with the increase in the takeout rate. Given the above result, it is not
surprising to see that “anomalies” now become normal. For all takeout rates, sales declined in more than 50 percent of
the rollover draws.

The disappearance of the halo effect and the appearance of the anti-halo effect is certainly astonishing. This is even
more so because our agent engineering is based upon the consideration of the halo effect (see Section 2.2.1). However,

Table 4
Rollovers and sales: statistics from the simulated data

Tax rates t-Statistic (p-value) α1 (p-value) R̄2 Anomalies (percent)

0 −19.3379 (0.0000) 0.6014 (0.0000) 0.1352 49.14
0.1 −23.0334 (0.0000) 0.6438 (0.0000) 0.2996 58.67
0.2 −66.1523 (0.0000) 0.5583 (0.0000) 0.0645 63.63
0.3 −99.0913 (0.0000) 0.1093 (0.0240) 0.0042 63.50
0.4 −117.1700 (0.0000) 0.2144 (0.0000) 0.0148 62.09
0.5 −100.7600 (0.0000) 0.1563 (0.0000) 0.0093 63.36
0.6 −87.8737 (0.0000) 0.0322 (0.4165) −0.0001 61.58
0.7 −82.4286 (0.0000) 0.1121 (0.0462) 0.0010 60.52
0.8 −49.3922 (0.0000) 0.0899 (0.0840) 0.0004 57.47
0.9 −44.7909 (0.0000) −0.2789 (0.0130) 0.0010 56.34
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to compare what we have from the real data with what we have from the artificial data provides us with a chance to
reflect upon something that we may take for granted. In particular, what is the essence of the phenomenon of the halo
effect? Why did the agent-based system built upon GA fail to deliver this feature? Also, given the halo effect, why are
there so many exceptions (about 20–30 percent in real markets)? Why is the agent-based model particularly good at
producing these “anomalies”? These are the questions to be addressed in Section 6.

5.3. Conscious selection

Hard empirical statistics on conscious-selection behavior are not available yet in the real market, and few empirical
studies have estimated that participants do not choose their numbers randomly (Farrell et al., 2000; Wang and Lin,
2006). In our simulation, the numbers favored by each agent are observable. The vector �b, as detailed in Section 2.2.2,
shows the numbers picked or excluded by the agents. This profile provides us with the chance to observe the behavior
of conscious selection. In particular, it enables us to address the question of whether the agent essentially believes that
winning numbers are randomly selected.

This can be done by asking each agent the following question: Does the agent believe that each number is equally
likely (or unlikely) to be picked by the lottery administration? If the agent believes that winning numbers are randomly
generated, then all combinations are available for him to select. Therefore, simply by counting how many combinations
are excluded by the agent or how many combinations are effectively available to the agent, one can develop a metric
to measure how far the agent is away from the belief of a fair game. Let d be the metric, and

d =
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(13)

where z is the number of 1s appearing in �b.
When the agent believes that the game is fair and treats all the numbers equally, then z = X (or 0), and the measure

d achieves its maximum dmax:

dmax =

(
X

x

)
(

X

x

) = 1. (14)

On the other hand, if the agent has exactly x numbers in his mind, then the game for him is completely deterministic,
and d gets to its minimum dmin:

dmax = 1(
X

x

) ≈ 0. (15)

Thus, simply by watching how close d is to 1 or 0, one can have an idea of how far from or close to a fair-game believer
the agent is. A time series display of the metric will shed light on how well the behavior of conscious selection is
developed.

Fig. 6 displays the evolution of the metric �d at a highly aggregated level. What is shown on the x-axis is time. An
observation is taken for every 20 periods. For each sampling period, we pool together the �d of all 5000 agents over 25
runs under all the tax rates, so each d shown here is the average of 5000 × 25 × 10 individuals’ d. The time series plot
of d basically shows a monotone increasing behavior that characterizes the gradual convergence to the belief in a fair
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Fig. 6. The measure of the belief in a fair game.

game, which can be related to some empirical findings.19 However, it does not converge enough to 1. Instead, it seems to
settle around the level of 0.6, which is approximately equivalent to a z of 14. Therefore, a degree of conscious-selection
behavior is weakly observed.

6. Discussion: What does the GA learning mean?

Given the simulation results displayed above, it is high time to pose a very fundamental question: What does the
GA learning mean? This is a generic question shared by all kinds of agent-based simulations using the GA. To answer
this question, we first have to notice that a possible optimal solution for all our agents in the lottery market is to take
the zero function when the jackpot size is not high enough, for example,

μ∗ = ρ∗(J) = 0, (16)

if J is not large enough. The solution is best in the sense that it maximizes the risk-neutral expected utility as specified in
Eqs. (5)–(8). The second thing to notice is that the fundamental work GA did in a social learning framework is simply
to propagate those well-performed strategies based on the fitness function supplied by the user. If the fitness function
is in line with the utility function, then it is natural to ask whether the agents eventually find the optimal solution (16).
In terms of the discretized version of ρ (i.e. the participation vector �a), the optimal solution is

�a∗ = (a∗
1, a

∗
2, a

∗
3, a

∗
4) = (0, 0, 0, 0). (17)

To distinguish this type of agent from other types, we shall call agents with solution (17) the standard neo-classical
agents.20 Our first question is then to ask whether the solution (17) was propagated well enough to the entire market.

It is useful to look at the percentage of agents whose participation is in line with (16). If we let N∗
t be the number

of simple neo-classical agents in the market, then the statistic N∗
t /5000 measures the density of neo-classical agents

in the market. Since we have 25 simulations for each τ, each of which lasts for 500 issues, what is drawn in Fig. 7 is
the box-and-whisker plot of f ∗

500 = N∗
500/5000. As before, the dots of the medians are connected in a line.

Fig. 7 basically indicates the difficulty associated with propagating behavior (17). The percentage f ∗
500 is almost

down to nil for most simulations when τ is less than 40 percent. While a further increase in τ does facilitate the
propagation of the survival of the neo-classical agents, their influence is still confined to a rather limited extent. When
the take-out gets to its maximum (τ = 80 and 90 percent), they start to become a large group (one fifth to one third)
among the surviving agents. This result drives us to inquire what limits the survivability and propagation of the neo-

19 For example, by estimating a generalized rollover probability function, Wang and Lin indicate that the lotto players initially pick numbers by
way of conscious selection and later change their behavior to random selection.
20 They are called “simple” neo-classical agents because their utility function is simply linear, and under the framework of expected-utility

maximization, these agents will not gamble. Having said that, we notice that there is a long history in the literature trying to make expected utility
theory able to accommodate gambling behavior (Hartley and Farrell, 2002). These variations, which will lead to a more sophisticated design of the
utility function, are not considered in this paper.
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Fig. 7. The survival rate of the neo-classical agents.

classical agents, or to put the question in the context of GA, why did the presumably well-performing strategy (17) fail
to dominate?

The property that prevents the behavior of the bounded-rational agents from converging to that of rational agents
has been demonstrated in many ACE studies using GA. One key contributing factor to the divergence comes exactly
from a life of bounded-rational agents (i.e. the time-horizon upon which agents react). In GA, this time-horizon is put
into effect through the evaluation cycle. If the cycle is short, then the respective time-horizon is also short. The shorter
the time-horizon, the more myopic the agents tend to be. Short time-horizons cause a problem well noticed by Lettau
(1997), which is to be restated as follows. Agents in a setting in which the evaluation time-horizon is only one period
are searching for

�a† = arg{max
a

U}, (18)

and Lettau has shown the non-equivalence between

E(�a†) = E(arg{max
a

U}) (19)

and

�a∗ = arg{max
a

E(U)}. (20)

Lettau discussed the non-equivalence between the two. That discussion basically applies to this paper.
For convenience, agents in the society can be decomposed into two groups: gamblers (performing agents) and non-

gamblers (non-performing agents). Given the design of the lottery game, most gamblers will fail with a lower utility
as opposed to the non-gamblers. Since the fundamental work that the GA does is propagate those well-performing
strategies, the strategies used by these failing non-gamblers have no influence in shaping the forthcoming behavior.
Nonetheless, a minority of gamblers, in particular those gamblers with aggressive participation who are lucky enough
to become the winners, gain utility that is significantly higher than that of non-gamblers. These gamblers alone are
persuasive enough to invite many followers to increase their participation. This explains why gamblers are good at
propagating, even though most of them will fail.

Non-gamblers can still exert some degree of influence on those losers, but their effect will be limited by the influence
of the gigantic winners. However, if the gigantic winners do not show up (rollovers), neo-classical agents will then
have a better chance to fight back. Therefore, the frequency of rollovers matters. The more frequently the games roll
over, the more likely it is that the neoclassical agents will survive and propagate. To see this relationship, Fig. 8 depicts
the percentage of rollover draws, also called the rollover ratio. Here, we see that the rollover ratio roughly increases
with the take-out rate. When τ comes near to the maximum, it reaches about 60–70 percent, which means that most
of the time the gigantic winners do not exist. As a result, neo-classical agents face much weaker survival pressure and
can better propagate to a large proportion of market participants.

The explanation above also indicates the existence of an asymmetric account between the minority of the winning
gamblers and the majority of the losing gamblers. The learning mechanism driven by the standard GA makes agents
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Fig. 8. The rollover ratio.

care very little about the losers, regardless of the strategies they used, even though they may have used the same
aggressive strategies as the winners. As a result, by not taking into account the losers’ strategies, agents tend to pass a
biased or over-optimistic judgment on those aggressive gambling strategies.

Lettau noticed the influence of the stochastic fitness and showed that if the evaluation time-horizon can be enlarged,
then the behavior biases will vanish.21 However, the case of the lottery presents an extreme situation: the reward for
gamblers ranges from zero to a gigantically high amount. Hence, a few more iterations will not help to average out
that windfall reward. As a result, an essentially “hocus-pocus strategy” (i.e. a strategy that works purely by luck) can
still survive.

The analysis above helps us to see how GA is related to bounded rationality and why behavior biases can sustain
under the GA mechanism. First, humans are bounded rational in the sense that they learn in a biased way by only
drawing attention to the winners. Second, there is a small probability of having an extremely high reward from following
that “hocus-pocus strategy.” Notice that the probability can be extremely small. What matters here is that based on the
law of large numbers, it will almost surely happen, at least for a few people, if there are enough followers. By these
two conditions, the biases behavior will not die away and may self-form into a wave of propagation. The case of the
lottery fits these two conditions nicely.

Now, we come to the puzzle: Why do our simulated data rollovers affect sales negatively, which contradicts the
most noticeable stylized fact of the lottery market? Again, this can be accounted for by the way GA operates in this
paper. Remember that our evaluation time-horizon is shortened to a single-period draw. Given the circumstances, this
is what will happen. Suppose there was one and only one jackpot winner in the last issue (hence a regular draw for this
issue). Let us trace his possible influential power in a framework of tournament selection. Since on each single draw
we have a chance of 1/5000 to pick this jackpot winner, the chance of including at least one copy of the jackpot winner
in a tournament is approximately 0.04 (g200×(1/5000)) if the tournament size is 200. There are 5000 tournaments (1 for
each individual), so on average 200 individuals have the jackpot winner in their tournament and hence are under his
influence. Since the jackpot winner tends to have a more aggressive participation �a, the aggressive strategy is, therefore,
propagated to a large group of gamblers. This causes a rise of sales during the regular draw.

On the other hand, the absence of the jackpot winner in the previous issue (the rollover draw for the current issue)
hampers the propagation of aggressive strategies. Instead, the conservative strategies that lead to a low participation
level dominate. Sales, therefore, fall in the rollover draw. Furthermore, when the rollover draw extends, the jackpot
prize accumulates. Therefore, a large jackpot prize, as a result of non-interrupting rollovers, also has an adverse effect
on sales. This explains the significantly negative t statistics and low R̄2s in Table 4.

21 Lettau showed that

lim E(�a†) = �a∗, (21)

where the limit is taken over the number of periods for per evaluation.



S.-H. Chen, B.-T. Chie / Journal of Economic Behavior & Organization 67 (2008) 463–480 479

7. Conclusions

7.1. Remarks on the findings

This paper introduces an agent-based computational model of lottery markets. In this model, the agents’ decisions
on lottery participation are not based on sophisticated calculations of the winning odds but simply on heuristics. The
heuristics considered in this paper capture the two empirical phenomena known as the halo effect and the conscious
selection of numbers. In addition, the empirical observation referred to as aversion to regret motivates an interdependent
utility function of agents. The Sugeno style fuzzy if-then rules are used to formalize agents’ heuristics. Both the heuristics
and preferences are evolving over time via the canonical genetic algorithm.

Coming out of this simple agent-based lottery market are the three major findings, namely, a Laffer curve with a
flat top, the conscious selection behavior, and the anti-halo effect. Each of these findings has its empirical counterpart.
First, while the appearance of Laffer curve is totally expected, the flat top is not well anticipated. This possibility is also
neglected in the empirical literature, even though a unitary demand elasticity of lottery tickets was found in Farrell et al.
(2000). The Laffer curve with a flat top provides a possible explanation for the wide difference of the lottery tax rates
observed in different markets (Fig. 1) since it indicates the possibility that the optimum lottery tax rate may not be unique.

Second, our agent-based model also supports the conscious selection behavior, which is consistent with the empirical
finding of Farrell et al. (2000). What the ACE model may tell us more about is the dynamics of this conscious selection
behavior. The learning process driven by the GA does not eliminate this behavior bias; nonetheless, the degree of
conscious selection, as we can easily measure in the ACE model, becomes weaker, which was also found true in some
empirical studies (Wang and Lin, 2006).

Third is the anti-halo effect. This is the only finding that does not go well with the empirical fact. As discussed
lengthily in Section 6, social learning driven by the GA works against the halo effect. Therefore, it seems that individual
learning model, such as reinforcement learning or belief learning, or a hybrid learning model needs to be incorporated
to remedy this problem.

7.2. Directions for further study

This specific agent-based lottery market exemplifies what agent-based models can do and may do. One specific
feature is that it provides a great flexibility to generate many aspects of the lottery market simultaneously. As a first
step, this paper certainly does not exhaust all possible features. Variations or extensions of this model can be developed
depending on the questions that we are pursuing. Some issues left for further exploration are listed below.

In addition to the lottery tax rate, other important issues include the distribution of the prizes, which could be more
intriguing if we extend the current model by varying the risk attitude or utility function, potentially making agents
sensitive not only to the mean of the prize distribution, but also to the change in high-order moments such as the
variance, skewness, and so on.22

Having said that, we may integrate this study with more elements from behavioral economics, such as prospect
theory, in a further study.
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