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The ‘information’ used among economists appear in primarily three different 
contexts: the resource allocation of information, such as Stigler (1964) the 
n?ea.sure of information and its applications, such as Theil (1967)‘, and the 
transmission of information, such as O’Neill (1987). It is in the last two arenas 

where economists may feel motivated to read Cover and Thomas. Since most 
economists are more familiar with Theil(l967) 1 would like to review Cover and 
Thomas’ book by comparing it with Theil’s. The comparison is centered upon 

the following two fundamental questions: 

1. What is information? 

2. Why is information theory significant? 

What is information‘? The ‘information’ used by Theil and his followers were 
largely restricted to the information theory before 1960, i.e.. the foundation laid 
by Shannon. Wiener, Weaver, Kullback, Leibler, Fano. and Jayne, which is also 
called Shurznorz infcwmation theory. This theory uses probability theory as its 
theoretic foundation. For example, it constructs entropy’ from the probability 
mass function or density function of a random variable. Cover and Thomas also 
take this approach. In Chapters 1 and 2, rntropJl,,joint er~trop~‘, relatiw crztrop!‘. 

I For a survcq articlc on this direction, please SW Massoumi 119901. 
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as well as mutual information are all defined from the probability mass function. 
Moreover, in Chapter 9, they develop the concept of difSerentia1 entropy for the 
continuous random variable. 

However, they do not stop there. Cover and Thomas also incorporated in 
their book the concepts of algorithmic information theory. Developed indepen- 
dently by Solomonof, Kolmogorov, and Chaitin, algorithmic information 
theory is one of the most important developments since 1964. This approach 
re-examines the foundation for information theory. Instead of treating probabil- 

ity theory as the foundation of information theory, it considers that information 
theory must precede probability theory.2 Nevertheless, this approach had been 
largely neglected by most textbooks in Theil’s tradition, and had hence been 
neglected by most textbooks in statistics and econometrics. Cover and Thomas 
have no intention to bypass it. A whole chapter (Chapter 7) is devoted to 
Kolmogorov complexity, one of the most important concepts in algorithmic 
information theory. 

Chapter 7 is written in such a compact way that it is easy for beginners to have 
a quick grasp of the essential ideas in algorithmic information theory without 
being troubled by technical details. Roughly speaking, Kolmogorov complexity 
is a measure for the descriptive complexity of an object. We say an algorithm can 
describe an object if the object can be the output of the universal Turing muchine 

when the algorithm is fed to the machine. Without loss of generality, the 
algorithm can be coded by binary digits. Thus, each algorithm is nothing but 
a string and the length of a string is simply the number of the binary digits in 
that string. The Kolmogorov complexity of an object is defined to be the 
shortest string that can describe the object. 

If we use Kolmogorov complexity rather than entropy as the definition or 
measure for information, then it is clear that probability is not indispensable for 
the scientific conceptualization of information. But, without probability, can we 
still talk about ‘random’? The authors answer this question by introducing the 
concept algorithmic randomness (Section 7.5). Roughly, an object represented in 
terms of binary digits is said to be random if its Kolmogorov complexity is equal 

to or larger than its length. Therefore, algorithmic information theory captures 
the meaning of randomness in a most intuitive way, i.e. the absence of periodicity. 

After introducing the two most important concepts in algorithmic informa- 
tion theory, i.e., Kolmogorov complexity and algorithmic randomness, the 
authors start to inquire into the relationship between the foundation of algorith- 
mic information theory and that of Shannon information theory. Two main 

‘As Kolmogorov (1983, p. 31) stated: ‘From the general considerations that have been briefly 

developed it is not clear why information theory should be based so essentially on probability 

theory, as the majority of text-books would have it. It is my task to show that this dependence on 

previously created probability theory is not, in fact, inevitable.’ 
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results are stated as follows. Firstly, in Section 7.3, they show that, when we 
apply Kolmogorov complexity to an object within a probability framework, e.g.. 

an ensemble from a well-defined stochastic process, the expected value of the 
Kolmogorov complexity of a random sequence turns out to be close to Shannon 
entropy (Theorem 7.3.1). Secondly, in Section 7.5, they prove the strong law of 
large numbers for incompressible sequences, which means that incompressible 
sequences look random in the sense that the proportion of O’s and l’s are almost 
equal. A more general version of this result is that the algorithmic test for 

randomness is the ultimate test. 
As the authors said in their preface, Chapter 7 has no counterpart in other 

information theory texts. To organize such an abstruse topic so well in a single 

chapter is what makes this book unique. 
Having given the two definitions of information, we then come to the next 

issue, the significance of information theory. The beauty of Cover and Thomas is 
its way of treating information theory not just as a subset of communication 

theory, but as a powerful language to be used in different branches of science 
such as physics, computer science, probability, statistics, and economics. I shall 
elaborate on this point from an economist’s perspective. 

One of the most important contributions of information theory is its applica- 
tion in finance. Chapter 6, for example, illustrates the implications of informa- 
tion theory for gambling (horse races). There is strong duality between the 
growth rate of the gambler’s wealth and the entropy rate of the horse race. The 
lower the entropy rate, the higher the growth rate.3 Moreover, a good gambler is 
also a good data compressor in that the gambler’s bets can be considered to be 
his estimate of the probability distribution of the data. For the gambler, his 
growth rate of wealth is influenced by his estimate of the true distribution.’ The 
better the estimate, the higher the growth rate. For the data compressor who is 

using arithmetic coding, how well he can compress his data depends on the 
distribution used to compress the data. If he is using the true distribution, then 
by Shannon coding theorem, the entropy rate is the low bound for his data 
compression. If he does not know the true distribution, the better he estimates, 
the more he can compress. 

Apart from finance, information theory has also made significant contribu- 
tions to econometrics. As a teacher of the first course in graduate econometrics. 
I usually begin by reviewing statistical decision theory. Within this framework, 
the conditional expectation is an optimal decision in the sense that it minimizes 
expected risk if the loss function is quadratic. Furthermore, underjoint G~ru.ssir~n 

“To have this result, the gambler is required to use the log-optimal gambling strategy associated 

with 100% reinvestment in uniform-odds horse races. 

4This can be measured by relative entropy, see p. 128. 
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assumption, conditional expectations are equivalent to linear regression mod- 
els.5 This provides a justification for the use of linear regression models at the 
beginning of most econometric texts. However, bright students will challenge 
you by asking: ‘Then what is the justification for using joint Gaussian assump- 
tion? A more fundamental question would be how we choose models. It is from 
this question that I realize the indispensible role of information theory in the 
foundations of econometrics. In fact, up to the present, the only solid foundation 
on which model selection principles have been built is information theory. 

To prove my point, I would like to bring up two principles used in econo- 
metrics which have root in information theory. One is the maximum entropy 
principle, which is associated with Shannon icformation theory. The other is the 
minimum description length (MDL) principle, which derives from algorithmic 
information theory.‘j As a textbook, Cover and Thomas pave for the readers 
a pretty smooth trail to the understanding of how these two principles have root 

in information theory. 
In Chapter 11, joint Gaussian assumption N(0, K) is shown to be the max- 

imum entropy distribution given that the multivariate random vector X has zero 
mean and variancePcovariance matrix E(XX’) = K.’ Therefore, the joint Gaus- 
sian distribution is minimally prejudiced in the sense of Jaynes (1957) which is 
‘maximally non-committal with regard to missing information’.’ Moreover, by 
Burg’s theorem introduced in Section 11.6, the familiar AR(p) Gaussian pro- 
cesses in time series analysis can also be derived by the maximum entropy 
principle given appropriate constraints. 

While the ME principle is well-known, the MDL principle (or stochastic 
complexity) is still new for most econometricians.g The reason for this is simple. 
The foundation for algorithmic information theory is algorithmic complexity in 
computation theory which is seldom a part of training for economists. There- 

fore, econometricians tend to have some difficulty in understanding this prin- 
ciple. For those economists who want to be motivated to study the MDL 

‘This approach is similar to Amemiya (1985) though he has a little different order. 

60ne may wonder why the celebrated maximum likelihood (ML) principle is not singled out. There 

are two reasons for this. First, the MDL principle can be equally justified as the ‘global ML 

principle’ (see Rissanen, 1989, p. 6). Second, it is well-known that the ML principle is a guidance for 

parameter estimation under chosen models and cannot be considered a general principle for model 

selection. 

‘This is also shown in Chapter 9, Theorem 9.6.5. 

*See Jaynes (1957. p. 620). 

‘Fortunately, in the recent literature of bounded rationality in economics, it has caught the 

attention of a number of economists. For example, Leijonhufvud (1993, p. 6) was aware of the 

importance of this principle: ‘We should not look at Rissanen’s work as ‘only’ providing a new 

statistical foundation to the econometricians; it also offers theorists a way to populate their models 

with agents that learn by induction.’ 
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principle, Sections 7.6-7.11 provide some useful background knowledge. The 
way the authors present these sections is rather entertaining. I am particularly 
amused by their illustration of the concept of universal prohahility. The authors 
invite the readers to imagine a monkey sitting at a computer keyboard and 
typing the keys at random. The inquiry about the chance that all the works of 
Shakespeare are typed out immediately gives us an idea of what universal 
probability is about. After giving a definition of universal probability in Section 
7.6, the authors prove an equivalence between Kolmogorov complexity and 
universal probability in Section 7.11. The content of universal probability is 
shown to be further enriched by its contribution to the understanding of 
Occam’s Razor, Chaitin’s Q, and Fermant’s last theorem. Moreover, the rela- 
tions between algorithmic information theory and statistics are illuminated by 
the fact that such important statistical concepts as the likelihood ratio test 
(Section 7.6). LaPlace’s problem (Section 7.10), and sufficient statistics (Section 
7.12) can be redeveloped from universal probability. 

In terms of the relationship between the MDL principal and algorithmic 
information theory, the authors claim that ‘Rissanen’s minimum description 
length (MDL) principle is very close in spirit to the Kolmogorov sufficient 
statistic’ (p. 182). This seems to be an oversimplifying statement. In fact, the 
major issue that concerns Rissanen is the concrete application of algorithmic 
information theory to statistical inference.‘” Therefore, while they are ‘close in 

spirit’, their difference also deserves attention. As Rissanen (1992, pp. 2- 3) states: 
‘The stochastic complexity differs from the algorithmic complexity mainly in the 
nature of the models and the model classes chosen, in which computability 
theory plays no role.’ Cover and Tomas‘ treatment on information theory and 
statistics would be complete if Rissanen’s work were covered in a little more 
detail. 

The rest of the book is mainly related to communication theory where 
Shannon’s first, second, and third theorem are established. While it is not 
difficult to realize that channel and market are interchangeable in terms of 
information transmission, the relevance of communication theory to economics 
remains to be seen. To my best knowledge, O’Neill (19X7) appeared to be the 
first application of Shannon’s coding theorem in the area of economic 

modelling.’ ’ He showed that Shannon’s coding theorem allows one to precisely 
define the sense in which information is transmitted b\ an economic market 
(channel). With the help of rate distortion theor!). he was able to show that the 

“‘This can be clearly seen at the very beginning of Rissanen (1989. p. i) where he writes: ‘However. 

the theory gives no guidance to the practical construction of programs. let alone of the shortest one, 

which in fact turns out to be non-computable. Accordingly. the theory has had little or no direct 

impact on statistical problems.’ 

” I am grateful to Professor Velupillai for bringing my attention to the existence of such research. 
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Grossman-Stiglitz equilibrium requires signaling rate in excess of the channel 
capacity. To gain familiarity with this kind of research, the reader will find 
Chapters 8, 10, and 13 of the book helpful. 

In sum, given these characteristics, Cover and Thomas provide a much more 
general interdisciplinary framework for information theory than most of the 
other texts. It makes readers more curious about the significance of information 
theory. In terms of a textbook, it is certainly a great success. 
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