
3 Blow-up Phenomena

Definition 3.1 A function g : R → R blows up and has a blow-up rate q means

that there is a finite number T ∗ such that the following is valid

lim
t→T ∗

g(t)−1 = 0 (3.1)

and there exists a nonzero β ∈ R with

lim
t→T ∗

(T ∗ − t)qg(t) = β, (3.2)

in this case β is called the blow-up constant of g.

Theorem 3.2 Suppose that u is the classical solution of (2.1). If u1 = 0 then u is

constant and u(t) = u0.

Proof . Together Theorem 2.1 and Theorem 2.2, the solution of differential equa-

tion (2.1) on [0, T ) is unique, so u(t) = u0 is the unique solution of (2.1) on [0, T−].

Next we consider the following differential equation.




v′′(t) = v′(t)q(c1 + c2v(t)p),

v(0) = u(T−), v′(0) = u′(T−).

Similarly, v(t) = u0 is the unique solution of the last differential equation on [0, T−].

Let

U(t) =





u(t) if t ∈ [0, T−),

v(t− T−) if t ∈ [T−, 2T−],

then U(t) = u0 is the unique solution of nonlinear equation (2.1) for t ∈ [0, 2T−].

Such a way can always be continued forever. Thus u(t) = u0 is the unique solution

for t ∈ [0,∞). ❑

As u1 = 0, the solution of problem (2.1) u must be constant. Now we consider

the situation u1 6= 0 for the differential equation (2.1),





u′′(t) = u′(t)q(c1 + c2u(t)p),

u(0) = u0 6= 0, u′(0) = u1 6= 0.

8



For u1 6= 0 and t ∈ [0, T ∗), where T ∗ = inf{t > 0 : u′(t) = 0}, we have




u′(t)2−q = (2− q)(c1u(t) +
c2

p + 1
u(t)p+1 + E(0)) if q 6= 2,

E(0) =
u2−q

1

2− q
− (c1u0 +

c2

p + 1
up+1

0 )

(3.3)

and 



ln | u′(t) | = (c1u(t) +
c2

p + 1
u(t)p+1 + E1(0)) if q = 2,

E1(0) = ln | u1 | − (c1u0 +
c2

p + 1
up+1

0 ).

(3.4)

Thus we have the relations between u(t) and u′(t).

For a given function u in this work we use the following abbreviations

a(t) = u(t)2, J(t) = a(t)−m, m =
1

2
(

1

2− q
− 1).

Lemma 3.3 Suppose that f ∈ C1[t0,∞) ∩ C2(t0,∞), f(t0) > 0, f ′(t0) < 0 and

f ′′(t) ≤ 0 for t > t0, then there exists a finite positive number T > t0 such that

f(T ) = 0.

Proof . Seeing that f ∈ C1[t0,∞) and f ′′(t) ≤ 0 for t > t0, we obtain that

f ′(t) ≤ f ′(t0) < 0 and f(t) ≤ f(t0) + f ′(t0)(t − t0). Hence there exists t1 > t0 such

that f(t1) < 0. By the continuity of f in [t0,∞), there exists T ∈ (t0, t1) such that

f(T ) = 0. ❑

Lemma 3.4 Suppose that u is the classical solution of (2.1). If u0 ≥ 0, c2, u1 > 0,

and up
0 ≥ −c1

c2

, then u(t), u′(t), u′′(t) > 0 for t ∈ [0, T ), where T is the life-span of

u.

Proof . Suppose that there exists a positive number t0 such that u′(t0) ≤ 0,

according to u ∈ C2 and u1 > 0, then there exists a positive number t1 defined by

t1 = inf{t ∈ (0, t0] : u′(t) = 0}

with u′(t1) = 0 and u′(t) ≥ 0 for t ∈ [0, t1]. Because u′(t) ≥ 0 for t ∈ [0, t1], we

obtain that

u(t)p ≥ −c1

c2

and u′′(t) ≥ 0 for t ∈ [0, t1].
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Therefore, u′(t1) ≥ u1 > 0. This result contradicts with u′(t1) = 0; thus we conclude

that u′(t) > 0 for t ∈ [0, T ), where T is the life-span of u. Together the equation

(2.1) and the continuities of u, u′ and u′′, we obtain the conclusions under this

Lemma 3.4. ❑

Together Theorem 2.1 and Theorem 2.2, there exists the unique solution to the (2.1)

on [0, T ), where T depends on the initial values given by

T (u0, u1) = min





1
|u1| ,

1
|c1|Mq+|c2|MqNp ,

−|u1|+
√

u2
1+2(|c1|Mq+|c2|MqNp)

|c1|Mq+|c2|MqNp ,

−1 +
√

1 + 1
α1+α2+α3





and

N =| u0 | +1, M =| u1 | +1,

α1 =| c1 | M qpNp−1, α2 =| c1 | qM q−1, α3 =| c2 | qNpM q−1.

Lemma 3.5 If u0 ≤ u∗0 and u1 ≤ u∗1, then T (u0, u1) ≥ T (u∗0, u
∗
1).

Proof . Let

N∗ =| u∗0 | +1, M∗ =| u∗1 | +1,

α∗1 =| c1 | M∗qpN∗p−1, α∗2 =| c1 | qM∗q−1, α∗3 =| c2 | qN∗pM∗q−1.

(1) If T (u0, u1) =
1

| u1 | , by u1 ≤ u∗1, then

T (u0, u1) ≥ 1

| u∗1 |
≥ T (u∗0, u

∗
1).

(2) If T (u0, u1) = −1+

√
1 +

1

α1 + α2 + α3

, using the fact that u1 ≤ u∗1 and p, q ≥ 1

we have α∗1 ≥ α1 ≥ 0, α∗2 ≥ α2 ≥ 0 and α∗3 ≥ α3 ≥ 0. Thus

T (u0, u1) ≥ −1 +

√
1 +

1

α∗1 + α∗2 + α∗3
≥ T (u∗0, u

∗
1).
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(3) If T (u0, u1) =
1

| c1 | M q+ | c2 | M qNp
, according to the conditions u0 ≤ u∗0,

u1 ≤ u∗1 and p, q ≥ 1 we obtain that M∗q ≥ M q and N∗p ≥ Np and then

T (u0, u1) ≥ 1

| c1 | M∗q+ | c2 | M∗qN∗p ≥ T (u∗0, u
∗
1).

(4) If T (u0, u1) =
− | u1 | +

√
u2

1 + 2(| c1 | M q+ | c2 | M qNp)

| c1 | M q+ | c2 | M qNp
, from u0 ≤ u∗0 and

u1 ≤ u∗1, it follows that M∗q ≥ M q, N∗p ≥ Np and

T (u0, u1) =
2

| u1 | +
√

u1
2 + 2(| c1 | M q+ | c2 | M qNp)

≥ 2

| u∗1 | +
√

u∗1
2 + 2(| c1 | M∗q+ | c2 | M∗qN∗p)

≥ T (u∗0, u
∗
1). ❑

Lemma 3.6 Suppose that u is the classical solution of (2.1) for q ∈ [1, 2]. If u

exists locally and t1 is the life-span of u, then u blows up at t = t1.

Proof . Assume that limt→t−1
u(t) = M < ∞. By (3.3), (3.4) and q ∈ [1, 2], we

have

limt→t−1
u′(t) =





[(2− q)(c1M + c2
p+1

Mp+1 + E(0))]
1

2−q if 1 ≤ q < 2,

exp{c1M + c2
p+1

Mp+1 + E1(0)} if q = 2.

Now we consider the following differential equation




v′′(t) = v′(t)q(c1 + c2v(t)p),

v(0) = u(t−1 ), v′(0) = u′(t−1 ).

Let v(t) be the existing unique solution to the above equation on [0, Tv). Since u(t−1 )

and u′(t−1 ) are finite, so Tv > 0. Let

U(t) =





u(t) if t ∈ [0, t−1 ),

v(t− t−1 ) if t ∈ [t−1 , t−1 + Tv),

the problem(2.1) can be solved beyond the time t1, this contradicts with the as-

sumption of t1. Therefore, u blows up at t = t1. ❑
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3.1 Blow-up Phenomena of u

To discuss the properties of blow-up phenomena of u with u1 6= 0, we separate this

subsection into three parts 1 ≤ q < 2, q > 2 and q = 2.

Case1. Blow-up phenomena for 1 ≤ q < 2

In this situation, we have some blow-up results.

Theorem 3.7 Suppose that u is the classical positive solution of (2.1) and q ∈ [1, 2),

c2 > 0, u0 ≥ 0, u1 > 0, up
0 ≥ −c1

c2

, then u blows up at time t = T11 for some finite

real number T11 > 0.

Remark 3.7 If we don’t restrict ourself to the positiveness of the solution u to the

equation (2.1), then we also have the following blow-up results:

If u is the solution of equation (2.1), q ∈ [1, 2] and one of the followings is valid:

(1) p is even, q is odd, c2 > 0, u0 ≤ 0, u1 < 0, up
0 ≥ −c1

c2

,

(2) p is odd, q is even, c2 > 0, u0 ≤ 0, u1 < 0, up
0 ≤ −c1

c2

,

(3) p is even, q is even, c2 < 0, u0 ≤ 0, u1 < 0, up
0 ≥ −c1

c2

,

(4) p is odd, q is odd, c2 < 0, u0 ≤ 0, u1 < 0, up
0 ≤ −c1

c2

.

Then u blows up in finite time.

Proof of Theorem 3.7.

Suppose that u is a global solution of equation (2.1).

(I) For q = 1, u′′(t) = u′(t)(c1 + c2u(t)p), by (4.1), we have

∫ u(t)

u0

1

c1r + c2
p+1

rp+1 + E(0)
dr = t for all t > 0.

By Lemma 3.4, we have that u(t) > u0 for t > 0. Using the fact that c1 +

c2
p+1

rp+1 + E(0) > 0 for r ≥ u0 (see the proof of Theorem 4.2), we get

∫ u(t)

u0

1

c1r + c2
p+1

rp+1 + E(0)
dr ≤

∫ ∞

u0

1

c1r + c2
p+1

rp+1 + E(0)
dr for all t > 0,
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and then
∫ ∞

u0

1

c1r + c2
p+1

rp+1 + E(0)
dr ≥ lim

t→∞

∫ u(t)

u0

1

c1r + c2
p+1

rp+1 + E(0)
dr = lim

t→∞
t.

Since the integral

∫ ∞

u0

1

c1r + c2
p+1

rp+1 + E(0)
dr is finite (see the proof of The-

orem 4.2), thus it results a contradictory conclusion with the above last es-

timate. So we can conclude that u only exists on [0, T11), where T11 is the

life-span of u. By Lemma 3.6, we obtain that u blows up at t = T11.

(II) For 1 < q < 2, then m =
1

2
(

1

2− q
− 1) > 0. We claim that there exists a finite

time T11 > 0 such that

J(T11) = 0.

According to Lemma 4.1, we find that u′ and u blow up simultaneously. Thus

u ∈ C2[0, T ), where T is a blow-up time of u. By (3.3) and Lemma 3.4

u′(t)2−q = (2− q)(c1u(t) +
c2

p + 1
u(t)p+1 + E(0)) for all t > 0.

By direct computation, we get

J ′(t) = −ma(t)−(m+1)a′(t) = −ma(t)−(m+1)2u(t)u′(t),

a′′(t)

= 2u′(t)2 + 2u(t)u′′(t)

= 2u′(t)2 + 2u′(t)q(c1u(t) + c2u(t)p+1)

= 2u′(t)2 + 2u′(t)q(
u′(t)2−q

2− q
− E(0) +

c2p

p + 1
u(t)p+1)

= 2(1 +
1

2− q
)a′(t)2 + 2u′(t)q(

c2p

p + 1
u(t)p+1 − E(0))

and

a(t)a′′(t) =
1

2
(1 +

1

2− q
)a′(t)2 + 2a(t)u′(t)q(

c2p

p + 1
u(t)p+1 − E(0)).

Hence we have

J ′′(t)

= −ma(t)−(m+2)(a(t)a′′(t)− (m + 1)a′(t)2)

= −ma(t)−(m+2){[1
2
(1 +

1

2− q
)− (m + 1)]a′(t)2 + 2a(t)u′(t)q(

c2p

p + 1
u(t)p+1 − E(0))}

= −ma(t)−(m+2)2a(t)u′(t)q(
c2p

p + 1
u(t)p+1 − E(0)).
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By Lemma 3.4, we knew that u(t), u′(t), u′′(t) > 0 for all t > 0. Then there

exists a finite time t1 > 0 such that

c2p

p + 1
u(t1)

p+1 − E(0) ≥ 0.

Herewith, J(t1) > 0, J ′(t1) < 0 and J ′′(t) ≤ 0 for t ≥ t1. Together these and

Lemma 3.3 we obtain a finite positive number T11 > t1 such that J(T11) = 0.

Thus u blows up in finite time. Therefore it creates a contradictory result,

thus our assumption is a fault. We obtain that u exists locally and by Lemma

3.6, u blows up in finite time.

Proof of Remark 3.7:

Under case (1):

Let v(t) = −u(t). By the fact that p is even and q is odd, we have v(t)p = u(t)p and

v′(t)q = −u′(t)q. We get




v′′(t) = −u′′(t) = −u′(t)q(c1 + c2u(t)p) = v′(t)q(c1 + c2v(t)p),

v(0) = v0 = −u0, v
′(0) = v1 = −u1.

Since that u0 ≤ 0, up
0 ≥ −c1

c2

, u1 < 0 and p is even, we have v0 ≥ 0, v1 > 0 and

vp
0 = up

0 ≥ −c1

c2

. By Theorem 3.7 and Theorem 3.9 below, v blows up, so does u.

To the case (2), we set v(t) = −u(t). Since that p is odd and q is even, v(t)p = −u(t)p,

v′(t)q = u′(t)q and




v′′(t) = −u′′(t) = −u′(t)q(c1 + c2u(t)p) = v′(t)q(−c1 + c2v(t)p),

v(0) = v0 = −u0, v
′(0) = v1 = −u1.

According to the condition that u0 ≤ 0, up
0 ≤ −c1

c2

, u1 < 0 and p is odd, we have

v0 ≥ 0, v1 > 0 and vp
0 = −up

0 ≥
c1

c2

. Using Theorem 3.7 and Theorem 3.9 below, v

blows up. Thus u blows up in finite time.

For case (3), let v(t) = −u(t). By the assumption, we have v(t)p = u(t)p, v′(t)q =

u′(t)q and




v′′(t) = −u′′(t) = −u′(t)q(c1 + c2u(t)p) = v′(t)q(−c1 + (−c2)v(t)p),

v(0) = v0 = −u0, v
′(0) = v1 = −u1.
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With the help of the fact that u0 ≤ 0, up
0 ≥ −c1

c2

, u1 < 0 and p is even, v0 ≥ 0, v1 > 0

and vp
0 = up

0 ≥ −c1

c2

. From Theorem 3.7 and Theorem 3.9 below, it follows that v

and u blow up in finite time.

Under the circumstance of (4), let v(t) = −u(t). By the condition that p is odd and

q is odd, we have v(t)p = −u(t)p, v′(t)q = −u′(t)q and




v′′(t) = −u′′(t) = −u′(t)q(c1 + c2u(t)p) = v′(t)q(c1 + (−c2)v(t)p),

v(0) = v0 = −u0, v
′(0) = v1 = −u1.

Since that u0 ≤ 0, up
0 ≤ −c1

c2

, u1 < 0 and p is odd, we get that v0 ≥ 0, v1 > 0 and

vp
0 = −up

0 ≥
c1

c2

. Therefore v and u blow up in finite time. ❑

Now we estimate the blow-up rate and blow-up constant, we have:

Theorem 3.8 Suppose that u is a classical solution of (2.1). If 1 ≤ q < 2 and

u blows up in finite time, then the blow-up rate of u is
2− q

p + q − 1
and the blow-up

constant of u is (
p + q − 1

2− q
)−

2−q
p+q−1 [(2− q)

c2

p + 1
]

−1
p+q−1 .

Proof . Let i =
p + q − 1

2− q
, by some calculations and (2.1) using L.Hôpital’s rule

we obtain

lim
t→T−11

u−i

T11 − t

= lim
t→T−11

iu(t)−(i+1)u′(t)

= lim
t→T−11

i
[(2− q)(c1u(t) + c2

p+1
u(t)p+1 + E(0))]

1
2−q

u(t)i+1

=
p + q − 1

2− q
[(2− q)

c2

p + 1
]

1
2−q .

Thus

lim
t→T−11

(T11 − t)
2−q

p+q−1 u(t) = (
p + q − 1

2− q
)−

2−q
p+q−1 [(2− q)

c2

p + 1
]

−1
p+q−1 . ❑

Case2. Blow-up Phenomena for q = 2

In the particular case, q = 2, we obtain an interesting blow-up result and especial

blow-up constant.
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Theorem 3.9 For q = 2, if u is the classical positive solution of (2.1) and c2 >

0, u0 ≥ 0, u1 > 0, up
0 ≥ −c1

c2

. Then u blows up logarithmically at finite time t = T12

and

lim
t→T−12

[
1

− ln (T12 − t)
]

1
p+1 u(t) = [

c2

p + 1
]−

1
p+1 .

Proof . Assume that u is a global solution of (2.1). By (3.4) and Lemma 3.4,

ln | u′(t) | = (c1u(t) +
c2

p + 1
u(t)p+1 + E1(0)) for all t > 0.

Since that u(t), u′(t) blow up contemporarily (see Lemma 4.1), u ∈ C2[0, T12) where

T12 is blow-up time of u.

Let K(t) = a(t)−1, then

K ′(t) = −a(t)−2a′(t) = −2a(t)−2u(t)u′(t)

and

K ′′(t) = −a(t)−3(a(t)a′′(t)− 2a′(t)2)

= −a(t)−3[2a(t)(u′(t)2 + u(t)u′′(t))− 2a′(t)2]

= −a(t)−3{2a(t)[u′(t)2 + u(t)u′(t)2(c1 + c2u(t)p)]− 2a′(t)2}
= −a(t)−3{2a(t)u′(t)2[1 + u(t)(c1 + c2u(t)p)]− 2a′(t)2}
= −a(t)−3{1

2
a′(t)2[1 + u(t)(c1 + c2u(t)p)]− 2a′(t)2}

= −a(t)−3a′(t)2{1

2
[1 + u(t)(c1 + c2u(t)p)]− 2}.

By Lemma 3.4, u(t), u′(t), u′′(t) > 0 for t > 0. Hence there exists t0 > 0 such that

u(t) ≥ (
| c1 | +3

c2

)
1
p + 1 for t ≥ t0.

Thus we have
1

2
[(1 + u(t)(c1 + c2u(t)p)]− 2 ≥ 0 for t ≥ t0.

We conclude that

K(t0) > 0, K ′(t) < 0 and K ′′(t) < 0 for t ≥ t0,

thus by Theorem 3.3 there exists positive number T12 such that K(T12) = 0 and u

blows up at time t = T12. This result contradicts with our assumption that u is a
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global solution of problem (2.1). Therefore u exists locally. By Lemma 3.6, u blows

up in finite time. After some computations we get

lim
t→T−12

− ln (T12 − t)u(t)−(p+1) = lim
t→T−12

− ln (T12 − t)

u(t)p+1

= lim
t→T−12

1
T12−t

(p + 1)u(t)pu′(t)

= lim
t→T−12

u(t)−pu′(t)−1

(p + 1)(T12 − t)

= lim
t→T−12

pu(t)−(p+1) + u(t)−pu′(t)−2u′′(t)
p + 1

.

Using (2.1), we obtain u′′(t) = u′(t)2(c1 + c2u(t)p) and

lim
t→T−12

− ln (T12 − t)u(t)−(p+1) = lim
t→T−12

pu(t)−(p+1) + u(t)−p(c1 + c2u(t)p)

p + 1

=
c2

p + 1
.

Hence we conclude

lim
t→T−12

[
1

− ln (T12 − t)
]

1
p+1 u(t) = [

c2

p + 1
]−

1
p+1 . ❑

Case3. Blow-up phenomena for q > 2

Under q > 2 we have the boundedness for the solution.

Theorem 3.10 For q > 2, if u is the classical positive solution of (2.1) and c2 >

0, u0 ≥ 0, u1 > 0, up
0 ≥ −c1

c2

, then u is bounded in [0, T ), where T is the life span

of u.

Proof . We integrate the equation (2.1) from 0 to t and then we obtain

u′(t)2−q

2− q
− u2−q

1

2− q
= c1u(t) +

c2

p + 1
u(t)p+1 − c1u0 − c2

p + 1
up+1

0 .

For t ∈ [0, T ), by Lemma 3.4, then u(t), u′(t) > 0 and

u2−q
1

q − 2
> c1u(t) +

c2

p + 1
u(t)p+1 − c1u0 − c2

p + 1
up+1

0 .

Since that c2 > 0 and u(t) > 0 for t ∈ [0, T ), u is bounded in [0, T ). ❑

17



3.2 Blow-up Phenomena of u′

In this subsection we come back to the consideration of blow-up phenomena of u′,

and we have

Theorem 3.11 For q ≥ 1, if u is a classical positive solution of (2.1) and c2 >

0, u0 ≥ 0, u1 > 0, up
0 ≥ −c1

c2

, then u′ blows up at time t = T2.

Proof . We separate this proof into three parts 1 ≤ q < 2, q = 2 and q > 2.

(I) At first, we assume that 1 ≤ q < 2, by Theorem 3.7 and Lemma 4.1 below,

then u and u′ blow up in finite time.

(II) For q = 2, using Theorem 3.9 and Lemma 4.1 below, then u and u′ blow up

in finite time.

(III) Assume that q > 2, let

b(t) = u′(t)2, L(t) = b(t)−α,

where α = 1
2
(q − 1), we have

L′(t) = −αb(t)−(α+1)b′(t) = −2αb(t)−(α+1)u′(t)u′′(t),

and

L′′(t) = −αb(t)−(α+2)[b(t)b′′(t)− (α + 1)b′(t)2]

= −αb(t)−(α+2)[b(t)(2u′′(t)2 + 2u′(t)u′′′(t))− (α + 1)b′(t)2]

= −αb(t)−(α+2)[b(t)(2u′′(t)2 + 2qu′′(t)2 + 2pc2u(t)p−1u′(t)q+2)− (α + 1)b′(t)2]

= −αb(t)−(α+2)[(
1

2
(1 + q)− (α + 1))b′(t)2 + 2c2pb(t)u(t)p−1u′(t)q+2]

= −2pc2αb(t)−(α+1)u(t)p−1u′(t)q+2.

By Lemma 3.4, u(t) > 0, u′(t) > 0 and u′′(t) > 0 for t > 0, and then we obtain that

L′(t), L′′(t) < 0 for t > 0. Now we need to check that u doesn’t blow up earlier than
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u′. By Theorem 3.10, u is bounded. Using Lemma 3.3, there exists a finite number

T2 such that L(T2) = 0. Since that q > 2, thus α > 0. We obtain that u′ blows up

at finite time t = T2. ❑

Having obtained the blow-up phenomena of u′, we want to calculate blow-up rate

and blow-up constant of u′.

Case1. Blow-up rates and blow-up constants of u′ for 1 ≤ q < 2

For q ∈ [1, 2) we have the result:

Theorem 3.12 Under the conditions in Theorem 3.11, for 1 ≤ q < 2, u′ blows up

in finite time with blow-up rate
p + 1

p + q − 1
and blow-up constant

[
c2(p + q − 1)

p + 1
(
c2(2− q)

p + 1
)
−p
p+1 ]

−(p+1)
p+q−1 .

Proof . By Lemma 4.1 u and u′ have the same blow-up time. According to (2.1),

L.Hôpital’s rule and Theorem 3.8 we have

lim
t→T−2

u′(t)
1−p−q

p+1

(T2 − t)
= lim

t→T−2

p + q − 1

p + 1
u′(t)

−(2p+q)
p+1 u′′(t)

= lim
t→T−2

c2(p + q − 1)

p + 1
[(2− q)(c1u(t) +

c2

p + 1
u(t)p+1 + E(0))]

−p
p+1 u(t)p

=
c2(p + q − 1)

p + 1
(
c2(2− q)

p + 1
)
−p
p+1 .

Thus

lim
t→T−2

(T2 − t)
p+1

p+q−1 u′(t) = [
c2(p + q − 1)

p + 1
(
c2(2− q)

p + 1
)
−p
p+1 ]

−(p+1)
p+q−1 . ❑

Case2. Blow-up rates and blow-up constants of u′ for q = 2

To the case q = 2, we have the following results on blow-up rate and blow-up

constant for u′.

Theorem 3.13 Under the conditions in Theorem 3.11, for q = 2, u′ blows up in

finite time, we also have

lim
t→T−2

[− ln(T2 − t)]
p

p+1 (T2 − t)u′(t) = c
−1
p+1

2 (
1

p + 1
)

p
p+1 .
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Proof . According to Lemma 4.1 u and u′ have the same life-span. By (2.1),

L.Hôpital’s rule and Theorem 3.9 we have

lim
t→T−2

[− ln(T2 − t)]
p

p+1 (T2 − t)u′(t)

= lim
t→T−2

[− ln(T2 − t)]
p

p+1 (T2 − t)

u′(t)−1

= lim
t→T−2

p
p+1

[− ln(T2 − t)]
−1
p+1 (T2 − t)− [− ln(T2 − t)]

p
p+1

−(c1 + c2u(t)p)

= c
−1
p+1

2 (
1

p + 1
)

p
p+1 . ❑

Case3. Blow-up rates and blow-up constants of u′ for q > 2

In this case of q > 2 we also have the blow-up result for u′.

Theorem 3.14 Under the conditions in Theorem 3.11, for q > 2, u′ blows up in

finite time with blow-up rate
1

q − 1
and blow-up constant [(q− 1)(c1 + c2u(T2)

p)]
1

1−q .

Proof . For q > 2, by (2.1) and L.Hôpital’s rule we have

lim
t→T−2

u′(t)1−q

(T2 − t)
= lim

t→T−2
(1− q)u′(t)−qu′′(t)(−1)

= lim
t→T−2

(q − 1)(c1 + c2u(t)p)

= (q − 1)(c1 + c2u(T2)
p).

Thus

lim
t→T−2

(T2 − t)
1

q−1 u′(t) = [(q − 1)(c1 + c2u(T2)
p)]

1
1−q . ❑

In the coming subsection we treat the blow-up phenomena of u′′ under three cases

1 ≤ q < 2, q = 2 and q > 2.

3.3 Blow-up Phenomena of u′′

We want to calculate blow-up rate and blow-up constant of u′′ in the this subsection.
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Theorem 3.15 Suppose that u is a classical positive solution of (2.1). If 1 ≤ q,

then u′′ blows up at time t = T3 under the same conditions in Theorem 3.11.

Proof . According to Theorem 3.11 and Lemma 4.1 below, u′ and u′′ blow up at

the same time, t = T3. ❑

Case1. Blow-up rates and blow-up constants of u′′ for 1 ≤ q < 2

Theorem 3.16 Under the conditions in Theorem 3.15, for 1 ≤ q < 2, u′′ blows up

in finite time with the blow-up rate
q(p + 1)

p + q − 1
+

p(2− q)

p + q − 1
and the blow-up constant

c2{[c2(p + q − 1)

p + 1
(
c2(2− q)

p + 1
)
−p
p+1 ]

−(p+1)
p+q−1 }q{(p + q − 1

2− q
)−

2−q
p+q−1 [(2− q)

c2

p + 1
]

−1
p+q−1}p.

Proof . For 1 ≤ q < 2, by Lemma 4.1, u, u′ and u′′ possess the same blow-up time

. Using (2.1) again, Theorem 3.8 and Theorem 3.12, we conclude that

lim
t→T−3

(T3 − t)
q(p+1)
p+q−1

+
p(2−q)
p+q−1 u′′(t)

= lim
t→T−3

(T3 − t)
q(p+1)
p+q−1 u′(t)q(T3 − t)

p(2−q)
p+q−1 (c1 + c2u(t)p)

= c2{[c2(p + q − 1)

p + 1
(
c2(2− q)

p + 1
)
−p
p+1 ]

−(p+1)
p+q−1 }q{(p + q − 1

2− q
)−

2−q
p+q−1 [(2− q)

c2

p + 1
]

−1
p+q−1}p. ❑

Case2. Blow-up rates and blow-up constants of u′′ for q = 2

Theorem 3.17 Under the conditions in Theorem 3.15, for q = 2, u′′ blows up in

finite time and

lim
t→T−3

{[− ln(T3 − t)]
p

p+1 (T3 − t)}q{[− ln (T3 − t)]
−1
p+1}pu′′(t)

= c2[c
−1
p+1

2 (
1

p + 1
)

p
p+1 ]q[(

c2

p + 1
)
−1
p+1 ]p.

Proof . For q = 2, using Lemma 4.1, u, u′ and u′′ have the same blow-up time.

Thus T3 is also blow-up time of u and u′. By (2.1), Theorem 3.9 and Theorem 3.13
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we conclude that

lim
t→T−3

{[− ln(T3 − t)]
p

p+1 (T3 − t)}q{[− ln (T3 − t)]
−1
p+1}pu′′(t)

= lim
t→T−3

{[− ln(T3 − t)]
p

p+1 (T3 − t)}qu′(t)q{[− ln (T3 − t)]
−1
p+1}p(c1 + c2u(t)p)

= c2[c
−1
p+1

2 (
1

p + 1
)

p
p+1 ]q[(

c2

p + 1
)
−1
p+1 ]p. ❑

Case3. Blow-up rates and blow-up constants of u′′ for q > 2

Theorem 3.18 Under the conditions in Theorem 3.15, for q > 2, u′′ blows up time

in finite time with the blow-up rate
q

q − 1
and the blow-up constant

(c1 + c2u(T3)
p){[(q − 1)(c1 + c2u(T3)

p)]
1

1−q }q.

Proof . For q > 2, by Lemma 4.1, u′′ and u′ blow up contemporaneously in finite

time. Thanks to Lemma 3.4 we have u(t) > 0 and u(t)p ≥ − c1
c2

. Since c2 > 0,

c1 + c2u(t)p > 0. By (2.1) and Theorem 3.14, we conclude that

lim
t→T−3

(T3 − t)
q

q−1 u′′(t)

= lim
t→T−3

(T3 − t)
q

q−1 u′(t)q(c1 + c2u(t)p)

= (c1 + c2u(T3)
p){[(q − 1)(c1 + c2u(T3)

p)]
1

1−q }q. ❑
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