3 Blow-up Phenomena

Definition 3.1 A function $g : \mathbb{R} \to \mathbb{R}$ blows up and has a blow-up rate q means that there is a finite number T^* such that the following is valid

$$\lim_{t \to T^*} g(t)^{-1} = 0 \tag{3.1}$$

and there exists a nonzero $\beta \in \mathbb{R}$ with

$$\lim_{t \to T^*} (T^* - t)^q g(t) = \beta,$$
(3.2)

in this case β is called the blow-up constant of g.

Theorem 3.2 Suppose that u is the classical solution of (2.1). If $u_1 = 0$ then u is constant and $u(t) = u_0$.

Proof. Together Theorem 2.1 and Theorem 2.2, the solution of differential equation (2.1) on [0, T) is unique, so $u(t) = u_0$ is the unique solution of (2.1) on $[0, T^-]$. Next we consider the following differential equation.

$$\begin{cases} v''(t) = v'(t)^q (c_1 + c_2 v(t)^p), \\ v(0) = u(T^-), v'(0) = u'(T^-). \end{cases}$$

Similarly, $v(t) = u_0$ is the unique solution of the last differential equation on $[0, T^-]$. Let

$$U(t) = \begin{cases} u(t) & \text{if } t \in [0, T^{-}), \\ v(t - T^{-}) & \text{if } t \in [T^{-}, 2T^{-}], \end{cases}$$

then $U(t) = u_0$ is the unique solution of nonlinear equation (2.1) for $t \in [0, 2T^-]$. Such a way can always be continued forever. Thus $u(t) = u_0$ is the unique solution for $t \in [0, \infty)$. \Box

As $u_1 = 0$, the solution of problem (2.1) u must be constant. Now we consider the situation $u_1 \neq 0$ for the differential equation (2.1),

$$\begin{cases} u''(t) = u'(t)^q (c_1 + c_2 u(t)^p), \\ u(0) = u_0 \neq 0, u'(0) = u_1 \neq 0. \end{cases}$$

For $u_1 \neq 0$ and $t \in [0, T^*)$, where $T^* = \inf\{t > 0 : u'(t) = 0\}$, we have

$$\begin{cases} u'(t)^{2-q} = (2-q)(c_1u(t) + \frac{c_2}{p+1}u(t)^{p+1} + E(0)) & \text{if } q \neq 2, \\ E(0) = \frac{u_1^{2-q}}{2-q} - (c_1u_0 + \frac{c_2}{p+1}u_0^{p+1}) \end{cases}$$
(3.3)

and

$$\begin{cases} \ln |u'(t)| = (c_1 u(t) + \frac{c_2}{p+1} u(t)^{p+1} + E_1(0)) & \text{if } q = 2, \\ E_1(0) = \ln |u_1| - (c_1 u_0 + \frac{c_2}{p+1} u_0^{p+1}). \end{cases}$$
(3.4)

Thus we have the relations between u(t) and u'(t).

For a given function u in this work we use the following abbreviations

$$a(t) = u(t)^2, \ J(t) = a(t)^{-m}, \ m = \frac{1}{2}(\frac{1}{2-q} - 1).$$

Lemma 3.3 Suppose that $f \in C^1[t_0, \infty) \cap C^2(t_0, \infty)$, $f(t_0) > 0$, $f'(t_0) < 0$ and $f''(t) \le 0$ for $t > t_0$, then there exists a finite positive number $T > t_0$ such that f(T) = 0.

Proof. Seeing that $f \in C^1[t_0, \infty)$ and $f''(t) \leq 0$ for $t > t_0$, we obtain that $f'(t) \leq f'(t_0) < 0$ and $f(t) \leq f(t_0) + f'(t_0)(t - t_0)$. Hence there exists $t_1 > t_0$ such that $f(t_1) < 0$. By the continuity of f in $[t_0, \infty)$, there exists $T \in (t_0, t_1)$ such that f(T) = 0. \Box

Lemma 3.4 Suppose that u is the classical solution of (2.1). If $u_0 \ge 0$, $c_2, u_1 > 0$, and $u_0^p \ge -\frac{c_1}{c_2}$, then u(t), u'(t), u''(t) > 0 for $t \in [0, T)$, where T is the life-span of u.

Proof. Suppose that there exists a positive number t_0 such that $u'(t_0) \leq 0$, according to $u \in C^2$ and $u_1 > 0$, then there exists a positive number t_1 defined by

$$t_1 = \inf\{t \in (0, t_0] : u'(t) = 0\}$$

with $u'(t_1) = 0$ and $u'(t) \ge 0$ for $t \in [0, t_1]$. Because $u'(t) \ge 0$ for $t \in [0, t_1]$, we obtain that

$$u(t)^p \ge -\frac{c_1}{c_2}$$
 and $u''(t) \ge 0$ for $t \in [0, t_1]$.

Therefore, $u'(t_1) \ge u_1 > 0$. This result contradicts with $u'(t_1) = 0$; thus we conclude that u'(t) > 0 for $t \in [0, T)$, where T is the life-span of u. Together the equation (2.1) and the continuities of u, u' and u'', we obtain the conclusions under this Lemma 3.4. \Box

Together Theorem 2.1 and Theorem 2.2, there exists the unique solution to the (2.1) on [0, T), where T depends on the initial values given by

$$T(u_0, u_1) = \min \left\{ \begin{array}{l} \frac{1}{|u_1|}, \frac{1}{|c_1|M^q + |c_2|M^qN^p}, \\ \frac{-|u_1| + \sqrt{u_1^2 + 2(|c_1|M^q + |c_2|M^qN^p})}{|c_1|M^q + |c_2|M^qN^p}, \\ -1 + \sqrt{1 + \frac{1}{\alpha_1 + \alpha_2 + \alpha_3}} \end{array} \right\}$$
$$N = |u_0| + 1, \ M = |u_1| + 1,$$
$$\alpha_1 = |c_1| \ M^q p N^{p-1}, \ \alpha_2 = |c_1| \ q M^{q-1}, \ \alpha_3 = |c_2| \ q N^p M^{q-1}.$$

and

Lemma 3.5 If $u_0 \le u_0^*$ and $u_1 \le u_1^*$, then $T(u_0, u_1) \ge T(u_0^*, u_1^*)$.

Proof. Let

$$N^* = |u_0^*| + 1, \ M^* = |u_1^*| + 1,$$

$$\alpha_1^* = |c_1| M^{*q} p N^{*p-1}, \ \alpha_2^* = |c_1| q M^{*q-1}, \ \alpha_3^* = |c_2| q N^{*p} M^{*q-1}.$$

(1) If $T(u_0, u_1) = \frac{1}{|u_1|}$, by $u_1 \le u_1^*$, then

$$T(u_0, u_1) \ge \frac{1}{|u_1^*|} \ge T(u_0^*, u_1^*).$$

(2) If $T(u_0, u_1) = -1 + \sqrt{1 + \frac{1}{\alpha_1 + \alpha_2 + \alpha_3}}$, using the fact that $u_1 \le u_1^*$ and $p, q \ge 1$ we have $\alpha_1^* \ge \alpha_1 \ge 0$, $\alpha_2^* \ge \alpha_2 \ge 0$ and $\alpha_3^* \ge \alpha_3 \ge 0$. Thus

$$T(u_0, u_1) \ge -1 + \sqrt{1 + \frac{1}{\alpha_1^* + \alpha_2^* + \alpha_3^*}} \ge T(u_0^*, u_1^*).$$

(3) If $T(u_0, u_1) = \frac{1}{|c_1| M^q + |c_2| M^q N^p}$, according to the conditions $u_0 \leq u_0^*$, $u_1 \leq u_1^*$ and $p, q \geq 1$ we obtain that $M^{*q} \geq M^q$ and $N^{*p} \geq N^p$ and then

$$T(u_0, u_1) \ge \frac{1}{\mid c_1 \mid M^{*q} + \mid c_2 \mid M^{*q} N^{*p}} \ge T(u_0^*, u_1^*).$$

(4) If
$$T(u_0, u_1) = \frac{-|u_1| + \sqrt{u_1^2 + 2(|c_1|M^q + |c_2|M^qN^p)}}{|c_1|M^q + |c_2|M^qN^p}$$
, from $u_0 \le u_0^*$ and $u_1 \le u_1^*$, it follows that $M^{*q} \ge M^q$, $N^{*p} \ge N^p$ and

$$T(u_0, u_1) = \frac{2}{|u_1| + \sqrt{u_1^2 + 2(|c_1| M^q + |c_2| M^q N^p)}}$$

$$\geq \frac{2}{|u_1^*| + \sqrt{u_1^{*2} + 2(|c_1| M^{*q} + |c_2| M^{*q} N^{*p})}}$$

$$\geq T(u_0^*, u_1^*). \square$$

Lemma 3.6 Suppose that u is the classical solution of (2.1) for $q \in [1, 2]$. If u exists locally and t_1 is the life-span of u, then u blows up at $t = t_1$.

Proof. Assume that $\lim_{t\to t_1^-} u(t) = M < \infty$. By (3.3), (3.4) and $q \in [1, 2]$, we have

$$\lim_{t \to t_1^-} u'(t) = \begin{cases} \left[(2-q)(c_1M + \frac{c_2}{p+1}M^{p+1} + E(0)) \right]^{\frac{1}{2-q}} & \text{if } 1 \le q < 2, \\ \exp\{c_1M + \frac{c_2}{p+1}M^{p+1} + E_1(0)\} & \text{if } q = 2. \end{cases}$$

Now we consider the following differential equation

$$\begin{cases} v''(t) = v'(t)^q (c_1 + c_2 v(t)^p), \\ v(0) = u(t_1^-), v'(0) = u'(t_1^-). \end{cases}$$

Let v(t) be the existing unique solution to the above equation on $[0, T_v)$. Since $u(t_1^-)$ and $u'(t_1^-)$ are finite, so $T_v > 0$. Let

$$U(t) = \begin{cases} u(t) & \text{if } t \in [0, t_1^-), \\ v(t - t_1^-) & \text{if } t \in [t_1^-, t_1^- + T_v), \end{cases}$$

the problem (2.1) can be solved beyond the time t_1 , this contradicts with the assumption of t_1 . Therefore, u blows up at $t = t_1$. \Box

3.1 Blow-up Phenomena of *u*

To discuss the properties of blow-up phenomena of u with $u_1 \neq 0$, we separate this subsection into three parts $1 \leq q < 2$, q > 2 and q = 2.

Case1. Blow-up phenomena for $1 \le q < 2$

In this situation, we have some blow-up results.

Theorem 3.7 Suppose that u is the classical positive solution of (2.1) and $q \in [1, 2)$, $c_2 > 0$, $u_0 \ge 0$, $u_1 > 0$, $u_0^p \ge -\frac{c_1}{c_2}$, then u blows up at time $t = T_{11}$ for some finite real number $T_{11} > 0$.

Remark 3.7 If we don't restrict ourself to the positiveness of the solution u to the equation (2.1), then we also have the following blow-up results: If u is the solution of equation (2.1), $q \in [1, 2]$ and one of the followings is valid:

(1)
$$p$$
 is even, q is odd, $c_2 > 0$, $u_0 \le 0$, $u_1 < 0$, $u_0^p \ge -\frac{c_1}{c_2}$,
(2) p is odd, q is even, $c_2 > 0$, $u_0 \le 0$, $u_1 < 0$, $u_0^p \le -\frac{c_1}{c_2}$,
(3) p is even, q is even, $c_2 < 0$, $u_0 \le 0$, $u_1 < 0$, $u_0^p \ge -\frac{c_1}{c_2}$,
(4) p is odd, q is odd, $c_2 < 0$, $u_0 \le 0$, $u_1 < 0$, $u_0^p \le -\frac{c_1}{c_2}$.

Then u blows up in finite time.

Proof of Theorem 3.7.

Suppose that u is a global solution of equation (2.1).

(I) For q = 1, $u''(t) = u'(t)(c_1 + c_2 u(t)^p)$, by (4.1), we have $\int_{u_0}^{u(t)} \frac{1}{c_1 r + \frac{c_2}{p+1} r^{p+1} + E(0)} dr = t \text{ for all } t > 0.$

By Lemma 3.4, we have that $u(t) > u_0$ for t > 0. Using the fact that $c_1 + \frac{c_2}{p+1}r^{p+1} + E(0) > 0$ for $r \ge u_0$ (see the proof of Theorem 4.2), we get $\int_{0}^{u(t)} \frac{1}{1} dr \le \int_{0}^{\infty} \frac{1}{1} dr = \int_{0}^{\infty} dr = \int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{\infty} dr = \int_{0}^{\infty} \int_{0}^$

$$\int_{u_0}^{u(t)} \frac{1}{c_1 r + \frac{c_2}{p+1} r^{p+1} + E(0)} \, dr \le \int_{u_0}^{\infty} \frac{1}{c_1 r + \frac{c_2}{p+1} r^{p+1} + E(0)} \, dr \quad \text{for all } t > 0$$

and then

$$\int_{u_0}^{\infty} \frac{1}{c_1 r + \frac{c_2}{p+1} r^{p+1} + E(0)} dr \ge \lim_{t \to \infty} \int_{u_0}^{u(t)} \frac{1}{c_1 r + \frac{c_2}{p+1} r^{p+1} + E(0)} dr = \lim_{t \to \infty} t.$$

Since the integral $\int_{u_0} \frac{1}{c_1 r + \frac{c_2}{p+1}r^{p+1} + E(0)} dr$ is finite (see the proof of Theorem 4.2), thus it results a contradictory conclusion with the above last estimate. So we can conclude that u only exists on $[0, T_{11})$, where T_{11} is the life-span of u. By Lemma 3.6, we obtain that u blows up at $t = T_{11}$.

(II) For 1 < q < 2, then $m = \frac{1}{2}(\frac{1}{2-q}-1) > 0$. We claim that there exists a finite time $T_{11} > 0$ such that

$$J(T_{11}) = 0$$

According to Lemma 4.1, we find that u' and u blow up simultaneously. Thus $u \in C^2[0,T)$, where T is a blow-up time of u. By (3.3) and Lemma 3.4

$$u'(t)^{2-q} = (2-q)(c_1u(t) + \frac{c_2}{p+1}u(t)^{p+1} + E(0))$$
 for all $t > 0$.

By direct computation, we get

$$J'(t) = -ma(t)^{-(m+1)}a'(t) = -ma(t)^{-(m+1)}2u(t)u'(t),$$

$$a''(t)$$

$$= 2u'(t)^{2} + 2u(t)u''(t)$$

$$= 2u'(t)^{2} + 2u'(t)^{q}(c_{1}u(t) + c_{2}u(t)^{p+1})$$

$$= 2u'(t)^{2} + 2u'(t)^{q}(\frac{u'(t)^{2-q}}{2-q} - E(0) + \frac{c_{2}p}{p+1}u(t)^{p+1})$$

$$= 2(1 + \frac{1}{2-q})a'(t)^{2} + 2u'(t)^{q}(\frac{c_{2}p}{p+1}u(t)^{p+1} - E(0))$$

and

$$a(t)a''(t) = \frac{1}{2}(1 + \frac{1}{2-q})a'(t)^2 + 2a(t)u'(t)^q(\frac{c_2p}{p+1}u(t)^{p+1} - E(0)).$$

Hence we have

$$J''(t) = -ma(t)^{-(m+2)}(a(t)a''(t) - (m+1)a'(t)^2)$$

= $-ma(t)^{-(m+2)}\{[\frac{1}{2}(1+\frac{1}{2-q}) - (m+1)]a'(t)^2 + 2a(t)u'(t)^q(\frac{c_2p}{p+1}u(t)^{p+1} - E(0))\}$
= $-ma(t)^{-(m+2)}2a(t)u'(t)^q(\frac{c_2p}{p+1}u(t)^{p+1} - E(0)).$

By Lemma 3.4, we knew that u(t), u'(t), u''(t) > 0 for all t > 0. Then there exists a finite time $t_1 > 0$ such that

$$\frac{c_2 p}{p+1} u(t_1)^{p+1} - E(0) \ge 0.$$

Herewith, $J(t_1) > 0$, $J'(t_1) < 0$ and $J''(t) \le 0$ for $t \ge t_1$. Together these and Lemma 3.3 we obtain a finite positive number $T_{11} > t_1$ such that $J(T_{11}) = 0$. Thus u blows up in finite time. Therefore it creates a contradictory result, thus our assumption is a fault. We obtain that u exists locally and by Lemma 3.6, u blows up in finite time.

Proof of Remark 3.7:

Under case (1):

Let v(t) = -u(t). By the fact that p is even and q is odd, we have $v(t)^p = u(t)^p$ and $v'(t)^q = -u'(t)^q$. We get

$$\begin{cases} v''(t) = -u''(t) = -u'(t)^q (c_1 + c_2 u(t)^p) = v'(t)^q (c_1 + c_2 v(t)^p) \\ v(0) = v_0 = -u_0, v'(0) = v_1 = -u_1. \end{cases}$$

Since that $u_0 \leq 0, u_0^p \geq -\frac{c_1}{c_2}, u_1 < 0$ and p is even, we have $v_0 \geq 0, v_1 > 0$ and $v_0^p = u_0^p \geq -\frac{c_1}{c_2}$. By Theorem 3.7 and Theorem 3.9 below, v blows up, so does u. To the case (2), we set v(t) = -u(t). Since that p is odd and q is even, $v(t)^p = -u(t)^p$, $v'(t)^q = u'(t)^q$ and

$$\begin{cases} v''(t) = -u''(t) = -u'(t)^q (c_1 + c_2 u(t)^p) = v'(t)^q (-c_1 + c_2 v(t)^p), \\ v(0) = v_0 = -u_0, v'(0) = v_1 = -u_1. \end{cases}$$

According to the condition that $u_0 \leq 0, u_0^p \leq -\frac{c_1}{c_2}, u_1 < 0$ and p is odd, we have $v_0 \geq 0, v_1 > 0$ and $v_0^p = -u_0^p \geq \frac{c_1}{c_2}$. Using Theorem 3.7 and Theorem 3.9 below, v blows up. Thus u blows up in finite time.

For case (3), let v(t) = -u(t). By the assumption, we have $v(t)^p = u(t)^p$, $v'(t)^q = u'(t)^q$ and

$$\begin{cases} v''(t) = -u''(t) = -u'(t)^q (c_1 + c_2 u(t)^p) = v'(t)^q (-c_1 + (-c_2)v(t)^p), \\ v(0) = v_0 = -u_0, v'(0) = v_1 = -u_1. \end{cases}$$

With the help of the fact that $u_0 \leq 0, u_0^p \geq -\frac{c_1}{c_2}, u_1 < 0$ and p is even, $v_0 \geq 0, v_1 > 0$ and $v_0^p = u_0^p \geq -\frac{c_1}{c_2}$. From Theorem 3.7 and Theorem 3.9 below, it follows that vand u blow up in finite time.

Under the circumstance of (4), let v(t) = -u(t). By the condition that p is odd and q is odd, we have $v(t)^p = -u(t)^p$, $v'(t)^q = -u'(t)^q$ and

$$\begin{cases} v''(t) = -u''(t) = -u'(t)^q (c_1 + c_2 u(t)^p) = v'(t)^q (c_1 + (-c_2)v(t)^p), \\ v(0) = v_0 = -u_0, v'(0) = v_1 = -u_1. \end{cases}$$

Since that $u_0 \leq 0, u_0^p \leq -\frac{c_1}{c_2}, u_1 < 0$ and p is odd, we get that $v_0 \geq 0, v_1 > 0$ and $v_0^p = -u_0^p \geq \frac{c_1}{c_2}$. Therefore v and u blow up in finite time. \Box

Now we estimate the blow-up rate and blow-up constant, we have:

Theorem 3.8 Suppose that u is a classical solution of (2.1). If $1 \le q < 2$ and u blows up in finite time, then the blow-up rate of u is $\frac{2-q}{p+q-1}$ and the blow-up constant of u is $(\frac{p+q-1}{2-q})^{-\frac{2-q}{p+q-1}}[(2-q)\frac{c_2}{p+1}]^{\frac{-1}{p+q-1}}$.

Proof. Let $i = \frac{p+q-1}{2-q}$, by some calculations and (2.1) using L.Hôpital's rule we obtain

$$\lim_{t \to T_{11}^{-1}} \frac{u^{-i}}{T_{11} - t}$$

$$= \lim_{t \to T_{11}^{-1}} iu(t)^{-(i+1)}u'(t)$$

$$= \lim_{t \to T_{11}^{-1}} i\frac{\left[(2 - q)(c_1u(t) + \frac{c_2}{p+1}u(t)^{p+1} + E(0))\right]^{\frac{1}{2-q}}}{u(t)^{i+1}}$$

$$= \frac{p + q - 1}{2 - q} [(2 - q)\frac{c_2}{p+1}]^{\frac{1}{2-q}}.$$

Thus

$$\lim_{t \to T_{11}^-} (T_{11} - t)^{\frac{2-q}{p+q-1}} u(t) = (\frac{p+q-1}{2-q})^{-\frac{2-q}{p+q-1}} [(2-q)\frac{c_2}{p+1}]^{\frac{-1}{p+q-1}}.$$

Case2. Blow-up Phenomena for q = 2

In the particular case, q = 2, we obtain an interesting blow-up result and especial blow-up constant.

Theorem 3.9 For q = 2, if u is the classical positive solution of (2.1) and $c_2 > 0$, $u_0 \ge 0$, $u_1 > 0$, $u_0^p \ge -\frac{c_1}{c_2}$. Then u blows up logarithmically at finite time $t = T_{12}$ and

$$\lim_{t \to T_{12}^-} \left[\frac{1}{-\ln\left(T_{12} - t\right)} \right]^{\frac{1}{p+1}} u(t) = \left[\frac{c_2}{p+1} \right]^{-\frac{1}{p+1}}.$$

Proof. Assume that u is a global solution of (2.1). By (3.4) and Lemma 3.4,

$$\ln |u'(t)| = (c_1 u(t) + \frac{c_2}{p+1} u(t)^{p+1} + E_1(0)) \text{ for all } t > 0.$$

Since that u(t), u'(t) blow up contemporarily (see Lemma 4.1), $u \in C^2[0, T_{12})$ where T_{12} is blow-up time of u.

Let $K(t) = a(t)^{-1}$, then

$$K'(t) = -a(t)^{-2}a'(t) = -2a(t)^{-2}u(t)u'(t)$$

and

$$\begin{aligned} K''(t) &= -a(t)^{-3}(a(t)a''(t) - 2a'(t)^2) \\ &= -a(t)^{-3}[2a(t)(u'(t)^2 + u(t)u''(t)) - 2a'(t)^2] \\ &= -a(t)^{-3}\{2a(t)[u'(t)^2 + u(t)u'(t)^2(c_1 + c_2u(t)^p)] - 2a'(t)^2\} \\ &= -a(t)^{-3}\{2a(t)u'(t)^2[1 + u(t)(c_1 + c_2u(t)^p)] - 2a'(t)^2\} \\ &= -a(t)^{-3}\{\frac{1}{2}a'(t)^2[1 + u(t)(c_1 + c_2u(t)^p)] - 2a'(t)^2\} \\ &= -a(t)^{-3}a'(t)^2\{\frac{1}{2}[1 + u(t)(c_1 + c_2u(t)^p)] - 2\}. \end{aligned}$$

By Lemma 3.4, u(t), u'(t), u''(t) > 0 for t > 0. Hence there exists $t_0 > 0$ such that

$$u(t) \ge (\frac{|c_1|+3}{c_2})^{\frac{1}{p}} + 1 \text{ for } t \ge t_0.$$

Thus we have

$$\frac{1}{2}[(1+u(t)(c_1+c_2u(t)^p)]-2\ge 0 \quad \text{for } t\ge t_0.$$

We conclude that

$$K(t_0) > 0, K'(t) < 0$$
 and $K''(t) < 0$ for $t \ge t_0$,

thus by Theorem 3.3 there exists positive number T_{12} such that $K(T_{12}) = 0$ and u blows up at time $t = T_{12}$. This result contradicts with our assumption that u is a

global solution of problem (2.1). Therefore u exists locally. By Lemma 3.6, u blows up in finite time. After some computations we get

$$\lim_{t \to T_{12}^-} -\ln(T_{12} - t)u(t)^{-(p+1)} = \lim_{t \to T_{12}^-} \frac{-\ln(T_{12} - t)}{u(t)^{p+1}} \\
= \lim_{t \to T_{12}^-} \frac{\frac{1}{T_{12} - t}}{(p+1)u(t)^p u'(t)} \\
= \lim_{t \to T_{12}^-} \frac{u(t)^{-p}u'(t)^{-1}}{(p+1)(T_{12} - t)} \\
= \lim_{t \to T_{12}^-} \frac{pu(t)^{-(p+1)} + u(t)^{-p}u'(t)^{-2}u''(t)}{p+1}.$$

Using (2.1), we obtain $u''(t) = u'(t)^2(c_1 + c_2 u(t)^p)$ and

$$\lim_{t \to T_{12}^-} -\ln (T_{12} - t)u(t)^{-(p+1)} = \lim_{t \to T_{12}^-} \frac{pu(t)^{-(p+1)} + u(t)^{-p}(c_1 + c_2u(t)^p)}{p+1}$$
$$= \frac{c_2}{p+1}.$$

Hence we conclude

$$\lim_{t \to T_{12}^-} \left[\frac{1}{-\ln(T_{12} - t)} \right]^{\frac{1}{p+1}} u(t) = \left[\frac{c_2}{p+1} \right]^{-\frac{1}{p+1}}. \Box$$

Case3. Blow-up phenomena for q > 2

Under q > 2 we have the boundedness for the solution.

Theorem 3.10 For q > 2, if u is the classical positive solution of (2.1) and $c_2 > 0$, $u_0 \ge 0$, $u_1 > 0$, $u_0^p \ge -\frac{c_1}{c_2}$, then u is bounded in [0,T), where T is the life span of u.

Proof. We integrate the equation (2.1) from 0 to t and then we obtain

$$\frac{u'(t)^{2-q}}{2-q} - \frac{u_1^{2-q}}{2-q} = c_1 u(t) + \frac{c_2}{p+1} u(t)^{p+1} - c_1 u_0 - \frac{c_2}{p+1} u_0^{p+1}.$$

For $t \in [0, T)$, by Lemma 3.4, then u(t), u'(t) > 0 and

$$\frac{u_1^{2-q}}{q-2} > c_1 u(t) + \frac{c_2}{p+1} u(t)^{p+1} - c_1 u_0 - \frac{c_2}{p+1} u_0^{p+1}.$$

Since that $c_2 > 0$ and u(t) > 0 for $t \in [0, T)$, u is bounded in [0, T).

3.2 Blow-up Phenomena of u'

In this subsection we come back to the consideration of blow-up phenomena of u', and we have

Theorem 3.11 For $q \ge 1$, if u is a classical positive solution of (2.1) and $c_2 > 0$, $u_0 \ge 0$, $u_1 > 0$, $u_0^p \ge -\frac{c_1}{c_2}$, then u' blows up at time $t = T_2$.

Proof. We separate this proof into three parts $1 \le q < 2$, q = 2 and q > 2.

- (I) At first, we assume that $1 \le q < 2$, by Theorem 3.7 and Lemma 4.1 below, then u and u' blow up in finite time.
- (II) For q = 2, using Theorem 3.9 and Lemma 4.1 below, then u and u' blow up in finite time.
- (III) Assume that q > 2, let

$$b(t) = u'(t)^2, \ L(t) = b(t)^{-\alpha},$$

where $\alpha = \frac{1}{2}(q-1)$, we have

$$L'(t) = -\alpha b(t)^{-(\alpha+1)} b'(t) = -2\alpha b(t)^{-(\alpha+1)} u'(t) u''(t),$$

and

$$L''(t) = -\alpha b(t)^{-(\alpha+2)} [b(t)b''(t) - (\alpha+1)b'(t)^{2}]$$

$$= -\alpha b(t)^{-(\alpha+2)} [b(t)(2u''(t)^{2} + 2u'(t)u'''(t)) - (\alpha+1)b'(t)^{2}]$$

$$= -\alpha b(t)^{-(\alpha+2)} [b(t)(2u''(t)^{2} + 2qu''(t)^{2} + 2pc_{2}u(t)^{p-1}u'(t)^{q+2}) - (\alpha+1)b'(t)^{2}]$$

$$= -\alpha b(t)^{-(\alpha+2)} [(\frac{1}{2}(1+q) - (\alpha+1))b'(t)^{2} + 2c_{2}pb(t)u(t)^{p-1}u'(t)^{q+2}]$$

$$= -2pc_{2}\alpha b(t)^{-(\alpha+1)}u(t)^{p-1}u'(t)^{q+2}.$$

By Lemma 3.4, u(t) > 0, u'(t) > 0 and u''(t) > 0 for t > 0, and then we obtain that L'(t), L''(t) < 0 for t > 0. Now we need to check that u doesn't blow up earlier than

u'. By Theorem 3.10, u is bounded. Using Lemma 3.3, there exists a finite number T_2 such that $L(T_2) = 0$. Since that q > 2, thus $\alpha > 0$. We obtain that u' blows up at finite time $t = T_2$. \Box

Having obtained the blow-up phenomena of u', we want to calculate blow-up rate and blow-up constant of u'.

Case1. Blow-up rates and blow-up constants of u' for $1 \leq q < 2$

For $q \in [1, 2)$ we have the result:

- XX XX 11.4 -

Theorem 3.12 Under the conditions in Theorem 3.11, for $1 \le q < 2$, u' blows up in finite time with blow-up rate $\frac{p+1}{p+q-1}$ and blow-up constant

$$\left[\frac{c_2(p+q-1)}{p+1}\left(\frac{c_2(2-q)}{p+1}\right)^{\frac{-p}{p+1}}\right]^{\frac{-(p+1)}{p+q-1}}.$$

Proof. By Lemma 4.1 u and u' have the same blow-up time. According to (2.1), L.Hôpital's rule and Theorem 3.8 we have

$$\lim_{t \to T_2^-} \frac{u'(t)^{\frac{1-p-q}{p+1}}}{(T_2 - t)} = \lim_{t \to T_2^-} \frac{p+q-1}{p+1} u'(t)^{\frac{-(2p+q)}{p+1}} u''(t)$$

$$= \lim_{t \to T_2^-} \frac{c_2(p+q-1)}{p+1} [(2-q)(c_1 u(t) + \frac{c_2}{p+1} u(t)^{p+1} + E(0))]^{\frac{-p}{p+1}} u(t)^p$$

$$= \frac{c_2(p+q-1)}{p+1} (\frac{c_2(2-q)}{p+1})^{\frac{-p}{p+1}}.$$

Thus

$$\lim_{t \to T_2^-} (T_2 - t)^{\frac{p+1}{p+q-1}} u'(t) = \left[\frac{c_2(p+q-1)}{p+1} \left(\frac{c_2(2-q)}{p+1}\right)^{\frac{-p}{p+1}}\right]^{\frac{-(p+1)}{p+q-1}}.$$

Case2. Blow-up rates and blow-up constants of u' for q = 2

To the case q = 2, we have the following results on blow-up rate and blow-up constant for u'.

Theorem 3.13 Under the conditions in Theorem 3.11, for q = 2, u' blows up in finite time, we also have

$$\lim_{t \to T_2^-} \left[-\ln(T_2 - t) \right]^{\frac{p}{p+1}} (T_2 - t) u'(t) = c_2^{\frac{-1}{p+1}} \left(\frac{1}{p+1} \right)^{\frac{p}{p+1}}$$

Proof. According to Lemma 4.1 u and u' have the same life-span. By (2.1), L.Hôpital's rule and Theorem 3.9 we have

$$\lim_{t \to T_2^-} \left[-\ln(T_2 - t) \right]^{\frac{p}{p+1}} (T_2 - t) u'(t)$$

$$= \lim_{t \to T_2^-} \frac{\left[-\ln(T_2 - t) \right]^{\frac{p}{p+1}} (T_2 - t)}{u'(t)^{-1}}$$

$$= \lim_{t \to T_2^-} \frac{\frac{p}{p+1} \left[-\ln(T_2 - t) \right]^{\frac{-1}{p+1}} (T_2 - t) - \left[-\ln(T_2 - t) \right]^{\frac{p}{p+1}}}{-(c_1 + c_2 u(t)^p)}$$

$$= c_2^{\frac{-1}{p+1}} (\frac{1}{p+1})^{\frac{p}{p+1}}. \Box$$

Case3. Blow-up rates and blow-up constants of u' for q > 2In this case of q > 2 we also have the blow-up result for u'.

Theorem 3.14 Under the conditions in Theorem 3.11, for q > 2, u' blows up in finite time with blow-up rate $\frac{1}{q-1}$ and blow-up constant $[(q-1)(c_1+c_2u(T_2)^p)]^{\frac{1}{1-q}}$.

Proof. For q > 2, by (2.1) and L.Hôpital's rule we have

$$\lim_{t \to T_2^-} \frac{u'(t)^{1-q}}{(T_2 - t)} = \lim_{t \to T_2^-} (1 - q)u'(t)^{-q}u''(t)(-1)$$
$$= \lim_{t \to T_2^-} (q - 1)(c_1 + c_2u(t)^p)$$
$$= (q - 1)(c_1 + c_2u(T_2)^p).$$

Thus

$$\lim_{t \to T_2^-} (T_2 - t)^{\frac{1}{q-1}} u'(t) = [(q-1)(c_1 + c_2 u(T_2)^p)]^{\frac{1}{1-q}}. \square$$

In the coming subsection we treat the blow-up phenomena of u'' under three cases $1 \le q < 2, q = 2$ and q > 2.

3.3 Blow-up Phenomena of u''

We want to calculate blow-up rate and blow-up constant of u'' in the this subsection.

20

Theorem 3.15 Suppose that u is a classical positive solution of (2.1). If $1 \le q$, then u'' blows up at time $t = T_3$ under the same conditions in Theorem 3.11.

Proof. According to Theorem 3.11 and Lemma 4.1 below, u' and u'' blow up at the same time, $t = T_3$.

Case1. Blow-up rates and blow-up constants of u'' for $1 \le q < 2$

Theorem 3.16 Under the conditions in Theorem 3.15, for $1 \le q < 2$, u'' blows up in finite time with the blow-up rate $\frac{q(p+1)}{p+q-1} + \frac{p(2-q)}{p+q-1}$ and the blow-up constant

$$c_{2}\left\{\left[\frac{c_{2}(p+q-1)}{p+1}\left(\frac{c_{2}(2-q)}{p+1}\right)^{\frac{-p}{p+1}}\right]^{\frac{-(p+1)}{p+q-1}}\right\}^{q}\left\{\left(\frac{p+q-1}{2-q}\right)^{-\frac{2-q}{p+q-1}}\left[(2-q)\frac{c_{2}}{p+1}\right]^{\frac{-1}{p+q-1}}\right\}^{p}.$$

Proof. For $1 \le q < 2$, by Lemma 4.1, u, u' and u'' possess the same blow-up time . Using (2.1) again, Theorem 3.8 and Theorem 3.12, we conclude that

$$\lim_{t \to T_3^-} (T_3 - t)^{\frac{q(p+1)}{p+q-1} + \frac{p(2-q)}{p+q-1}} u''(t)
= \lim_{t \to T_3^-} (T_3 - t)^{\frac{q(p+1)}{p+q-1}} u'(t)^q (T_3 - t)^{\frac{p(2-q)}{p+q-1}} (c_1 + c_2 u(t)^p)
= c_2 \{ [\frac{c_2(p+q-1)}{p+1} (\frac{c_2(2-q)}{p+1})^{\frac{-p}{p+1}}]^{\frac{-(p+1)}{p+q-1}} \}^q \{ (\frac{p+q-1}{2-q})^{-\frac{2-q}{p+q-1}} [(2-q)\frac{c_2}{p+1}]^{\frac{-1}{p+q-1}} \}^p. \square$$

Case2. Blow-up rates and blow-up constants of u'' for q = 2

Theorem 3.17 Under the conditions in Theorem 3.15, for q = 2, u'' blows up in finite time and

$$\lim_{t \to T_3^-} \{ [-\ln(T_3 - t)]^{\frac{p}{p+1}} (T_3 - t) \}^q \{ [-\ln(T_3 - t)]^{\frac{-1}{p+1}} \}^p u''(t)$$

= $c_2 [c_2^{\frac{-1}{p+1}} (\frac{1}{p+1})^{\frac{p}{p+1}}]^q [(\frac{c_2}{p+1})^{\frac{-1}{p+1}}]^p.$

Proof. For q = 2, using Lemma 4.1, u, u' and u'' have the same blow-up time. Thus T_3 is also blow-up time of u and u'. By (2.1), Theorem 3.9 and Theorem 3.13 we conclude that

$$\lim_{t \to T_3^-} \left\{ \left[-\ln(T_3 - t) \right]^{\frac{p}{p+1}} (T_3 - t) \right\}^q \left\{ \left[-\ln(T_3 - t) \right]^{\frac{-1}{p+1}} \right\}^p u''(t)$$

$$= \lim_{t \to T_3^-} \left\{ \left[-\ln(T_3 - t) \right]^{\frac{p}{p+1}} (T_3 - t) \right\}^q u'(t)^q \left\{ \left[-\ln(T_3 - t) \right]^{\frac{-1}{p+1}} \right\}^p (c_1 + c_2 u(t)^p)$$

$$= c_2 \left[c_2^{\frac{-1}{p+1}} (\frac{1}{p+1})^{\frac{p}{p+1}} \right]^q \left[(\frac{c_2}{p+1})^{\frac{-1}{p+1}} \right]^p. \square$$

Case3. Blow-up rates and blow-up constants of u'' for q > 2

Theorem 3.18 Under the conditions in Theorem 3.15, for q > 2, u'' blows up time in finite time with the blow-up rate $\frac{q}{q-1}$ and the blow-up constant

$$(c_1 + c_2 u(T_3)^p) \{ [(q-1)(c_1 + c_2 u(T_3)^p)]^{\frac{1}{1-q}} \}^q.$$

- 6° - 1

Proof. For q > 2, by Lemma 4.1, u'' and u' blow up contemporaneously in finite time. Thanks to Lemma 3.4 we have u(t) > 0 and $u(t)^p \ge -\frac{c_1}{c_2}$. Since $c_2 > 0$, $c_1 + c_2 u(t)^p > 0$. By (2.1) and Theorem 3.14, we conclude that

$$\lim_{t \to T_3^-} (T_3 - t)^{\frac{q}{q-1}} u''(t)$$

$$= \lim_{t \to T_3^-} (T_3 - t)^{\frac{q}{q-1}} u'(t)^q (c_1 + c_2 u(t)^p)$$

$$= (c_1 + c_2 u(T_3)^p) \{ [(q-1)(c_1 + c_2 u(T_3)^p)]^{\frac{1}{1-q}} \}^q. \square$$