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Abstract. The economic implications of network topologies are stud-
ied via a monopolist’s model of market networks originally proposed by
Phan, et al. (2003). By embedding the market into a larger collection of
network topologies, in particular, a class of scale-free networks, we ex-
tend the early analysis built upon a class of ring networks. To facilitate
the study of the impacts of network topologies upon market demand,
various measures concerning social welfare (the consumer’s surplus), the
avalanche effect, and the hysteresis effect, are formally established. Com-
parisons based on these measures show that network topologies matter,
and their implied differences will remain even when the network size be-
comes large.
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1 Motivation and Literature Review

The impact of social networks on economic behavior appears to have become an
important issue, which has just recently been recognized by a large number of
economists.1 The efforts devoted to exploring the effects of network topologies
on the resultant economic equilibria are unprecedented. Obviously, a network
serves as a fundamental support for the operation of an economic system, even
though its existence is sometimes only implicitly granted. The conventional neo-
classical theory, which did not explicitly acknowledge the existence of networks,
1 The literature can be roughly classified into two kinds. The first kind of literature

regards networks as exogenous, and studies their economic implications. The second
kind of literature treats networks as endogenously determined, and studies the for-
mation process of networks. Given a set of cost and profit conditions, economists
study the efficiency and stability of different networks, and determine the optimal or
a sustainable network. See Radner (1993), Bolton and Dewatripont (1994), Jackson
and Wolinsky (1996, 2003), Bala and Goyal (2000), and Goyal (2003) . Nonetheless,
to the best of our knowledge, little work has been done on the interaction between
network formations and their consequent performance.
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seems to suggest that networks, whatever their structure may be, have no effect
on resource allocation, at least, in the long run. Nevertheless, in their pioneering
work on network formation, Jackson and Wolinsky (1996) proved the Pareto
optimality of some well-known network topologies such as the fully-connected
network and the star network. They also proved the intuition that when trans-
action costs are exceedingly high, there will be no network formed, i.e. these is
complete independence of agents. These initial theoretical results are convincing
enough for us to reconsider more generally the relationship between network
topology and resource allocation.

Maybe the most natural start to establishing the link between network topolo-
gies and resource allocation, is to look at some fundamentals of economic analy-
sis. Phan, Pajot and Nadal (2003) is a pioneering example. They use network
topologies to illustrate the working of consumption externalities and from there
to show the impact of network topologies upon market equilibrium. First, by us-
ing the case where consumers are perfectly independent (the scale of the market
network is zero) as the benchmark, they find that the minimum price to win the
marginal consumer (the one with the lowest willingness to pay) increases with
the scale of the market network. In a sense, the demand curve shifts outward.
Secondly, they also find that the emergence of avalanches becomes apparent
when the network becomes fully-connected.2

Third, even though the scale of the market network remains unchanged, the
demand curve still shifts outward when the market topology changes from the
regular network to the small-world network. Fourth, there is also evidence that
the network topology can impact the dynamic patterns (the growth or the de-
cay) of the market when a new price is attempted.3 Fifth, what is particularly
intriguing is the hysteresis effect of the demand. With the working of the network
externality, once the market is expanding to a certain level with a decreasing
price, it will get stuck there and become less sensitive to the price reversal com-
ing later. This unique feature, despite its theoretical foundation, has been well
acknowledged in marketing and advertising.

Finally, maybe the most impressive part of Phan, et al.’s paper is that it
provides a fully-fledged version of demand and supply analysis, which makes it
feasible for market equilibrium analysis with respect to different network topolo-
gies. From there, we can see the effect of the network topology on the equilibrium
price, profits, and quantity supply (penetration rate).

Despite its rich insights from exploring network topologies, Phan, et al.’s pio-
neering work is still largely confined to a very specific type of network typology,
namely, the ring network.4 A follow-up study, as they also mention, would be
2 The avalanche can be understood as a phase transition with a threshold,which in

our case, is a critical price. The sales can be dramatically different if the price is just
a little below on above the threshold.

3 Of course, the network topology is not their only concern. The other aspect to which
they devoted a lot of space is the homogeneity of the consumers.

4 The ring network is, however, still very useful for the purpose of tutoring. The essence
of the random network, regular network, and the small-world network can easily be
presented with a ring.
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to consider a larger class of network topologies, even including networks which
are evolving. In this study, we are moving in this direction. Specifically, we are
considering the well-known scale-free network, which is probably the first kind
of evolving network in the literature.5

2 Basic Descriptions of a Network

Following the standard notation in graph theory, one can represent a network
by G(V, E), where G is the name for the network in question, and V and E
denote sets of vertices and edges respectively, which are the main stays of a
network. V = {1, 2, , ...n} represents all n constituents of V , and the number n
also refers to the size of the network. In our specific application, n is the number
of consumers in the market, and can, therefore, serve as a measure of the market
size. E = {bi,j : i, j ∈ V } encodes the relationship between any two vertices in
the net. In a special case, bij = 1 if there exists an edge (connection, relation)
between i and j; otherwise it is zero. In this special case, bij = bji, implying that
direction is irrelevant,which is also known as the non-directed network.

Given G(V, E), let d(i, j) be the length of the shortest path between the
vertices i and j, These the mean shortest length of G(V, E) is simply the mean
of all d(i, j),

L =
1

1
2n(n − 1)

∑

i≥j

d(i, j). (1)

The definition above may be problematic if there is an isolated vertex which
actually has no edge on any other vertices. So, G(V, E) with isolated vertices are
not considered here.

In addition to the distance measure, there are also a few density measures,
and the one which is used most popularly is known as the cluster coefficient.
Given a vertex i in a G, we would first like to measure how well its neighbors
get connected to each other. Specifically, if j is connected to i, and k is also
connected to i, is j also connected to k? Formally, we define the set of neighbors
of i as

ϑi = {j : bij = 1, j ∈ G}. (2)

Then the cluster coefficient in terms of i is

Ci =
#{(h, j) : bhj = 1, h, j ∈ ϑi, h < j}

#{j : j ∈ ϑi}
, (3)

and the cluster coefficient of G is the average of all Ci,

C =
1
n

n∑

i=1

Ci. (4)

5 The study suggested here can be further extended into two directions: first, to extend
to various probabilistic combinations of random networks and scale-free networks,
and second, to take into account the idea of community.
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The size of the neighborhood ϑi is called the degree of i. Denoted by f(k),
the degree distribution of G(V, E) gives the percentage of vertices of degree k.
The behavior of the degree distribution has become one of the most intensively
studied features of networks.

The three statistics above, the average shortest length (L), the cluster coeffi-
cient (C), and the degree distribution (f(k)) provide the basic description of a
network G(V,E).6

3 Matrix Representation of the Network Externality

The most natural way to think of a network is to consider all possible
(
n
2

)
connec-

tions represented by a matrix, of which the geographical information can be im-
plicit. The matrix representation also highlights the essential difference between
social networks and other physical networks such as transportation networks.
For the former, the geographical information is only implicit and may not even
be relevant, whereas, for the latter, it is explicit and is very substantial.

Basically, space or location, those explicit geographical variables, may not be
the most important variables in determining the formation of social networks.
Unlike the regular ring network, agent i and agent j are connected to each other,
not necessarily because their offices are just next to each other, but more because
they share some common interests or attributes which connect them together.
It would, therefore, leave us more freedom to form a social network if we could
disentangle the physical distance from the social distance.7

For a market network model, we start with Phan, et al.’s (2003) set-up and
will add our modification later. Phan, et al. model agents’ decisions to buy as
the following optimization problem:

max
ωi∈{0,1}

Vi = max
ωi∈{0,1}

ωi(Hi +
∑

k∈ϑi

Jikωk − p). (5)

ωi is an indicator for a binary decision.

ωi =
{

1, if agent i decides to buy,
0, otherwise.

(6)

6 Other quantitative descriptions include.
7 We do not intend to present a fully-fledged version of this type of social network.

We just give a sketch. Consider an agent i, who is completely described by a vector
of social attributes, say xi = (x1i, x2i, ..., xni), i.e. a point on n-dimensional space.
The distance between two agents i and j, d(i, j) can, therefore, just be the standard
Euclidean metric:

d(i, j) = ||xi − xj ||.
An effective network of agent i, ϑi is determined by a {d(i, j) : j = 1, 2, ..., n, j �= i, }.
As feedback, the network therefore provides a value to agent i, i.e. the value or utility
of the network, denoted by ui(ϑi) At a point in time, to increase his well-being, agent
i may like to change his network by modifying his attribute variables by, εi as xi +εi,
is associated with the cost of making these changes, ci(εi). The cost is subtracted
from his ui, which leaves agent i with utility ui(ϑi) − ci.
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What is inside the bracket is the classical linear willingness-to-pay function. Hi

represents agent i’s idiosyncratic utility of consuming the commodity. Written
in terms of money value, it functions as the reservation price of agent i, i.e. his
idiosyncratic willingness-to-pay for the commodity. The difference between Hi

and p can be taken as the familiar consumer‘s surplus when agent i decides to
buy (ωi = 1).

Now, agent i is situated in a network, and is directly connected to a collection,
ϑi, of some other agents, called agent h, where h ∈ ϑi. The network effect is
captured by the parameter Jik, which characterizes the influence on agent i of
the decision of agent h. Clearly the larger the absolute value of Jih, the larger
the influence of agent h on agent j.8 If Jih = 0, for all h ∈ ϑi, then there is no
network effect on agent i; essentially, agent i makes his decision independently.

Consider the literature on attention control. If agent i’s attention to the ex-
ternal world has an upper limit, say J , then

∑

h∈ϑi

Jih = J. (7)

Furthermore, if agent i is indifferent to all his neighbors h, then J is uniformly
distributed over ϑi, i.e.

Jih =
J

Nϑi

, ∀h ∈ ϑi. (8)

Nϑi is the number of agents (vertices) connected to agent i. Under this setting,
as the size of his neighborhood becomes larger, the influence of each individual
neighbor on agent i becomes smaller.

The external influence of the network is demonstrated by the feature that
agents are heterogeneous in preference, Hi.9 However, the way to model hetero-
geneous preferences is not unique.10 We shall come back to this point later.

8 Jih can in general be both positive and negative, while in our specific application
below, we only consider the positive externality.

9 Obviously, if all agents share the same H , there will be no need to study the network
influence in this specific context, since “influence” means causality: someone will
have to buy first, and someone will follow. If the agents are homogeneous in terms
of preference, then from Equation (5), their decision will be perfectly homogeneous,
including their timing, so that the network influence does not exist. Nevertheless,
this does not mean that network topology has no effect on the market‘s behavior.
In fact, as Phan, et al. (2003) have already shown, when agents are homogeneous
in preference, then we shall have the most significant avalanche effect as well as
the hysteresis effect. In fact, it may be useful to distinguish the avalanche due to
the homogeneous preference and also due to the market contagious influence of the
market

10 For example, the random field Ising model is used in Phan, et al. (2003). More
precisely, in their model,

Hi = H + θi, (9)

where θi follows a logistic distribution with mean 0 and σ2 = π2

3β2 .
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It should be clear now that the optimization problem (5) leads to a very simple
solution, namely,

ωi =
{

1, if Hi +
∑

k∈ϑi
Jikωk − p ≥ 0,

0, otherwise.
(10)

To fully represent the network dynamics, it will be useful to extend Equation
(5) as a individual decision to collective decisions as in (11).

Wt+1 = g(H + J · B · Wt − P), (11)

where

H =

�
������

H1
H2
.
.
.

Hn

�
������

, J =

�
������

J1 0 ... 0
0 J2 ... 0
... ... ... ...
... ... ... ...
... ... ... ...
0 0 ... Jn

�
������

, B =

�
������

b11 b12 ... b1n

b21 b22 ... b2n

... ... ... ...

... ... ... ...

... ... ... ...
bn1 bn2 ... bnn

�
������

, Wt =

�
������

ω1,t

ω2,t

.

.

.
ωn,t

�
������

, P =

�
������

p1
p2
.
.
.

pn

�
������

.

The vector matrix H just stacks up an individual’s idiosyncratic preferences Hi.
The diagonal matrix J has the contribution from each individual i’s neighbor
to i as described in Equation (8). The matrix B is a the general representation
of the network. Each entry bij represents a connection (edge) between agent i
and agent j. While a great flexibility of the connection may exist, here we make
two assumptions. First, either the connection exists or it does not, i.e. there is
no partial connection, nor is there any difference in the degree of connection.
Therefore,

bij =
{

1, if agent i is connected to agent j,
0, otherwise.

(12)

Second, we assume that the connection (edge), if it exists, is bi-directional. Hence

bij = bji. (13)

In other words, the matrix B is symmetric. Notice that, according to Equation
(8), the matrix J is immediately determined by the matrix B.

For sack of illustrations, the matrix representations of a ring, star and fully-
connected network with n = 4, denoted by B©, B� and B⊗, respectively, are
given below from left to right:

B© =

⎡

⎢⎣

0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0

⎤

⎥⎦ ,B� =

⎡

⎢⎣

0 1 1 1
1 0 0 0
1 0 0 0
1 0 0 0

⎤

⎥⎦ ,B⊗ =

⎡

⎢⎣

0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

⎤

⎥⎦ .

With these connections, the corresponding influence matrix representations J©,
J�, and J⊗ are

J© =

�
��

J/2 0 0 0
0 J/2 0 0
0 0 J/2 0
0 0 0 J/2

�
�� , J� =

�
��

J/3 0 0 0
0 J 0 0
0 0 J 0
0 0 0 J

�
�� , J⊗ =

�
��

J/3 0 0 0
0 J/3 0 0
0 0 J/3 0
0 0 0 J/3

�
�� .
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The vector Wt stacks up the binary decisions made by all agents in period
t, with each entry described by Equation (6). To trace the dynamics of binary
choices, binary decisions are now indexed by t. Initially, ωi,0 = 0 for all i =
1, ..., n. The function g then drives the dynamics of Wt based on each agent’s
optimal decision (10). The vector P is the price charged to each individual. Notice
that we have indexed this price by individual i, which indicates the possibility
that the price does not have to be homogeneous among agents, considering that
we want to study the effect of price discrimination under this framework. The
simulation conducted in this paper, however, does assume a homogeneous price.

This matrix representation leaves us with great flexibility to deal with various
network topologies. As we shall see in this paper, it helps us to deal with the
scale-free network to be detailed in the next section. In addition, by varying B,
there can be other advantages. Firstly, B can be asymmetric. This is a desirable
variation since social influence in general is not symmetric. Secondly, it does not
have to be a binary matrix. In fact, bij can be any continuous variable between
0 and 1. This can help us to capture different degrees of connection. In sum, a
continuous and asymmetric B provides us with an opportunity to study more
complex network topologies which are beyond simple geometric representations.

4 The Scale-Free Network

The purpose of this paper is to attempt to extend Phan, et al.’s analysis from
their ring-based networks (including small world networks) to scale-free networks.
In this section, we shall give a brief introduction to the scale-free network.

The scale-free network was first proposed by Barabasi and Albert (1999),
and hence is also known as the BA model (the Barabasi-Albert model). The
BA model is based on two mechanisms: (1) networks grow incrementally, by the
adding of new vertices, and (2) new vertices attach preferentially to vertices that
are already well connected.

Let us assume that initially the network is composed of m0 vertices, and
that each is connected to m other vertices (m < m0). Then, at each point in
time, a number of new vertices, mT are added to the network, each of which
is again connected to m vertices of the net by the preferential linking. This
idea of preferential attachment is similar to the classical “rich get richer” model
originally proposed by Simon (1955).11 It is implemented as follows. At time T ,
each of the new mT vertices is randomly connected to a node i ∈ VT according
to the following distribution

πi =
ki∑

j∈VT
kj

, i ∈ VT , (14)

11 In fact, the BA model which leads to the power-law degree distributions is an inde-
pendent rediscovery of earlier work by Simon (1955) on systems with skewed distrib-
utions. It can be interpreted as an application of Simon’s growth model in the context
of networks, readily explaining the emergent scaling in the degree distribution.
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where VT = {1, 2, ...,
∑T−1

t=0 mt}. That is the probability of becoming attached
to a node of degree k is proportional to k, π(k), and nodes with high degrees at-
tracts new connections with a high probability. To avoid redundancy, the random
attachment with (14) is done by sampling without replacement.

The scale-free networks have a power-law distribution of degree

f(k) ∼ k−λ, (15)

and they have smaller L (average shortest length) and larger C (cluster coeffi-
cients), as compared to the random network.

In addition to the scale-free network, this paper also considers something in
between the scale-free network and the random network, i.e. a mixture of the
two. The motivation behind this device is mainly to capture some possible degree
of randomness in social network formation. While the preferential attachment
defines the rationality behind the social network formation, one should not ne-
glect the effects of random events on the network formation. Therefore, we allow
each of the incoming mt agents (vertices)to have a probability, denoted by 1− q,
of being connected to the incumbent agents simply randomly, and hence a prob-
ability of q being connected to them with preferential linking. By controlling q,
one can have a mixture network which is very close to the random network (e.g.,
q ≈ 0), and another mixture network which is very close to the scale-free network
(e.g., q ≈ 1). It is, therefore, feasible to examine how the emergent properties
may change along this spectrum. For simplicity, we shall call this the q-network.
Clearly, the q-network is a random network if q = 0, and is a scale-free network
if q = 1.

5 Measuring the Network Effect on Demand

It is important to know what useful observations should be seen in order to
justify the non-trivial differences induced by network topologies? We notice that,
if the network topology does have non-trivial effects, then the demand curve, as
a summary of these changes, should naturally be the first thing to look at.
As compared to the extreme case, the isolated network, the demand should shift
outward when a network with some degrees of connection is introduced. However,
what is not clear is which network topology should have the strongest outward
shift. This question becomes more perplexing when demand curves associated
with different network topologies may cross each other.

Let us define the penetration rate as the percentage of buyers in the market,
i.e.

r ≡ #{i : wi = 1}
n

. (16)

Since each consumer buys at most one unit, 0 ≤ r ≤ 1. To make the roles of
the price and the network topology explicit, we write r as r(p,

⊕
), where

⊕

is the respective network topology. A network topology
⊕

is said to uniformly
dominate other network topologies and is denoted by

⊕∗, if

r(p,
∗⊕

) ≥ r(p,
⊕

), ∀p, ∀
⊕

. (17)
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Since the uniformly-dominating network topology may not exist, an alternative
measure is to define a maximum price, pmax, as follows:

pmax ≡ max
p

{p : r(p) = 1}. (18)

Again, to acknowledge the influence of the network topology, pmax is also written
as pmax,

�.
Instead of pmax, we may consider a weighted average of r(p) with respect to

a distribution of p, and compare the weighted averages among different network
topologies:

μp = E(p) =
∫ p

p

r(p)fp(p)dp, (19)

where p and p define an effective range of p, such that
⎧
⎨

⎩

r(p,
⊙

) = 0, if p ≥ p,
r(p,

⊙
) = 1, if p ≤ p,

0 < r(p,
⊙

) < 1, otherwise,
(20)

where
⊙

denotes the isolated network. fp is a density function of p;and when it
is uniform over [p, p], μp in a sense can be regarded as a social welfare measure
if the marginal cost is zero. In this specific context, what concerns us is how the
network topology impacts social welfare.

Another interesting type of behavior of the demand curve is its jump or dis-
continuity, known as an avalanche, which can be formulated as follows. The
demand curve is said to demonstrate an avalanche at price pa if

dpa = r(pa − ε) − r(pa) is large. (21)

dpa is not actually well-defined because the word “large” is not precise. Certainly,
one can substantiate its content with a threshold parameter, say θa, and modify
Equation (21) as

dpa = r(pa − ε) − r(pa) > θa. (22)

The avalanche effect can then be defined as a probability A as follows:

A = Prob(dpa > θa). (23)

However, as we mentioned earlier (see footnote 9), the avalanche effect may
have nothing to do with the network topologies, and can purely come from the
homogeneous group of agents. To avoid “spurious” avalanches and to disentangle
the effect of homogeneity from the effect of the network topology, it will be useful
to maintain a great degree of heterogeneity to examine the chance of observing
avalanches with respect to different topologies.

Coming to the next issue is a more subtle one in that the demand curve
may not be unique and is scenario-dependent,an issue that is described as the
hysteresis effect by Phan, et al. (2003). That is, the demand given the price p can
depend on what happens before. Has the price before been higher or lower? This
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phenomenon known as the hysteresis effect arises because the demand curve, or
equivalently, the penetration rate, derived by decreasing the price is different
from the one derived by increasing the price.12 Formally, hysteresis happens at
price p when

ru(p) > rd(p), (24)

where ru and rd refer to the penetration rates derived by moving downstream and
upstream respectively. Nevertheless, with the avalanche, the hysteresis effect may
occur simply because of the great homogeneity of the agents. Therefore, to see
whether network topologies can have a real effect on the appearance of hysteresis,
it is important to keep agents as heterogeneous as possible. The hysteresis effect
of a network topology can then be measured by

R ≡
∫ p

p

(ru(p) − rd(p))fp(p)dp. (25)

R(
⊕

) denotes the hysteresis effect of the network topology
⊕

.
None of the questions discussed so far may be independent of the market size

n (the size of the network) or k, the degree of local interaction, It is then crucial
to know the limiting behavior as well. For example, would

lim
n→∞An = 0? (26)

and
lim

n→∞ Rn = 0? (27)

If Equations (26) and (27) are valid, then in a sense the network topology will
not matter when the market becomes thick. In this spirit, we can even ask
whether the demand curves associated with different network topologies will be
asymptotically equivalent.

Similarly, we can pose the same question regarding the dimension of k, ranging
from an isolated network to a full network. In addition, the asymptotic issue
can be framed in time: given the same penetration rate associated with the
same price, which network topology has the fastest convergence speed to the
penetration rate?13

6 Experimental Designs

Experimental designs mainly concern the determination of those parametric ma-
trices appearing in Equation (11). First, network topologies (Matrix B). To
isolate the working of the network topology, it is important to always have
the isolated network as one of the our benchmarks. Other network topologies
12 This is also known as the captive effect in marketing.
13 Similarly,when considering the degree of heterogeneity, we may ask: how do the net-

work topologies work with the heterogeneity of agents? Does heterogeneity amplify
or depress some of the workings of network topologies?
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Table 1. Experimental Design

Basic Design
Network Topology Isolated, Scale-free, World

Ring (Regular), q-network
Network Size (N) 1000
Idiosyncratic Preference (Hi) U [1, 2]
Price (p) [1, 2]
Incremental Size of Price 0.02

Some Details
Degree of Regular Networks 2
Degree of Scale-free Networks m0=10 , m=2
q of the q networks 0, 0.1, 0.2,...,0.9

included for comparison purposes are random networks, regular networks (ring
networks), scale-free networks, and mixture networks. Once the network topology
is fixed, matrix J in Equation (11) is determined accordingly.

Secondly, idiosyncratic preference or willingness to pay, Hi. As what has been
printed it out in footnote (9), it is important to maintain a degree of hetero-
geneity among agents in terms of their idiosyncratic preference. Accordingly,as
entities of H,the Hi are uniformly sampled from the interval [1, 2]. With this
design of H, the corresponding demand curve r(p) is, therefore, restricted to the
same interval, and is discretized with an increment of 0.02.

Once all these matrices are determined, we can have the dynamics of Wt,
which allows us to derive the demand curve rp and other related measurements
discussed in Section 5.

7 Experimental Results

7.1 Consumer‘s Surplus

Figure 1 is the demand curve r(p) under different network topologies. The re-
sultant demand curve is based upon 100 independent runs each with a new
initialization of the matrix H. So, each single point along r(p) is an average of
100 observations. Based on these estimated r(p), we calculate the consumer‘s
surplus. Not surprisingly, the world network and the isolated network provide
the two extremes of the consumer‘s surplus: a maximum of 0.876 is given by the
world network, whereas a minimum of 0.509 is given by the isolated network. The
consumer‘s surplus of partially connected networks, the scale-free network and
the regular network lie in between, and their differences are not that significant
(0.776 vs. 0.766).

Experiment one and Figure 1 basically confirm a simple intuition that the
consumer‘s surplus is a positive function of degree or connection intensity. The
second experiment tries to explore other determinants of the consumer‘s surplus,
particularly, the cluster coefficient and average shortest length of a network. To do
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Fig. 1. Demand Curves in Various Networks

Table 2. Consumer‘s Surplus, Cluster Coefficient and Average Shortest Length

CS = α0 + α1C + α2L

Regressors coefficient p-value
Constant 0.78019 (α0) 0.0000
Cluster Coefficients (C) 0.52018 (α1) 0.0041
Average Shortest Length (L) -0.0092 (α2) 0.1112

The R2 of the above simple linear regression is 0.46676(R2-adjusted=0.44625), and the
mean square error is 0.00655.

so, we consider a class of q networks by controlling q from 0, 0.1,..., to 0.9, and 1.
Five independent runs are conducted for each q network, and this gives us totally
55 networks.14 The resulting consumer‘s surplus of these 55 networks is then
regressed against two independent variables, namely, the cluster coefficient (C)
and the average shortest length (L). The regression results are shown in Table
2. It can be found from Table 2, that these two variables C and L can jointly
explain almost 50% of the variation in the consumer‘s surplus. In addition, both
regression coefficients have signs consistent with our intuition: the consumer‘s
surplus is positively related to the cluster coefficient, whereas it is adversely
affected by the average shortest length.

14 Only the B matrix is regenerated for each independent run. The H matrix remains
unchanged for all the 55 matrices.
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Table 3. Avalanche Effect

Topology/pa 1.98 1.94 1.84 1.74 1.54
Random 0.01 0.04 0.05 0.06 0
q (q = 0.5) 0.07 0.05 0.11 0.03 0
Scale-free 0.06 0.06 0.04 0.09 0
World 0 0.2 0.35 0 0
Regular 0 0 0 0 0

The avalanche effect is defined in Equation 23. θa is set to 10%, i.e. 10% of the market
capacity. ε= 0.02.

7.2 Avalanche Effect

Network topology can matter because it can introduce critical points to market
demand, which in turn cause the demand curve to no longer be continuous
as conventional economics assumes. This phenomenon known as the avalanche
effect is what we study in the third experiment. A measure of the avalanche
effect is defined in Equation (23), which depends on three parameters, namely,
a threshold (θa),the perturbation size (ε) and the evaluation point (pa). Since it
would be meaningless to consider small jumps when talking about “avalanches”,
we, therefore, set θa to 0.1, i.e. 10% of the market capacity, and ε to 0.02. In
other words, if by discounting 2 cents only, one can suddenly increase sales by
10% of the market capacity, then an avalanche is detected. Finally, since Hi,
uniformly distributed over the range [1,2], we choose five evaluation points of pa

from 1.98 to 1.54 (see Table 3). This is roughly the upper half of the distribution
of Hi, which should be the ideal place to monitor the avalanche if there is one.

As to the network topology, except for the isolated network, all other partially-
connected or fully-connected network topologies listed in Table 1 are tried in this
experiment. 100 runs are conducted for each network topology. The results are
shown in Table 3. From Table 3, we find that except for the regular network,
avalanches unanimously exist in all four other types of network, while their struc-
tures are different in terms of the distribution of the tipping points (pa) and the
tipping frequencies (A). For example, the world network has more concentrated
tipping points (pa = 1.94, 1.84) and a high tipping frequency at these tipping
points (A = 0.2, 0.35), whereas the other three network topologies have evenly
distributed tipping points, although with much lower tipping frequencies.

7.3 Hysteresis Effect

The third question to address is the examination of the hysteresis effect as defined
by Equation (25). What we do here is first derive the demand curve by running
the price downstream , and then by running the price upstream. In this experi-
ment, we consider all network topologies listed in Table (2). For the q networks,
we only consider the cases q = 0, 0.5, and 1. 100 runs are conducted for each
network topology. The result shown in Table 4 is, therefore, the average of these
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Table 4. Hysteresis Effect

Topology Downstream (rd(p)) Upstream (ru(p)) R
Isolated 0.510 0.510 0
World 0.876 0.889 0.013
Scale-free 0.776 0.851 0.075
Random 0.738 0.816 0.079
q (q = 0.5) 0.758 0.847 0.089
Regular 0.766 0.943 0.177

100 runs. Table 4, columns two and three, show the consumer‘s surplus associ-
ated with the rd(p) and ru(p). The fourth column of Table 4 shows the difference
between the two surpluses, i.e. the measure of the hysteresis effect R. From this
column, we can see that both the isolated network and the fully-connected net-
work have very little hysteresis effect. As expected, it is identically 0 for the
isolated network, and is only 0.013 for the fully-connected network. However,
all partially connected networks show some degree of hysteresis. Among them,
the scale-free, random and q (q = 0.5) networks are close, whereas the regular
network has a strong hysteresis effect.15

7.4 Network Size

It is interesting to know whether the property of hysteresis and avalanches ob-
tained above is sensitive to the size of the network. In particular, we are inter-
ested in knowing, when the network‘s size becomes very large (ideally infinite),
whether these two properties can still be sustained. We, therefore, simulate net-
works with sizes of 1000, 3000, and 5000. The results are shown in Figures 2 and
3.16 What is shown on the left part of these two figures are the demand curve
r(p) associated with an isolated network and a scale-free network. By looking
at these two graphs visually, we can see that the avalanche effect, characterized
by the noticeable jumps in the demand curve, does not disappear as the size
gets larger. Furthermore, the right part of the two figures shows the demand
curve derived by running downstream and upstream. The bifurcation is clearly
there with hysteresis measures of 0.0517 (N = 3000) and 0.0597 (N = 5000).
Compared to the R of the scale-free network from Table 4, these two Rs become
smaller, but are still quite distinct from the fully-connected network. Therefore,
the asymptotic equivalence of network topologies does not hold here as far as
these two properties are concerned. Generally speaking, the finding that network
topology matters does not depend on network size.

15 This is definitely a very interesting property of the regular network. We, however,
cannot say much about the cause of it except for pointing out that it deserves further
research.

16 When the size becomes large, computation becomes very time-consuming. As a re-
sult, results based on multiple runs are not available yet. What is presented here is
based on the results of a single run.
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Fig. 2. Size=3000

 

Fig. 3. Size=5000

8 Concluding Remarks

In this paper, five experiments are conducted to examine the economic impli-
cations of network topologies. To the best of our knowledge, this is probably
the first systematic and extensive study of this kind. It is extensive because six
different network topologies are considered, ranging from fully-connected and
partially-connected networks to isolated networks. Specifically, these six net-
works are world networks, ring networks, random networks, scale-free networks,
q networks, and isolated networks. By using a simple demand analysis based on
a monopolist’s market, the study is also extensive in the sense that it covers the
four aspects of market behavior: the consumer‘s surplus, the avalanche effect,
the hysteresis effect and the size effect. Besides, it is systematic because different
measures have been developed to facilitate comparison of the market behavior
of different network topologies.

The general results are as follows. First, the network topology will impact
social welfare as conventionally described in terms of the consumer‘s surplus. We
have further found that it is positively affected by the cluster coefficient, whereas
it is negatively affected by the average shortest length. Second, the avalanche
effect and the hysteresis effect are observed for some network topologies, but not



Network Topologies and Consumption Externalities 329

others. For example, the avalanche effect does not occur in the case of the ring
network (regular network), whereas it does exist for other partially- or fully-
connected networks. Despite its occurrence, its extent in terms of our measure
can differ among different network topologies. Finally, within our limited number
of trials, it is also found that those avalanche effect and hysteresis effect will not
disappear when the network size becomes larger. In other words, the asymptotic
equivalence of network topologies may not be sustained and the network topology
may matter to a quite general extent.
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