3 Blow-up Phenomena

Definition 3.1 A function g : R — R blows up and has a blow-up rate ¢ means

that there is a finite number T such that the following is valid

lim g(t)"' =0 (3.1)

t—T*

and there exists a nonzero § € R with

lim (T* — £)7g(t) = B, (3.2)

t—T*

in this case 3 is called the blow-up constant of g.

Theorem 3.2 Suppose that u is the classical solution of (2.1). If uy = 0 then u is

constant and u(t) = uy.

Proof. Together Theorem 2.1 and Theorem 2.2, the solution of differential equa-
tion (2.1) on [0,7) is unique, so u(t) = ug is the unique solution of (2.1) on [0,7].
Next we consider the following differential equation.

o(t) = (B)3(er + (),

v(0) = u(T7),v'(0) =u'(T7).
Similarly, v(t) = ug is the unique solution of the last differential equation on [0, 7.
Let

Ult) = u(t) ifte[0,77),
vt —=T7) ifte[T,2T],

then U(t) = ug is the unique solution of nonlinear equation (2.1) for ¢ € [0,27].
Such a way can always be continued forever. Thus u(t) = ug is the unique solution

for t € [0,00). O

As uy = 0, the solution of problem (2.1) u must be constant. Now we consider

the situation u; # 0 for the differential equation (2.1),

u"(t) = u'(t)"(c1 + cou(t)?),
u(0) = ug # 0,u/(0) = uy #0.



For uy # 0 and ¢ € [0,7*), where T* = inf{t > 0 : v/(t) = 0}, we have

ul(t)2—q = (2 —q)(cru(t) + pj_Z 1u(t)P+1 + E(0)) if g # 2,
2 ., 1 (3.3)
E _ 1 o p+
(0) 27— g (01U0+p+1uo )
and
In| W/ (1) | = (cru(t) + ﬁ —u(t) + Bi(0) ifq =2,
p
(3.4)
Ei(0) =In| ur | — (crup + —2—u2™)
1 1 140 p+1 0 .

Thus we have the relations between w(t) and u'(t).

For a given function w in this work we use the following abbreviations

a(t) = u(t)?, J(t) = a(t)™, m = %(2%(1 =y

Lemma 3.3 Suppose that f € Cttg,00) N C?(ty,00), f(to) > 0, f'(to) < 0 and

f'(t) <0 fort > tg, then there exists a finite positive number T > to such that

£(T) = 0.

Proof. Seeing that f € C'ty,00) and f”(t) < 0 for ¢ > ty3, we obtain that
f'(t) < f'(to) < 0 and f(t) < f(to) + f'(to)(t — to). Hence there exists t; > ¢y such
that f(t1) < 0. By the continuity of f in [ty,00), there exists T € (o, t1) such that
f(T)=0.0

Lemma 3.4 Suppose that u is the classical solution of (2.1). If ug >0, co,u; > 0,
and ufy > —2—1, then u(t),u'(t),u"(t) > 0 for t € [0,T), where T is the life-span of

2
u.

Proof. Suppose that there exists a positive number ¢, such that u/(tg) < 0,

according to u € C? and u; > 0, then there exists a positive number ¢; defined by
ty = inf{t € (0,o] : v'(t) =0}

with «/(t1) = 0 and «/(t) > 0 for t € [0,%1]. Because u'(t) > 0 for t € [0,t1], we
obtain that

u(t)? > —L and W"(t) > 0 for t € [0, 4]
Co



Therefore, u'(t1) > uy > 0. This result contradicts with «/(¢;) = 0; thus we conclude
that «/(t) > 0 for t € [0,T), where T is the life-span of u. Together the equation
(2.1) and the continuities of u, «' and u”, we obtain the conclusions under this

Lemma 3.4. O

Together Theorem 2.1 and Theorem 2.2, there exists the unique solution to the (2.1)
on [0,7"), where T depends on the initial values given by

( )
L e, 1 T W
|u1\’ |Cl|Mq~HCQ|Mqu7

—Jur|++/u+2(|e1[Ma+[ez| MONP)
T(up,u;) = min 1| M4+|ca| MINP )

—1+,/14+—1

ajtaz+tas

and

N:|U0|+1,M:|U1|+1,

ap =[ e | MIpNP™!, ay =[ e1 | gMT", ag =| ¢y | gNPMT.
Lemma 3.5 If up < uf and uy < uj, then T(ug,uy) > T(ug,u?).

Proof. Let
N*=|uy | +1, M* =|uj | +1,

of =| ¢y | M*pN*P71 ol =] ¢y | MY, af =| ¢y | gN*PMTIT

1
(1) If T'(ugp,uy) = ﬁ, by u; < uj, then
Uy

1

| ui |

T (ug,uy) > > T'(ug, uy).

2) If T'(ug, u :—1+\/1+—,usin the fact that vy < uj and p,q >1
(2) (g, uy) L+ o + g 1 1 b,q

we have o] > a1 >0, a5 > o > 0 and a3 > a3 > 0. Thus

T(UO,Ul) > -1+ \/1 +



1
I T =
) 1 Tlwow) = o3 o [ aene”
u; < uj and p,q > 1 we obtain that M*? > M? and N*? > N? and then

according to the conditions uy < wug,

> ! >
—‘CI‘M*Q+|C2‘M*(1N*Z7—

T (ug,uy) T(ug, uy).

—|U1|+ U2+2(|61|Mq+‘CQ|Mqu) «
(4) If T(ug,uy) = ]\/cll| Mot | 5 | MONT , from vy < wuf and

up < uj, it follows that M*? > M9, N** > NP and

2
| ug | +3/ur2 +2( ¢ | M9+ | o | MINP)
2
| wi | +/ui® +2( o | M*9+ [ oo | MPONP)
> T(ug,uy). O

T(U/O? ul) =

Vv

Lemma 3.6 Suppose that u is the classical solution of (2.1) for ¢ € [1,2]. If u

exists locally and ty is the life-span of u, then u blows up at t = ty.

Proof. Assume that lim, - u(t) = M < oco. By (3.3), (3.4) and ¢ € [1,2], we

have

(2= g)(eM + 2 MP 4+ B(0)]7 if1<q<2,

+1

lim, ,-/(t) =
h exp{ei M + I%M”H + E1(0)} if ¢ = 2.

Now we consider the following differential equation

V'(t) =V (t)(c1 + cau(t)P),
0(0) = u(ty), v'(0) = w'(ty).
Let v(t) be the existing unique solution to the above equation on [0, T5,). Since u(t])

and u/(t]) are finite, so T, > 0. Let

u(t ift €[0,¢7),
v — 0 0,1)
v(t—ty) iftelt,ty +T,),

the problem(2.1) can be solved beyond the time ¢;, this contradicts with the as-

sumption of ;1. Therefore, u blows up at t = t;. [
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3.1 Blow-up Phenomena of u

To discuss the properties of blow-up phenomena of u with u; # 0, we separate this

subsection into three parts 1 < ¢ <2, ¢ > 2 and ¢ = 2.

Casel. Blow-up phenomena for 1 < ¢ < 2

In this situation, we have some blow-up results.

Theorem 3.7 Suppose thatu is the classical positive solution of (2.1) and q € [1,2),
c

>0, up >0, up >0, uj > ——1, then u blows up at time t = 111 for some finite
(6)

real number T1; > 0.

Remark 3.7 If we don’t restrict ourself to the positiveness of the solution u to the
equation (2.1), then we also have the following blow-up results:

If w is the solution of equation (2.1), q € [1,2] and one of the followings is valid:

: . c
1) p is even, q is odd, co > 0, ug <0, u; <0, ugz——l,

(1) .
(2) p is odd, q is even, c3 >0, ug <0, u; <0, uf < —%,
2
(3) p is even, q is even, ca <0, ug <0, u; <0, uy > —2—1,
2
(4) p is odd, q is odd, c3 <0, up <0, u; <0, uh < —Z—l.
2
Then u blows up in finite time.
Proof of Theorem 3.7.
Suppose that u is a global solution of equation (2.1).
(I) For ¢ =1, u"(t) = u/(t)(c1 + cou(t)?), by (4.1), we have
u(t) 1
dr =t forallt>0.
/uo ar 4+ SZrrtt + E(0) " ora

By Lemma 3.4, we have that u(t) > wuy for ¢ > 0. Using the fact that ¢; +

I%Tp+1 + E(0) > 0 for r > ug (see the proof of Theorem 4.2), we get

u(t) 1 0 1
dr < dr for all t > 0,
/uo ar + ﬁﬂ’“ +E0)  — /uo ar + pcjer“ + E(0)
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(IT)

and then

/ n dr > lim dr = lim ¢.
ug car

I%rpﬂ + E(0) t=o0 foo0 1+ pclepH + E(0) t=o0

o 1
Since the integral / o dr is finite (see the proof of The-
car

wo 2Pt + E(0)
orem 4.2), thus it results a contradictory conclusion with the above last es-

timate. So we can conclude that u only exists on [0,7}1), where T}y is the
life-span of u. By Lemma 3.6, we obtain that v blows up at t = T};.

1,1
5(2— —1) > 0. We claim that there exists a finite

For 1 < ¢ < 2, then m =
time 777 > 0 such that
J(T11) = 0.

According to Lemma 4.1, we find that «' and v blow up simultaneously. Thus

u € C?[0,T), where T is a blow-up time of u. By (3.3) and Lemma 3.4

C2

u'(H)* 1 = (2 — ¢)(cru(t) + |

u(t)Ptt + E(0)) for all t > 0.

By direct computation, we get

J' () = —ma(t)""™Vd (t) = —ma(t) =TV 2u(t)d/ (1),

a”(t)
= 2u/(t)* + 2u(t)u’(t)
= 20/ ()% 4 2u' ()Y (cru(t) + cou(t)P™)

= 2u'(t)* + 2u’(t)q(u;<? L E(0) + ]%u(t)i’“)

= 21+ 5 )d (0 + 2u’(t)q(z%u(t)p+l —~ E(0))
and
" 1 1 / 2 / Cop +1
a(t)a”(t) = 5(1 + 5 q)a (1) + 2a(t)u (t)q(mu(t)p — E(0)).

Hence we have

J/I (t)

12



By Lemma 3.4, we knew that wu(t),u/(t),u”(t) > 0 for all ¢ > 0. Then there

exists a finite time ¢; > 0 such that

Cop
p+1

Herewith, J(t1) > 0, J'(t1) < 0 and J"(t) < 0 for t > t;. Together these and

u(t)P — E(0) > 0.

Lemma 3.3 we obtain a finite positive number 737 > ¢; such that J(73;) = 0.
Thus u blows up in finite time. Therefore it creates a contradictory result,
thus our assumption is a fault. We obtain that u exists locally and by Lemma

3.6, u blows up in finite time.

Proof of Remark 3.7:

Under case (1):

Let v(t) = —u(t). By the fact that p is even and ¢ is odd, we have v(t)? = u(t)? and
V(1)1 = —u/(t)?. We get

V'(t) = —=u(t) = =/ ()% (cr + cou(t)?) = V' (£)%(c1 + cou(t)?),
v(0) = vy = —up, v'(0) = vy = —uy.

. & .
Since that up < 0,uh > ——1,u1 < 0 and p is even, we have vy > 0,v; > 0 and
(&)

vh = uf > —ﬁ. By Theorem 3.7 and Theorem 3.9 below, v blows up, so does u.
C2

To the case (2), we set v(t) = —u(t). Since that pis odd and ¢ is even, v(t)? = —u(t)?,
V()9 = u/(t)? and
V'(t) = —u"(t) = —u/(t)9(c1 + cou(t)?) = V' (t)?(—c1 + cou(t)P),

v(0) = vy = —up, v (0) = v, = —u;.

c
According to the condition that uy < 0,uf < ——1,u1 < 0 and p is odd, we have
Co

vo > 0,07 > 0 and v = —uf > a Using Theorem 3.7 and Theorem 3.9 below, v
(&)
blows up. Thus u blows up in finite time.

For case (3), let v(t) = —u(t). By the assumption, we have v(t)? = u(t)?, v'(t)? =
u'(t)? and

VI(t) = —u'(t) = =/ () (er + cu(t)?) = V(1) (=1 + (=e2)u(t)"),

v(0) = vy = —ug, v’ (0) = v, = —uy.

14



c
With the help of the fact that uo < 0, uf > ——1,u1 < 0 and piseven, vg > 0,v; >0
(&)

and v = uf > —L From Theorem 3.7 and Theorem 3.9 below, it follows that v
Co

and u blow up in finite time.
Under the circumstance of (4), let v(t) = —u(t). By the condition that p is odd and
q is odd, we have v(t)P = —u(t)?, v'(t)? = —u/(t)? and

VI(t) = —u'(t) = =/ (t)"(er + cqu(t)?) = V(1) (er + (=c2)u(t)7),

v(0) = vg = —up, v'(0) = v, = —uy.

c
Since that ug < 0,uf < ——1,u1 < 0 and p is odd, we get that vg > 0,v; > 0 and
(&)

c
= —up > L Therefore v and u blow up in finite time. 0

0
Co

(%

Now we estimate the blow-up rate and blow-up constant, we have:

Theorem 3.8 Suppose that u is a classical solution of (2.1). If 1 < q¢ < 2 and

u blows up in finite time, then the blow-up rate of u is %ql and the blow-up
pPTq—
. p+qg—1 . 2= Co . -1
constant of u is (————) pra—1|(2 — pHa-T,
fuis Aoy 2 — =)
. pt+qg-1 . . e
Proof. Let 1 = g by some calculations and (2.1) using L.Hopital’s rule
—q
we obtain
u—i
lim
t—1; T — 1
= lim du(t)” DU (t)
t—T
12— g)eau(t) + Fut) + B(0)]
= lim ¢ —
Ty u(t)
p+qg—1 Cy 1
= —_— 2 — 2—q .
- [( ®p+ﬁ
Thus
: _2-g_ ptq—1,_ 2 Co -1
lim (T}, — t)rra1u(t) = (—— ") pra1[(2 — s [
Jim (=) = (P (2 g ]

Case2. Blow-up Phenomena for ¢ =2
In the particular case, ¢ = 2, we obtain an interesting blow-up result and especial

blow-up constant.

15



Theorem 3.9 For q = 2, if u is the classical positive solution of (2.1) and cy >

c
0, up >0, ug >0, ug > — Y Then u blows up logarithmucally at finite time t = T
Co

and
1 1 Cy .__1
lim [——————|p+iy(t) = p+1 |
t—)Tlizli_ln(T12_t)j| () [p—i— 1]

Proof. Assume that u is a global solution of (2.1). By (3.4) and Lemma 3.4,

In| u'(t) | = (cru(t) + -

= 1u(t)p+1 + F4(0)) for all t > 0.

Since that u(t), u'(t) blow up contemporarily (see Lemma 4.1), u € C?[0, T}5) where
T15 is blow-up time of u.

Let K(t) = a(t)™", then
K'(t) = —a(t)2d (t) = —2a(t) 2u(t)u' ()
and

K”(t) = —alt —3(a(t)a”(t) - 2(1’(t)2)
SRa(t)( (1) + u(t)u" (1) = 2a'()?)

)
)
) H2a()[u' (1) + u(t)u'(t)* (a1 + cout)”)] — 24'(1)°}
)
)

= —aft _3{%“'@)2[1 +u(t)(er + cqu(t))] — 2d/()*}

= —alt) (P {51+ ut)(er + enu(t))] ~2).

By Lemma 3.4, u(t),u/(t),u"(t) > 0 for t > 0. Hence there exists ¢y > 0 such that

3
|Cli)%—i—l for t > tg.

u(t) = (

C2
Thus we have

S0+ ulb)er + eultf)] 220 fort > 1

We conclude that
K(ty) > 0,K'(t) < 0and K"(t) <0 for t > to,

thus by Theorem 3.3 there exists positive number 775 such that K(715) = 0 and u

blows up at time ¢ = T}5. This result contradicts with our assumption that u is a

1R



global solution of problem (2.1). Therefore u exists locally. By Lemma 3.6, u blows

up in finite time. After some computations we get

—In (T —t
lim —1In (T — Hu(t)~ P = lim &1)
=T, t=T, u(t)P+
1
Tho—t

= R T Dulre

—p,,/! —1
e
=1, (p+1)(T12 — t)
() () () ()
= 1m .
bk T p+1

Using (2.1), we obtain u”(t) = u/(t)?(c; + cou(t)?) and

pu(t)” D () P(e; + coul(t)P)

lim —In (Tyy — Hu(t)~ P =  lim
t—T (Thg = tJuld) t—T; p+1
- op4+1

Hence we conclude

Case3. Blow-up phenomena for ¢ > 2

Under ¢ > 2 we have the boundedness for the solution.

Theorem 3.10 For q > 2, if u is the classical positive solution of (2.1) and ¢y >
0, up >0, ug >0, ubh > —2, then w is bounded in [0,T), where T is the life span

Co
of u.

Proof. We integrate the equation (2.1) from 0 to ¢ and then we obtain

O T )+ e g
For t € [0,T), by Lemma 3.4, then wu(t),« () > 0 and
up ©2 +1 2 p+l
- > cu(t) + Y 1u(t)p — crug — Y TUo

Since that ¢o > 0 and u(t) > 0 for t € [0,T), u is bounded in [0,7"). O

17



3.2 Blow-up Phenomena of '

In this subsection we come back to the consideration of blow-up phenomena of w’,

and we have

Theorem 3.11 For g > 1, if u is a classical positive solution of (2.1) and cy >
c
0, up >0, ug >0, uf > ——1, then u' blows up at time t = Ts.
Co
Proof. We separate this proof into three parts 1 < ¢ <2, ¢=2 and ¢ > 2.
(I) At first, we assume that 1 < g < 2, by Theorem 3.7 and Lemma 4.1 below,

then v and «’ blow up in finite time.

(IT) For ¢ = 2, using Theorem 3.9 and Lemma 4.1 below, then u and " blow up

in finite time.

(III) Assume that ¢ > 2, let

where a = 3(¢ — 1), we have

L'(t) = —ab(t) " (1) = —2ab(t) =D/ ()" (t),

and

L'(t) = —ab(t)" ()" (t) — (o + 1V (1)?]
= —ab(t)" (1) (2u" (1) + 2u/ (H)u" (1)) — (a + V()]
= —ab(t)" T [b(t)(2u" (1) 4 2qu” (1) 4 2pcau(t)P 1/ () TH2) — (o + 1)V ()]
— —ab(t)(o‘”)[(%(l +q) — (a+ 1)) (1) + 2copb(t)u(t)P 1/ ()72

= —2pcoab(t) Tty ()Pl (1)1+2,

By Lemma 3.4, u(t) > 0, v/(t) > 0 and «”(t) > 0 for ¢t > 0, and then we obtain that
L'(t), L"(t) < 0 for t > 0. Now we need to check that u doesn’t blow up earlier than

1R



u’. By Theorem 3.10, u is bounded. Using Lemma 3.3, there exists a finite number
T5 such that L(T,) = 0. Since that ¢ > 2, thus a > 0. We obtain that «' blows up
at finite time ¢t = T5. [

Having obtained the blow-up phenomena of u/, we want to calculate blow-up rate

and blow-up constant of u'.

Casel. Blow-up rates and blow-up constants of v’ for 1 < ¢ < 2

For g € [1,2) we have the result:

Theorem 3.12 Under the conditions in Theorem 3.11, for 1 < q < 2, u' blows up
p+1
p+q—1
[62(17 +q-1) (62(2 = Q))p‘T”l =ty
p+1 p+1

in finite time with blow-up rate and blow-up constant

Proof. By Lemma 4.1 u and v’ have the same blow-up time. According to (2.1),

L.Hopital’s rule and Theorem 3.8 we have

w(t) 7T

= tim 2210 u() -2ty 1 BO))Fu(t)
t—Ty p+1 p+1
_ @@+q—1NQQ—QBﬁ3
p+1 p+1

Thus

[02(p+q—1)<02(2—q) —p . —(+1)

)p+1] pta—1  []

+1
Lim (1, —t piq—lu/t —
t_)T;(z ) (t) . ]

Case2. Blow-up rates and blow-up constants of v’ for ¢ = 2
To the case ¢ = 2, we have the following results on blow-up rate and blow-up

constant for u’.

Theorem 3.13 Under the conditions in Theorem 3.11, for ¢ = 2, u' blows up in
finite time, we also have

1. —lT—tﬁT_t /t:P+1
HH%[ (o = P (T = u(t) = 57 (-

10



Proof. According to Lemma 4.1 v and u' have the same life-span. By (2.1),

L.Hopital’s rule and Theorem 3.9 we have

lim [—In(Ty — £)]71 (Ty — t)u'(t)

t—=Ty
i EB 0T - )

=Ty w(t)~1

=1 _p_

. Sl In(Ty = 4)]p (T — t) — [~ In(Tz — 0)]» 77

t—Ty —(Cl =t czu(t)P)

=L 1 . »

= o7 P+, [

) (p—i- 1)

Case3. Blow-up rates and blow-up constants of ' for ¢ > 2

In this case of ¢ > 2 we also have the blow-up result for u'.

Theorem 3.14 Under the conditions in Theorem 3.11, for ¢ > 2, u' blows up in

1 1
finite time with blow-up rate . and blow-up constant [(q —1)(c1 + cou(T2)")] 7.

Proof. For ¢ > 2, by (2.1) and L.Hoépital’s rule we have
!/ t 1— —q
lim = v lim (1 — q)u/'(t)" %" (t)(—1)
t—»T T2 - t t—>T2_
= lim (¢ —1)(c1 + cou(t)?)
t—Ty

= (¢— D(c1 + cou(T2)P).

Thus
lim (Ty — )7 14/ () = [(¢ — 1)(c1 + cxu(Tp)P)] 7. O

t—T,

In the coming subsection we treat the blow-up phenomena of «” under three cases

1<qg<2,q=2andq>2.

3.3 Blow-up Phenomena of u”
We want to calculate blow-up rate and blow-up constant of «” in the this subsection.
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Theorem 3.15 Suppose that u is a classical positive solution of (2.1). If 1 < g,

then u” blows up at time t = T3 under the same conditions in Theorem 3.11.

Proof. According to Theorem 3.11 and Lemma 4.1 below, v’ and u” blow up at

the same time, t = T5. [

Casel. Blow-up rates and blow-up constants of u” for 1 < ¢ < 2

Theorem 3.16 Under the conditions in Theorem 3.15, for 1 < ¢ < 2, u” blows up
ap+1)  p2—q)

in finite time with the blow-up rate
+q—1 pt+qg-—1

and the blow-up constant

C2

cap+qg—1),c(2-9q), = SERTI p+q— 1‘% - T
R A R CEP R

Proof. For 1 < ¢ <2, by Lemma 4.1, u, v’ and u” possess the same blow-up time

. Using (2.1) again, Theorem 3.8 and Theorem 3.12, we conclude that

a(p+1) +p(2 a)

lim (T3 — t) a1t 1o’ (£)

t—T5
( ) (2=q)
= lim (Ty — t)re 1o ()T — £) 5ot (e1 + coult)?)
t—>T

- cp+q—1) &2-q) =z, e, P+q ptg—1_ 20 C =L,
= {2 P (“ o )or | prat 4 ) [(2 Q)p+1] 1.0

Case2. Blow-up rates and blow-up constants of " for ¢ = 2

Theorem 3.17 Under the conditions in Theorem 3.15, for ¢ = 2, u” blows up in

finite time and

lim {[~ (T — £)]77 (T3 — )} [~ In (T — £)]751 }Pu"(¢)

t—=T5

-1
P (P2
p+1 p+1

= e

Proof. For ¢ = 2, using Lemma 4.1, u, v’ and «” have the same blow-up time.

Thus T3 is also blow-up time of u and «'. By (2.1), Theorem 3.9 and Theorem 3.13
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we conclude that

lim {[—In(T5 — £)]7 (T3 — )}{[~ In (T5 — £)]77 "/ (8)

= tim {[= (T, — O] (T — 0} 0= In (T = O] P+ au(o))
s L Eoap 2\
— ald () FEFP. O

Case3. Blow-up rates and blow-up constants of «” for ¢ > 2

Theorem 3.18 Under the conditions in Theorem 3.15, for ¢ > 2, u” blows up time

and the blow-up constant

in finite time with the blow-up rate

(1 + eou(T3)"){[(q — 1)(er + cou(Ty)P)] =7},

Proof. For ¢ > 2, by Lemma 4.1, v” and «' blow up contemporaneously in finite
time. Thanks to Lemma 3.4 we have u(t) > 0 and u(t)’ > —¢. Since ¢ > 0,
c1 + cou(t)? > 0. By (2.1) and Theorem 3.14, we conclude that

lim (T — t)7 Tu”(t)

t—Ty

= lim (T — £)7 1/ ()% ey + cou(t)P)

t—T5

= (a1 + cu(T3)"){[(g — (e + cau(T3))] 7},
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