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Abstract

In this paper, we propose a new architecture to study arti"cial stock markets. This
architecture rests on a mechanism called &school' which is a procedure to map the
phenotype to the genotype or, in plain English, to uncover the secret of success. We
propose an agent-based model of &school ', and consider school as an evolving population
driven by single-population GP (SGP). The architecture also takes into consideration
traders' search behavior. By simulated annealing, traders' search density can be connected
to psychological factors, such as peer pressure or economic factors such as the standard of
living. This market architecture was then implemented in a standard arti"cial stock
market. Our econometric study of the resultant arti"cial time series evidences that the
return series is independently and identically distributed (iid), and hence supports the
e$cient market hypothesis (EMH). What is interesting though is that this iid series was
generated by traders, who do not believe in the EMH at all. In fact, our study indicates
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that many of our traders were able to "nd useful signals quite often from business school,
even though these signals were short-lived. ( 2001 Elsevier Science B.V. All rights
reserved.
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1. Background and motivation

Over the past few years, genetic algorithms (GAs) as well as genetic program-
ming have gradually become a major tool in agent-based computational econ-
omics (ABCE). According to Holland and Miller (1991), there are two styles of
GAs or GP in ABCE, namely, single-population GAs/GP (SGA/SGP) and
multi-population GAs (GP) (MGA/MGP). SGA/SGP represents each agent as
a chromosome or a tree, and the whole population of chromosomes and trees are
treated as a society of market participants or game players. The evolution of this
society can then be implemented by running canonical GAs/GP. Arifovic (1995,
1996), Miller (1996), Vila (1997), Arifovic et al. (1997), Bullard and Du!y
(1998a,b, 1999), Staudinger (1998) are examples of SGA, while Andrews and
Prager (1994), Chen and Yeh (1996, 1997, 1998), and Chen et al. (1996) are
examples of SGP. MGA/MGP, in contrast, represents each agent as a society of
minds (Minsky, 1986). Therefore, GAs or GP is actually run inside each agent.
Since, in most applications, direct conversations (imitations) among agents do
not exist, this version of applications should not be mistaken as the applications
of parallel and distributed GAs/GP, where communications among &islands' do
exist. Examples of MGA can be found in Palmer et al. (1994), Tayler (1995),
Arthur et al. (1997), Price (1997), Heymann et al. (1998).

While these two styles of GAs/GP may not be much di!erent in engineering
applications, they do answer di!erently for the fundamental issue: &who learns
what from whom? ' (Herreiner, 1998). First, agents in the SGA/SGP architecture
usually learn from other agents' experiences, whereas agents in the MGA/MGP
architecture only learn from their own experience. Second, agents' interactions
in the SGA/SGP architecture are direct and through imitation, while agents'
interactions in the MGA/MGP architecture are indirect and are mainly through
meditation. It is due to this di!erence that SGA/SGP is also called social learning
and MGA/MGP individual learning (Vriend, 1998). At the current state, the
SGA/SGP architecture is much more popular than the MGA/MGP architec-
ture in ABCE.

In addition to its easy implementation, the reason for the dominance of
SGA/SGP in ABCE is that economists would like to see their genetic operators
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(reproduction, crossover, and mutation) implemented within a framework of
social learning so that the population dynamics delivered by these genetic
operators can be directly interpreted as market dynamics. In particular, some
interesting processes, such as imitation, &following the herd', rumors dissemina-
tion, can be more e!ectively encapsulated into the SGA/SGP architecture.

However, it has been recently questioned by many economists whether
SGA/SGP can represent a sensible learning process at all. One of the main
criticisms is given by Harrald (1998), who pointed out the traditional distinction
between the phenotype and genotype in biology and doubted whether the
adaptation can be directly operated on the genotype via the phenotype in social
processes. Back to Herreiner's issue, if we assume that agents only imitate
others' actions (phenotype) without adopting their strategies (genotype), then
SGA/SGP may be immune from Harrald's criticism. However, imitating other
agents' actions are a very minor part of agents' interactions. In many situations,
such as "nancial markets and prisoners' dilemma games, it would be hopeless to
evolve any interesting agents if they are assumed to be able to learn only to &buy
and hold ' or &cooperate and defect '. More importantly, what concerns us is how
they learn the strategies behind these actions. But, unless we also assume that
strategies are observable, it would be di$cult to expect that they are imitable.
Unfortunately, in reality, strategies are in general not observable. For instance,
it is very di$cult to know the forecasting models used by traders in "nancial
markets. To some extent, they are secrets. What is observable is, instead, only
a sequence of trading actions. Therefore, Harrald's criticism is in e!ect challeng-
ing all serious applications of SGA/SGP in ABCE.

Although Harrald's criticism is well acknowledged, we have seen no solution
proposed to tackle this issue yet. At this stage, the only alternative o!ered is
MGA/MGP. In fact, it is interesting to note that many applications which
heavily rely on evolution operated on the genotype (strategies) tend to use
MGA/MGP. Modeling "nancial agents is a case in point. What is ironic is that
this type of application is in essence dealing with human interaction and thus
requires an explicit modeling of imitation, speculation and herd behavior. As
a result, MGA/MGP is not really a satisfactory response to Harrald's criticism.

In this paper, we plan to propose a new architecture and hence a solution to
Harrald's criticism. This architecture rests on a missing mechanism, which we
think is a key to Harrald's criticism. The missing mechanism is what we call
&school '. Why &school'? To answer Harrald's criticism, one must resolve the issue
&how can unobservable strategies be actually imitable'? The point is how. There-
fore, by the question, what is missing in SGA/SGP is a function to show how,
and that function is what we call &school'. Here, &school' is treated as a procedure,
a procedure to map the phenotype to the genotype, or in plain English, to
uncover the secret of success. This notion of &school' goes well with what school
usually means in our mind. However, it covers more. It can be mass media,
national library, information suppliers, and so on. Warren Bu!ett may not be
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generous enough to share his secrets of acquiring wealth, but there are hundreds
of books and consultants that would be more than happy to do this for us. All
these kinds of activities are called &schooling'. Therefore, if we supplement
SGA/SGP with a function &school', then Harrald's criticism can, in principle, be
solved.

Nevertheless, to add &school' to an evolving population is not that obvious.
Based on our earlier description, &school' is expected to be a collection of most
updated studies about the evolving population (evolving market participants).
So, to achieve this goal, &school' itself has to evolve. The question is how? In this
paper, we propose an agent-based model of &school '. More precisely, we consider
school as an evolving population driven by single-population GP (SGP). In
other words, &school' mainly consists of faculty members (agents) who are
competing with each other to survive (get tenure or research grants), and hence
the survival of the "ttest principle is employed to drive the evolution of faculty
the way it drives the evolution of market participants. To survive well, a faculty
member must do her best to answer what is the key to success in the evolving
market. Of course, as the market evolves, the answer also needs to be revised and
updated.

Once &school' is constructed with the agent-based market, the SGP used to
evolve the market is now also run in the context of school. The advantage of this
setup is that, while the SGP used to evolve the market su!ers from Harrald's
criticism, the SGP used to evolve &school' does not. The reason is simple. To be
a successful member, one must publish as much as she knows and cannot keep
anything secret. In this case, observability and imitability (replicatability) is not
an assumption but a rule. In other words, there is no distinction between the
genotype and phenotype in &school'. Hence, Harrald's criticism does not apply
and SGP can be &safely' used to evolve &school'.

Now, what happens to the original SGP used to evolve the market? This
brings up the second advantage of our approach. Since the function of school is
to keep track of strategies (genotypes) of market participants and to continuous-
ly generate new and promising ones, any agent who has pressure to imitate other
agents' strategies or to look for even better strategies can now just consult
&school' and see whether she has any good luck to have a rewarding search. So,
the original operation of SGP in the market can now be replaced by SGP in
&school' and a search procedure driven by the survival pressure of agents. Agents
can still have interaction on the phenotype in the market, but their interaction
on the genotype is now indirectly operated in &school'.

An interesting aspect of this approach is to explicitly model the interaction
between &school ' and the market by introducing a co-evolution model. To
survive, school must adapt to market dynamics. On the other hand, market
dynamics generate students for &school' who, in turn, bring the knowledge
learned from &school' back to the market, and that knowledge may have further
impact on market dynamics. While agent-based modeling is a bottom-up
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Fig. 1. The market architecture represented by single-population GAs/GP (SGA/SGP).

approach, one may use a system of two nonlinear di!erence equations, govern-
ing the dynamics of &school' and the market, as a top-down &summary'.

The di!erence between our proposed architecture and SGA/SGP and
MGA/MGP is also illustrated in Figs. 1}3. Fig. 1 depicts the market architec-
ture represented by SGA/SGP. The top of Fig. 1 is the market as a single object,
and the bottom is a population of directly interacting heterogeneous agents. The
direct interaction is characterized by the symbol &%' among them. By this
architecture, the information (knowledge) about the market is openly distributed
among all agents. Nothing is kept secret. In between is a symbol &"' (equivalent
to), which means that market dynamics is equivalent to the evolution of this
population of directly interacting agents.

Fig. 2 gives the market architecture represented by multi-population GP. The
market remains at the top, but there are two essential di!erences as opposed to
the previous "gure. First, the single symbol " is replaced by a series of Qs.
Under these Qs is a population of indirectly interacting agents. By &indirectly',
we mean that these agents are interacting only through a bulletin board.
Imagine that each agent sits in her o$ce and watches the world from the web.
They have no direct contact with one other, physically, and in some sense,
mentally as well. The information (knowledge) about the market is now privately
distributed among agents. Each agent has her own world and keeps her own
secrets.

The point here is that other agents' minds are not directly observable, and
hence not imitable. Within each agent's mind, there is a society of minds. The
evolution of this society is driven by GP. Within this architecture, agents
basically learn from her own experience, and not from other agents' experiences.
Thus, it is a typical model of individual learning.
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Fig. 2. The market architecture represented by multi-population GAs/GP (MGA/MGP).

Fig. 3. The market architecture represented by single-population GAs/GP with &School'.
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Fig. 3 represents the architecture of our proposed modi"cation. Again, the
market is placed at the top. At the bottom to the right, it is something between
Figs. 1 and 2. In the phenotype, agents' interaction is direct and identical to what
Fig. 1 shows, whereas in the genotype, it looks something like Fig. 2, where there
is no direct interaction. The original connection between markets and agents is
now replaced by the connection between agents and school shown at the bottom
to the left. Inside school, there is again a population of direct interacting agents
(faculty), which is pretty much like Fig. 1.

The key elements of our proposed architecture entitled &MS-GP' (standing for
GP implemented with &School' in the Market) are the procedures &school ' and
the search. We shall concretize these procedures with an application to the
artixcial stock market. The arti"cial stock market is a new but growing "eld.
Some wonders and missions of this research area have been well documented by
LeBaron (2000). In his article, LeBaron distinguishes the recent models of
complex heterogeneity from those of simple heterogeneity.

The use of heterogeneous agents is certainly not new to "nance, and
there is a long history to building heterogeneous agent rational expecta-
tions models. What is attempted in this set of computational frameworks
is to attack the problem of very complex heterogeneity which leaves the
boundary of what can be handled analytically. Traders are made up from
a very diverse set of types and behaviors. To make the situation more
complex the population of agent types, or the individual behaviors them-
selves, are allowed to change over time in response to past performance.
(p.680)

One of the missions of these agent-based computational models is to replicate
time series features of real markets. While it will continue to be pursued, the focus
of this paper will be much more fundamental. As calibration techniques advance,
we may expect that sooner or later agent-based "nancial models will be so
powerful that replicating time series features of real markets will not be that
daunting. In fact, LeBaron himself has made the following observation:

Validation remains a critical issue if arti"cial "nancial markets are
going to prove successful in helping explain the dynamics of real markets.
This remains a very weak area for the class of models described here.
Further calibration techniques and tighter test will be necessary2 .
However, there are some key issues which a!ect these markets in particu-
lar. First, they are loaded with parameters which might be utilized to xt any
feature that is desired in actual data2 . (Le Baron, 2000, pp. 698}699,
Italics added).

Judging from the results of recent progresses in the literature of arti"cial stock
market, that moment will come in a couple of years. When that moment does
come, one may start to question how these calibration techniques can be
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justi"ed, which leads to the foundation of this research: can we regard GAs/GP as
a suitable model of learning behavior within society?. The answer can hardly be
positive or convincing if Harrald's criticism has not been well taken. We
therefore consider this phase of research more fundamental. By saying that, this
research tends to modify GP in a manner such that it has a closer connection
with human learning and adaptation.

MS-GP brings back search behavior, a subject which was once intensively
studied in economics but has been largely ignored in the conventional GAs/GP
economic literature. As we shall see later, through the idea of simulated annealing
agents' (traders') search density can be connected to psychological factors, such
as peer pressure or economic factors such as economic pressure. Furthermore,
the built-in mechanism &school' enables us to investigate the role of &school' or
the value of &education' in the evolution of a very speci"c social process. The
statistics generated from simulations, such as the time series of the number of
&students' registered, the number of &students' who receives futile or fruitful
lessons at &school' can all help us understand how &school', or information
industry in general, coevolves with society.

In Section 2, we shall present the analytical model on which our arti"cial
market is constructed. In Section 3, a concrete application of the institutional
GP to the arti"cial stock market is detailed. Section 4 provides the experimental
design. Experiment results and econometric analysis of these designs are given in
Section 5 followed by concluding remarks in Section 6.

2. The analytical model

The basic framework of the arti"cial stock market considered in this paper is
the standard asset pricing model (Grossman and Stiglitz, 1980). The market
dynamics can be described as an interaction of many heterogeneous agents, each
of them, based on her forecast of the future, having the goal to maximize her
expected utility. Technically, there are two major components of this market,
namely, traders and their interactions.

2.1. Model of traders

The trader part includes traders' objectives and their adaptation. We shall start
from traders' motives by introducing their utility functions. For simplicity, we
assume that all traders share the same utility function. More speci"cally, this
function is assumed to be a constant absolute risk aversion (CARA) utility
function,

;(=
i,t

)"!exp(!j=
i,t

), (1)
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where=
i,t

is the wealth of trader i at time period t, and j is the degree of relative
risk aversion. Traders can accumulate their wealth by making investments.
There are two assets available for traders to invest. One is the riskless interest-
bearing asset called money, and the other is the risky asset known as the stock. In
other words, at each point in time, each trader has two ways to keep her wealth,
i.e.,

=
i,t
"M

i,t
#P

t
h
i,t

, (2)

where M
i,t

and h
i,t

denotes the money and shares of the stock held by trader i at
time t. Given this portfolio (M

i,t
, h

i,t
), a trader's total wealth =

i,t`1
is thus

=
i,t`1

"(1#r)M
i,t
#h

i,t
(P

t`1
#D

t`1
), (3)

where P
t

is the price of the stock at time period t and D
t

is per-share cash
dividends paid by the companies issuing the stocks. D

t
can follow a stochastic

process not known to traders. Given this wealth dynamics, the goal of each
trader is to myopically maximize the one-period expected utility function,

E
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) (4)

subject to
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where E
i,t

( . ) is trader i's conditional expectations of=
t`1

given her information
up to t (the information set I

i,t
), and r is the riskless interest rate.

It is well known that under CARA utility and Gaussian distribution for
forecasts, trader i's desire demand, hH

i,t`1
for holding shares of risky asset is

linear in the expected excess return:

hH
i,t
"

E
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where p2
i,t

is the conditional variance of (P
t`1

#D
t`1

) given I
i,t

.
One of the essential elements of agent-based arti"cial stock markets is the

formation of E
i,t

(.), which will be given in detail in the next section.

2.2. Model of price determination

Given hH
i,t

, the market mechanism is described as follows. Let b
i,t

be the
number of shares trader i would like to submit a bid to buy at period t, and let
o
i,t

be the number trader i would like to o!er to sell at period t. It is clear that

b
i,t
"G

hH
i,t
!h

i,t~1
, hH

i,t
5h

i,t~1
,

0 otherwise
(7)
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1This simple rationing scheme is chosen mainly to ease the burden of intensive computation.
A realistic alternative is to introduce the double auction price mechanism. However, computation-
ally speaking, this idea is very demanding for genetic programming. We are currently working on it
in a separate project.

and

o
i,t
"G
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i,t~1
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i,t
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i,t
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,

0 otherwise.
(8)

Furthermore, let

B
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"
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(9)

and

O
t
"

N
+
i/1

o
i,t

(10)

be the totals of the bids and o!ers for the stock at time t, where N is the number
of traders. Following Palmer et al. (1994), we use the following simple rationing
scheme:1
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All these cases can be subsumed into

h
i,t
"h

i,t~1
#

<
t

B
t

b
i,t
!

<
t

O
t

o
i,t

, (12)

where <
t
,min(B

t
, O

T
) is the volume of trade in the stock.

Based on Palmer et al.'s rationing scheme, we can have a very simple price
adjustment scheme, based solely on the excess demand B

t
!O

t
:

P
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t
(1#b(B
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t
)), (13)

where b is a function of the di!erence between B
t
and O

t
. b can be interpreted as

speed of adjustment of prices. One of the b functions we consider is
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2Of course, this number cannot be taken without some caution. Notice that f
i,t

can be arbitrarily
close to zero, but not identically zero. In this case, it is essentially consistent with the martingale
hypothesis, and N

1,t
might not be completely informative. To cope with this problem, what our

programming does is to treat f
i,t

essentially zero if

D f
i,t
!0D40

and 0 can be determined by the end-user. In this paper, 0 is set to 10~5.

where tanh is the hyperbolic tangent function:

tanh(x),
ex!e~x

ex#e~x
. (15)

Since P
t
cannot be negative, we allow the speed of adjustment to be asymmetric

to excess demand and excess supply.
The price adjustment process introduced above implicitly assumes that the

total number of shares of the stock circulated in the market is "xed, i.e.,

H
t
"+

i

h
i,t
"H. (16)

In addition, we assume that dividends and interests are all paid by cash, so

M
t`1

"+
i

M
i,t`1

"M
t
(1#r)#H

t
D

t`1
. (17)

2.3. Model of adaptive traders

In this section, we shall address the formation of traders' expectations,
E
i,t

(P
t`1

#D
t`1

) and p2
i,t

. Motivated by the martingale hypothesis in "nance, we
shall assume the following function form for E

i,t
( . ):

E
i,t

(P
t`1

#D
t`1

)"(P
t
#D

t
)(1#h

1
tanh(h

2
) f
i,t

)). (18)

The virtue of this function form is that, if f
i,t
"0, then the trader actually

validates the martingale hypothesis. Therefore, from the cardinality of set
Mi D f

i,t
"0N, denoted by N

1,t
, we can know how well the ezcient market hypothesis

is accepted among traders.2 The population of functions f
i,t

(i"1,2,N) is
determined by the genetic programming procedure Business School and Search
in Business School given in the following two subsections.

As to the subjective risk equation, we take a modi"cation of the equation
originally used by Arthur et al. (1997).
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"(1!h

3
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where

p2
t@n1

"

+n1~1
j/0

[P
t~j

!PM
t@n1

]2

n
1
!1

(20)

and

PM
t@n1

"

+n1~1
j/0

P
t~j

n
1

. (21)

In other words, p2
t~1@n1

is simply the historical volatility based on the past
n
1

observations.

2.4. Business school and single-population GP

The major component of arti"cial stock markets is the adaptive traders, who
can be regarded as an evolving population. Since Arifovic (1994), genetic
algorithm has been employed to drive the evolving population of agents in
economics. Chen and Yeh (1996) generalized this approach by using genetic
programming. The style of GP used in Chen and Yeh (1996) is known as
single-population GP in agent-based computational economics, which is di!erent
from multi-population GP. In single-population GP, each tree can be regarded as
a forecasting model used by an agent; hence, the adaptation of agents (in terms
of their forecasting models) can be directly represented by the standard opera-
tion of GP. However, due to Harrald's criticism mentioned in Section 1, we
consider a modi"ed version of single-population GP in this paper. Our modi"ed
version is characterized as an addition of a business school to the arti"cial stock
market.

The business school in our model functions as usual business schools in the
real world. It mainly consists of faculty, and their di!erent kinds of models
(schools of thoughts). Let F be the number of faculty members (forecasting
models). These models are propagated via a competition process driven by the
faculty through publications. In this academic world, a scholar can ill a!ord to
keep something serious to herself if she wants to be well acknowledged. If we
consider business school a collection of forecasting models, then we may well use
single-population GP to model its adaptation.

Nonetheless, scholars and traders may care about di!erent things. Therefore,
in this paper, di!erent "tness functions are chosen to take care of such a distinc-
tion. For scholars, the "tness function is chosen purely from a scienti"c view-
point, say, forecasting accuracy. For example, one may choose mean absolute
percentage error (MAPE) as the "tness function (Table 1). Single-population GP
is then conducted in a standard way. Each faculty member (forecasting model) is
represented by a tree (GP parse tree). The faculty will be evaluated with
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Table 1
Parameters of the stock market!

The stock market

Shares of the stock (H) per capita 1
Initial money supply (M

1
) per capita 100

Interest rate (r) 0.1
Stochastic process (D

t
) IID & ;niform(5.01, 14.99)

Price adjustment function tanh
Price adjustment (b

1
) 10~4

Price adjustment (b
2
) 0.2]10~4

Business school

Number of faculty members (F) 500
Number of trees created by the full method 50
Number of trees created by the grow method 50
Function set M#,!, * , /, Sin,Cos, Exp,R log,Abs, SqrtN
Terminal set MP

t
,P

t~1
,2,P

t~10
,

P
t~1

#D
t~1

,2,P
t~10

#D
t~10

N
Selection scheme Tournament selection
Tournament size 2
Probability of creating a tree by reproduction (p

3
) 0.10

Probability of creating a tree by crossover (p
#
) 0.70

Probability of creating a tree by mutation (p
.
) 0.20

Probability of mutation 0.0033
Probability of leaf selection under crossover 0.5
Mutation scheme Tree mutation
Replacement scheme Tournament selection
Maximum depth of tree 17
Number of generations 20,000
Maximum number in the domain of Exp 1700
Criterion of "tness (Faculty members) MAPE
Evaluation cycle (m

1
) 20

Sample Size (MAPE) (m
2
) 10

Traders

Number of Traders (N) 500
Degree of RRA (j) 0.5
Criterion of "tness (Traders) Increments in wealth (Income)
Sample size of p2

t@n1
(n

1
) 10

Evaluation cycle (n
2
) 1

Sample size (n
3
) 10

Search intensity (IH) 5
h
1

0.5
h
2

10~4

h
3

0.0133

!The number of trees created by the full method or grow method is the number of trees initialized in
Generation 0 with the depth of tree being 2}6. For details, see Koza (1992).
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a prespeci"ed schedule, say once for every m
1

trading days. The review proced-
ure proceeds as follows.

At the evaluation date, say t, each forecasting model (faculty member) will be
reviewed by a visitor. The visitor is another model which is generated randomly
from the collection of the existing models in the business school at t!1,
denoted by GP

t~1
, by one of the following three genetic operators, reproduc-

tion, crossover and mutation, each with probability p
3
, p

#
, and p

.
(Table 1). In

the case of reproduction or mutation, we "rst randomly select two GP trees, say,
gp

j,t~1
and gp

k,t~1
. The MAPE of these two trees over the last m

2
days'

forecasts are calculated. A tournament selection is then applied to these two trees.
The one with lower MAPE, say gp

j,t~1
, is selected. We then run a tournament

again over the host gp
i,t~1

and the visitor gp
j,t~1

(in the case of reproduction) or
gp@

j,t~1
(in the case of mutation) based on the criterion MAPE, and gp

i,t
is the

winner of this tournament.
In the case of crossover, we "rst randomly select two pairs of trees, say

(gp
j1,t~1

, gp
j2,t~1

) and (gp
k1,t~1

, gp
k2 ,t~1

). The tournament selection is applied
separately to each pair, and the winners are chosen to be parents. The children,
say (gp

1
, gp

2
), are born. One of them is randomly selected to compete with

gp
i,t~1

, and the winner is gp
i,t

. The following is a pseudo-program of the
procedure Business School (also see Fig. 4). Table 1 is an example of the
speci"cation of the control parameters to evolve the business school.

Procedure [Business School]
0. begin

1. Calculate MAPE(gp
i,t~1

)
2. A"Random(R,C, M) with (p

3
, p

#
, p

.
)

3. If A"C, go to step (11).
4. (gp

1
, gp

2
)"(Random(GP

t~1
), Random(GP

t~1
))

5. Calculate MAPE(gp
1
) and MAPE(gp

2
).

6. gp
/%8

" Tournament Selection (MAPE(gp
1
),MAPE(gp

2
))

7. If A"R, go to step (17).
8. gp

/%8
QMutation(gp

/%8
)

9. Calculate MAPE(gp
/%8

)
10. Go to step (17)
11. Randomly select two pairs of trees from GP

t~1
12. Calculate MAPE of these two pairs of GP trees
13. gp

1
" Tournament Selection (PAIR 1)

14. gp
2
" Tournament Selection (PAIR 2)

15. (gp
1
, gp

2
)QCrossover(gp

1
, gp

2
)

16. gp
/%8

"Random(gp
1
, gp

2
)

17. gp
i,t
"Tournament Selection (MAPE(gp

i,t~1
),MAPE(gp

/%8
))

18. end
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Fig. 4. Evolution of the Business School.

2.5. Traders and business school

Given the adaptive process of the business school, the adaptive process of
traders can be described as a sequence of two decisions. First, should she go
back to the business school to take classes? Second, should she follow the lessons
learned at school? In the real world, the "rst decision somehow can be more
psychological and has something to do with peer pressure. One way to model the
in#uence of peer pressure is to suppose that each trader will examine how well
she has performed over the last n

2
trading days, when compared with other

traders. Suppose that traders are ranked by the net change of wealth over the last
n
2

trading days. Let=n2
i,t

be this net change of wealth of trader i at time period t,
i.e.,

D=n2
i,t
,=

i,t
!=

i,t~n2
(22)

and, let R
i,t

be her rank. Then, the probability that trader i will go to business
school at the end of period t is assumed to be determined by

p
i,t
"

R
i,t

N
. (23)
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The choice of the function p
i,t

is quite intuitive. It simply means that

p
i,t
(p

j,t
if R

i,t
(R

j,t
. (24)

In words, the traders who come out top shall su!er less peer pressure, and hence
have less motivation to go back to school than those who are ranked at the
bottom.

In addition to peer pressure, a trader may also decide to go back to school
out of a sense of self-realization. Let the growth rate of wealth over the last
n
2

days be

dn2
i,t
"

=
i,t
!=

i,t~n2
D=

i,t~n2
D

(25)

and let q
i,t

be the probability that trader i will go back to business school at the
end of the tth trading day, then it is assumed that

q
i,t
"

1

1#edn2i,t
. (26)

The choice of this density function is also straightforward. Notice that

lim
dn2i,t?=

q
i,t
"0 (27)

and

lim
dn2i,t?~=

q
i,t
"1. (28)

Therefore, the traders who have made great progress will naturally be more
con"dent and hence have little need for schooling, whereas those who su!er
devastating regression will have a strong desire for schooling.

In sum, for trader i, the decision to go to school can be considered as a result
of a two-stage independent Bernoulli experiments. The success probability of the
"rst experiment is p

i,t
. If the outcome of the "rst experiment is success, the trader

will go to school. If, however, the outcome of the "rst experiment is failure, the
trader will continue to carry out the second experiment with the success
probability q

i,t
. If the outcome of the second experiment is success, then the

trader will also go to school. Otherwise, the trader will quit school. If we let
r
i,t

be the probability that trader i decides to go to school, then

r
i,t
"p

i,t
#(1!p

i,t
)q

i,t

"

R
i,t

N
#

N!R
i,t

N

1

1#edn2i,t
. (29)
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3To be precise, the search procedure introduced above is not simulated annealing. In simulated
annealing, the decision to accept a new solution is random. However, here, it is the decision to search
a random one. By this setting, the learning rate is endogenously determined for each individual
rather than exogenously given.

Once a trader decides to go to school, she has to make a decision on what
kinds of classes to take. Since we assume that business school, at period t,
consists of 500 faculty members (forecasting models), let us denote them by
gp

j,t
( j"1, 2,2, 500). The class-taking behavior of traders is assumed to follow

the following sequential search process. The trader will randomly select one
forecasting model gp

j,t
( j"1,2, 500) with a uniform distribution. She will then

validate this model by using it to "t the stock price and dividends over the last
n
3

trading days, and compare the result (MAPE) with her original model. If it
outperforms the old model, she will discard the old model, and put the new one
into practice. Otherwise, she will start another random selection, and do it again
and again until either she has a successful search or she continuously fail
IH times. The following is a pseudo program of the procedure Visiting the
Business School (also see Fig. 5).

Procedure [Visiting Business School]
0. begin

1. Calculate MAPE( f
i,t

)
2. IQ1
3. Randomly select a gp

j,t
(&;[1, 500])

4. Calculate MAPE(gp
j,t

)
5. If MAPE(gp

j,t
)(MAPE( f

i,t
), go to Step (10)

6. IQI#1
7. If I4IH, go to step (3)
8. f

i,t`1
"f

i,t
9. Go to Step (11)
10. f

i,t`1
"gp

j,t
11. end

Eq. (29) and the procedure Visiting Business School give the distinguishing
feature of our adaptive traders. As we mentioned earlier, there is no direct
interaction among traders in terms of the genotype. Therefore, the conventional
SGA or SGP used to evolve a population of traders is no longer applicable here.
In other words, our traders are not GP(GA)-based. Instead, their adaptation
behavior is modeled by an explicit search process. The search process starts with
a decision to search or not. This decision is stochastic, i.e., the trader at any point
in time cannot be sure whether she should start searching, and the uncertainty of
this decision is further modeled by a technique similar to simulated annealing
(SA).3 In sum, it is a society composing of SA-based traders and SGP-based
faculty, who coevlove with di!erent "tness functions (objective functions).
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Fig. 5. Trader's search process in the Business School.

3. Experimental designs

One of the formidable tasks for agent-based computational stock markets is
the design of traders. As LeBaron (2000) pointed out: &The computational realm
has the advantages and disadvantages of a wide open space in which to design
traders, and new researchers should be aware of the daunting design questions
that they will face. Most of these questions still remain relatively unexploited at
this time'. (p. 696) Nevertheless, one should notice that this issue is not con"ned
to agent-based computational "nance, and is widely shared by all research in
bounded rationality. For example, Sargent (1993) stated &This area is wilderness
because the research faces so many choices after he decides to forgo the
discipline provided by equilibrium theorizing'. (p. 2)

LeBaron's and Sargent's description of this wilderness can be further exempli-
"ed by Table 1. Facing such a wide open space, we have to admit that some
choices we made may be arbitrary, and that the results may not be robust to all
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4 In fact, we did have multiple runs before coming to this point. The simulations results presented
here can be considered a typical one in the sense that many properties reported here are widely
observed in other runs. Therefore, to make the presentation to have a focus, we shall only exemplify
what we learn from this market by a single &typical' run. Nevertheless, to have better communication
with readers, we have put our program to the website so that it can be freely downloaded, examined
and tested. The website address is:

http://econo.nccu.edu.tw/ai/sta!/csh/Software.htm

5According to LeBaron (2000), one of the missions of the agent-based modeling of "nancial
markets is to replicate time series features of real markets. Lux (1995, 1998), Lux and Marchesi
(1999), Chen and Kuo (1999), Chen et al. (2000b) have showed how these stylized facts can be
replicated in a speci"c style of agent-based models.

6Pagan (1996) summarized a list of stylized facts in "nancial time series.

designs. Hence, in addition to run many runs in a single design, it is also crucial
to test many di!erent designs, i.e., to test many tables like Table 1, while with
di!erent parameters. This paper, however, has a very limited scope, i.e., to
illustrate the rich dynamics our arti"cial stock market can possibly o!er, and the
questions it can e!ectively deal with a single experiment.4 Therefore, while we do
"ne-tune some of our parameters listed in Table 1, we do not intentionally
calibrate our parameters for the purpose of replicating the stylized facts of
"nancial time series.5

The simulation results of our arti"cial stock market are mainly a series of time
series variables of traders (microstructure) and the market. They are summarized
in Table 2.

4. Simulation results

Based on the experimental design given above (Table 1), a single run with
14,000 generations was conducted. Notice that the number of generations is also
the time scale of simulation, i.e., GEN"t. In other words, we are simultaneously
evolving the population of traders while deriving the price P

t
. In the following,

we shall present our results in an order to answer a series of questions motivated
by Pagan (1996).6

1. Are prices and returns normally distributed?
2. Does the price series have a unit root, i.e., does the price series follow an I(1)

process?
3. Are returns independently and identically distributed?

In addition to the &up' part, agent-based computational models provide us
with rich opportunity to study the microstructure, i.e., the behavioral aspect of
traders. In our arti"cial stock market, a trader's behavior can be well kept track
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Table 2
Time series generated from the arti"cial stock market

Aggregate variables

Stock price P
t

Trading volumes <
t

Totals of the bids B
t

Totals of the o!ers O
t

No. of martingale believers N
1,t

No. of traders registered to Business School N
2,t

No. of traders with successful search in Business School N
3,t

Individual trader

Forecasts f
i,t

Subjective risks p
i,t

Bid to buy b
i,t

O!er to sell o
i,t

Wealth =
i,t

Income D=1
i,t

Rank of pro"t-earning performance R
i,t

Complexity (depth of f
i,t

) k
i,t

Complexity (No. of nodes of f
i,t

) i
i,t

of by a list of variables given in Table 2. This list of variables enables us to
address a lot of interesting issues in behavioral "nance.

1. What does the traders actually believe? Does she believe in the e$cient
market hypothesis?

2. What exactly is the forecasting model (or the trading strategy) employed by
the trader?

3. How sophisticated is the trader? Will she get more and more sophisticated as
time goes on?

In the following, we shall illustrate how these issues can be approached by our
agent-based arti"cial stock market.

First, are price and returns normally distributed? The time series plot of the
stock price is drawn in Fig. 6. Over this long horizon, P

t
#uctuates between 55

and 105. The basic statistics of this series, MP
t
N14 000
t/1

, is summarized in Table 3.
Given the price series, the return series is derived as usual

r
t
"ln(P

t
)!ln(P

t~1
). (30)

Fig. 7 is a time series of stock return, and Table 4 gives the basic statistics of this
return series. From these two tables, neither the stock price series MP

t
N nor

return series Mr
t
N is normal. The null hypothesis that these series are normal are

rejected by the Jarqu}Bera statistics in all periods. The fat-tail property is
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Fig. 6. Time series plot of the stock price.

Table 3
Basic statistics of the arti"cial stock price series

Periods PM p Skewness Kurtosis Jarqu-Bera p-value

1}2000 84.07 4.82 0.34 3.07 40.62 0.00
2001}4000 76.43 5.84 0.65 2.60 153.49 0.00
4001}6000 67.28 1.84 0.94 5.07 654.75 0.00
6001}8000 65.17 3.27 0.67 3.85 212.46 0.00
8001}10000 64.46 2.49 1.16 5.28 887.91 0.00

10001}12000 68.44 5.09 2.24 11.46 7660.11 0.00
12001}14000 74.57 5.48 1.00 3.71 381.93 0.00

Fig. 7. Time series plot of stock returns.

S.-H. Chen, C.-H. Yeh / Journal of Economic Dynamics & Control 25 (2001) 363}393 383



Table 4
Basic statistics of the arti"cial stock return series

Periods PM p Skewness Kurtosis Jarqu-Bera p-value

1}2000 !0.000074 0.015 3.53 23.64 39676.46 0.00
2001}4000 !0.000057 0.010 3.26 18.83 24461.55 0.00
4001}6000 !0.000018 0.007 3.72 25.94 48486.08 0.00
6001}8000 !0.000024 0.007 3.70 25.79 47869.55 0.00
8001}10000 0.000032 0.007 3.69 26.97 52452.04 0.00

10001}12000 0.000169 0.010 6.91 86.56 597871.50 0.00
12001}14000 !0.000154 0.009 4.18 32.80 79867.54 0.00

Table 5
Unit root test and PSC "ltering!

Periods DF of P
t

(p, q)

1}2000 !0.285 (0, 0)
2001}4000 !0.288 (0, 0)
4001}6000 !0.150 (0, 0)
6001}8000 !0.180 (0, 0)
8001}10000 0.173 (0, 0)

10001}12000 0.680 (0, 0)
12001}14000 !0.753 (0, 0)

!The MacKinnon critical values for rejection of hypothesis of a unit root at 1% (5%) signi"cance
level is !2.5668 (!1.9395).

especially striking in the return series. This result is consistent with one of
stylized facts documented in Pagan (1996).

Second, does the price series have a unit root? The standard tool to test for the
presence of a unit root is the celebrated Dickey}Fuller (DF) test (Dickey and
Fuller, 1981). The DF test consists of running a regression of the "rst di!erence
of the log prices series against the series lagged once.

D ln(P
t
)"ln(P

t
)!ln(P

t~1
)"b

1
ln(P

t~1
). (31)

The null hypothesis is that b
1

is zero, i.e., ln(P
t
) contains a unit root. If b

1
is

signi"cantly di!erent from zero then the null hypothesis is rejected. As can be
seen from the second column of Table 5, from the total number of 7 periods
none leads to a rejection of the presence of a unit root.

Third, are returns independently and identically distributed? Here, we followed
the procedure of Chen et al. (2000b). This procedure is composed of two steps,
namely, the PSC xltering and the BDS testing. We "rst applied the Rissanen's
predictive stochastic complexity (PSC) to "lter the linear process. The third
column of Table 5 gives us the ARMA(p, q) process extracted from the return
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Table 6
BDS test!

Periods DIM"2 DIM"3 DIM"4 DIM"5 Reject

1}2000 !0.36 !0.20 !0.14 !0.18 No
2001}4000 !0.16 0.13 0.40 0.57 No
4001}6000 1.34 1.35 1.22 1.24 No
6001}8000 0.89 0.99 1.18 1.35 No
8001}10000 1.93 2.38 2.64 2.69 Yes

10001}12000 0.85 0.92 0.96 0.87 No
12001}14000 0.29 0.21 0.37 0.66 No

!The test statistic is asymptotically normal with mean 0 and SD 1. The signi"cance level of the test
is set at 0.05.

series. Interestingly enough, all these seven periods are linearly independent
( p"0, q"0). This result corresponds to the classical version of the ezcient
market hypothesis.

Once the linear signals are "ltered, any signals left in the residual series must
be nonlinear. Therefore, one of the most frequently used statistic, the BDS test, is
applied to the residuals from the PSC "lter. Since none of the seven return series
have linear signals, the BDS test is directly applied to the original return series.
There are two parameters required to conduct the BDS test. One is the distance
parameter (e standard deviations), and the other is the embedding dimension
(DIM). We found the result is not sensitive to the "rst choice, and hence, we only
report the result with e"1. As to the embedding dimension, we tried
DIM"2, 3, 4, 5, and the result is given in Table 6. Since the BDS test is
asymptotically normal, it is quite easy to have an eyeball check on the results.

What is a little surprising is that the null hypothesis of IID (identically and
independently distributed) is not rejected in 6 out of 7 periods. The only period
whose return series has nonlinear signals is Period 5. Putting the result of PSC
"ltering and BDS testing together, our return series is ezcient to the degree that,
85% of the time, it can be regarded as a iid series. But, if the series is indeed
independent (no signals at all), what is the incentive for traders to search? Clearly,
here, we have come to the issues raised by Grossman and Stiglitz 20 years ago
(Grossman and Stiglitz, 1980).

One of the advantages agent-based computational economics (the bottom-up
approach) is that it allows us to observe what traders are actually thinking and
doing. Are they martingale believers? That is, do they believe that

E
t
(P

t`1
#D

t`1
)"P

t
#D

t
?. (32)

If they do not believe in the martingale hypothesis, do they search intensively? In
other words, do they go to school and can still learn something useful in such an
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Fig. 8. The number of traders with martingale strategies on each trading day.

7One possible explanation for this inconsistency is that, under survival pressure, traders only care
about their short-term performance, and are only looking for models which are able to work in the
short term. In fact, as what we shall see later, traders in our arti"cial world are very active on trying
and using new models.

iid-series environment? To answer the "rst question, the time series of N
1,t

in
Table 2 is drawn in Fig. 8. The "gure is drawn only up to the "rst 2203 trading
days, because after that the group of believers goes extinct. Hence, while
econometricians may claim that the return series is iid, traders simply do not
buy it.7

This naturally brings up the second question: if they do not believe in the
martingale hypothesis, what do they actually do? Fig. 9 is the time series plot of the
number of traders with successful search, N

3,t
. Due to the density of the plot and

the wide range of #uctuation, this "gure is somewhat complicated and di$cult
to read. We, therefore, report the average of N

3,t
over di!erent periods of

trading days in Table 7. From Table 7, it can be seen that the number of traders
with successful search, on the average, #uctuates about 200. At a rough estimate,
40% of the traders bene"t from business school per trading day. Clearly, search
in business school is not futile.

It is interesting to know what kind of useful lessons traders learn from
business school. Based on our design given in Section 3, what business school
o!ers is a collection of forecasting models Mgp

i,t
N, which may well capture the

recent movement of the stock price and dividends. Therefore, while in the long-run
the return series is iid, traders under survival pressures do not care much about
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Fig. 9. The number of traders with successful search on each trading day.

Table 7
Microstructure statistics: average of traders with successful search and complexity of evolving
strategies!

Periods NM
3

kM i6

1}2000 209.13 17.85 8.14
2001}4000 189.03 28.14 9.66
4001}6000 218.53 54.34 13.29
6001}8000 215.91 59.51 14.13
8001}10000 220.78 76.60 14.74

10001}12000 206.80 69.22 13.97
12001}14000 185.40 50.58 12.94

!NM
3

is the average of N
3,t

taken over each period. kM and i6 are the average of k
t
and i

t
taken over

each period.

this long-run property. What motivates them to search and helps them to
survive is in e!ect brief signals. A similar observation was made by Peters (1991):

The evidence calls into question the E$cient Market Hypothesis, which
underlies the linear mathematics used in most capital market theory. It
also lends validity to a number of investment strategies that should not
work if markets are e$cient,2 . This "nding is of particular importance
for practitioners, because experience has shown that these strategies do
work when properly applied, even though theory tells us they should not
work in a random-walk environment. (italics added)
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Fig. 10. Trading's complexity: the average of the number of nodes of GP-trees.

Another way to see what traders may learn from business school is to examine
the forecasting models they employ. However, this is a very large database, and
is di$cult to deal with directly. But, since all forecasting models are in the
format of LISP trees, we can at least ask how complex these forecasting models
are. To do so, we give two de"nitions of the complexity of a GP-tree. The "rst
de"nition is based on the number of nodes appearing in the tree, while the second
is based on the depth of the tree. On each trading day, we have a pro"le of the
evolved GP-trees for 500 traders, M f

i,t
N. The complexity of each tree is computed.

Let k
i,t

be the number of nodes of the model f
i,t

and i
i,t

be the depth of f
i,t

. We
then average as follows

k
t
"

+500
i

k
i,t

500
and i

t
"

+500
i

i
i,t

500
. (33)

Figs. 10 and 11 are the time series plots of k
t

and i
t
. One interesting

hypothesis one may make is that the degree of traders' sophistication is an
increasing function of time (the monotone hypothesis). In other words, traders will
evolve to be more and more sophisticated as time goes on. However, this is not
the case here. Both "gures evidence that, while traders can evolve toward
a higher degree of sophistication, at some point in time, they can be simple as
well (also see Table 7). Despite the rejection of the monotone hypothesis, we see
no evidence that traders' behavior will converge to the simple martingale
model.

Figs. 9}11 together leave us an impression that traders in our arti"cial stock
market are very adaptive. About this phenomenon, Arthur (1992) conducted
a survival test on it.
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Fig. 11. Trader's complexity: the average of depth of GP-trees.

We "nd no evidence that market behavior ever settles down; the
population of predictors continually co-evolves. One way to test this is to
take agents out of the system and inject them in again later on. If market
behavior is stationary they should be able to do as well in the future as they
are doing today. But we "nd that when we &freeze' a successful agent's
predictors early on and inject the agent into the system much later, the
formerly successful agent is now a dinosaur. His predictions are unadapted
and perform poorly. The system has changed. (p. 24, italics added)

Arthur's interesting experiment can be considered as a measure of the speed of
change in a system. If a system changes in a very fast manner, then knowledge
about the system has to be updated in a similar pace; otherwise, the knowledge
acquired shall soon become obsolete. To see how fast our arti"cial stock market
changes, we made an experiment similar to Arthur's survival test. Since our
arti"cial market business school updates every 20 periods (m

1
"20, Table 1), we

can measure how fast the knowledge become obsolete by calculating the number
of traders with successful search on the hth day after business school has
updated the knowledge.

It is expected that knowledge acquired on the day immediately after the
updating day should be most helpful for the searching traders. Therefore, the
number of traders with successful search should be strikingly high on that day,
and the farther it is from the updating, the less the chance of having a successful
search. More precisely, denote N

3,t
by N

3,hi
, where t"(i) ) 20#h, and let

N
3,h

"

+14 000@20
i/1

N
3,hi

14 000/20
(34)
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Table 8
Average of the number of traders with successful search on the h day after business school has
updated the information

h NM
3,h

h NM
3,h

h NM
3,h

h NM
3,h

1 308.52 6 208.88 11 189.87 16 183.49
2 270.24 7 200.80 12 188.04 17 184.49
3 246.39 8 196.56 13 187.81 18 186.54
4 230.82 9 193.27 14 187.94 19 193.39
5 218.86 10 191.47 15 184.61 20 185.39

then a test similar to Arthur's &Jurassic Park' experiment can be reformulated as
follows. N

3,h
is a monotonic decreasing function of h. To see whether this property

will apply to our system, Table 8 reports the statistics N
3,h

. This series of
numbers starts with a peak at 308, and quickly goes down below 300 and then
drops further below 200 as h increases. This result simply says that when more
and more people knows the secret, there can be no longer any secret.

The last result also shows the co-evolving complex dynamics between busi-
ness school and the market. To survive, school must adapt to market dynamics.
On the other hand, market dynamics generate students for &school' who, in turn,
bring the knowledge learned from &school' back to the market, and that know-
ledge may have further impact on market dynamics. The patterns discovered by
business school are eventually annihilated by the traders who learn and make
a living on these patterns. However, on the process of annihilating these
patterns, new patterns are further generated for school to discover, and this
process goes on and on. One may call this process a self-destruction and
generation process.

5. Concluding remarks

The single experiment conducted here has demonstrated the rich dynamics
that our arti"cial stock market can generate. We also show the relevance of this
rich dynamics to xnancial econometrics and behavioral xnance. For the latter, we
address Peters' criticism on the e$cient market hypothesis as well as the
survival test with our dynamics of microstructure. It is interesting to note that,
while econometricians on the top may claim that our arti"cial market is e$cient,
our traders on the bottom do not act as if they believe in the e$cient market
hypothesis. This result seems to be consistent with our experience of the real
world, and is one of the interesting features one may expect from the bottom-up
approach.
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Appendix. The software AIE-ASM

The software used to simulate the arti"cial stock market reported here can be
directly downloaded from http://econo.nccu.edu.tw/ai/sta!/csh/Software.htm.

The current version is AIE-ASM Version 2. This website will be continuously
updated when new versions are available. There are two papers which can be
helpful for potential users. Chen et al. (2000a) provided instructions on how to
install this software. They further exempli"ed the use of this software system by
examining its performance from the aspect of price discovery. Chen and Yeh
(2000) studied the complex dynamics of this software system as a 25-dimensional
dynamical system under several di!erent settings, which include the ones with
and without a b-school, ones with di!erent speed of price adjustment (b

1
and

b
2
), ones with di!erent rank functions (Eq. (23)). Apart from research, for those

who are interested in using this software system for teaching, there are also
materials written in Power Point, which are available upon request.
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