
4 Estimations for the Life-Spans

To estimate the life-span of the solution of the equation (2.1), we separate this

section into two parts, 1 ≤ q < 2 and q = 2. Here the life-span T of u means that u

is the solution of problem (2.1) and the existence interval of u is contained only in

[0, T ) so that the problem (2.1) has the solution u ∈ C2[0, T ). We have the following

results.

Lemma 4.1 Suppose that u ∈ C2[0, T ) is a classical positive solution of problem

(2.1) and that c2 > 0, u0 ≥ 0, u1 > 0, up
0 ≥

−c1

c2

. For 1 ≤ q ≤ 2, u(t) and u′(t)

blow up simultaneously; further so does u′′. For q > 2, u′(t) and u′′ blow up at the

same time.

Proof .

(I) For 1 ≤ q < 2, by (3.3) we have

u′(t)2−q = (2− q)(c1u(t) +
c2

p + 1
u(t)p+1 + E(0)).

(1) At first, we claim that if u blows up in finite time, so does u′. According

to Theorem 3.7, u blows up at time t = T11. Since lim
t→T−11

1

u(t)
= 0, we have

lim
t→T−11

1

u′(t)2−q
= lim

t→T−11

1

(2− q)(c1u(t) + c2
p+1

u(t)p+1 + E(0))

= lim
t→T−11

1
u(t)p+1

(2− q)( c1
u(t)p + c2

p+1
+ E(0)

u(t)p+1 )

= 0.

Therefore,

lim
t→T−11

1

u′(t)
= 0.

Thus, u′ blows up in finite time.

(2) We claim that if u′ blows up in finite time, then so does u. With the help
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of Theorem 3.11, u′ blows up at time t = T2. Assume that u doesn’t blow up

at time t = T2. Let

lim
t→T−2

u(t) = M < ∞.

Then

lim
t→T−2

u′(t)2−q = lim
t→T−2

(2− q)(c1u(t) +
c2

p + 1
u(t)p+1 + E(0))

= (2− q)(c1M +
c2

p + 1
Mp+1 + E(0))

< ∞.

This result contradicts with the fact that u′(t) blows up at time t = T2. It

deduces that u blows up at time t = T2. Associate (1) with (2), we conclude

that u and u′ blow up simultaneously.

(II) For the case q = 2, by (3.4) we have

ln | u′(t) |= c1u(t) +
c2

p + 1
u(t)p + E1(0).

(3) We claim that if u blows up in finite time, then so does u′.

By Theorem 3.9 and Lemma 3.4, u blows up at time t = T12 and u(t), u′(t) > 0.

Since that c2 > 0 and u blows up toward positive direction, ln | u′ | also blows

up toward positive direction. Thus u′ blows up at time t = T12.

(4) To prove that u′ blows up then so does u. Using Theorem 3.11 and Lemma

3.4, u′ blows up at time t = T2 and u(t), u′(t) > 0. Assume that u doesn’t

blow up at time t = T2. Let

lim
t→T−2

u(t) = M < ∞.

Then

lim
t→T−2

ln | u′(t) | = lim
t→T−2

(c1u(t) +
c2

p + 1
u(t)p+1 + E1(0))

= (2− q)(c1M +
c2

p + 1
Mp+1 + E1(0))

< ∞.

This result is contradictory to the fact that u′ blows up in finite time. It

deduces that u blows up at time t = T2. Together (3) and (4), we conclude
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that u and u′ blow up simultaneously. From (2.1), we have

u′′(t) = u′(t)q(c1 + c2u(t)P ).

Since that u and u′ blow up toward positive direction at the same time and

c2 > 0. Thus u′′ blows up toward positive direction.

(III) Under q > 2, according to Theorem 3.11, u′ blows up at time t = T2. By

Theorem 3.10, we obtain that u is bounded in [0, T2) and by Lemma 3.4 we

have u′(t) > 0 for t ∈ [0, T2). So the following limit exists,

lim
t→T−2

c1 + c2u(t)p.

Since that u0 ≥ −c1

c2

and u′(t) > 0 for t ∈ [0, T2),

lim
t→T−2

c1 + c2u(t)p > 0.

By u′′(t) = u′(t)q(c1 + c2u(t)p), it deduces that u′ and u′′ blow up simultane-

ously. ❑

Case1. Life-Span for 1 ≤ q < 2

Theorem 4.2 Suppose that u ∈ C2[0, T ) is the classical positive solution of (2.1)

and T is life-span of u and that T1 is blow-up time of u. Under the same conditions

in Theorem 3.7, T is bounded. We have the estimation

T ≤ T1 = (2− q)
1

q−2

∫ ∞

u0

(c1r +
c2

p + 1
rp+1 + E(0))

1
q−2 dr.

Proof . Since that 1 ≤ q < 2, by (3.3) we know that

u′(t)2−q = (2− q)(c1u(t) +
c2

p + 1
u(t)p+1 + E(0)).

Using the fact that u′(t) > 0 for t ∈ [0, T1) and u′(t) = [(2−q)(c1u(t)+
c2

p + 1
u(t)p+1+

E(0))]
1

2−q , we have

u′(t)

(c1u(t) + c2
p+1

u(t)p+1 + E(0))
1

2−q

= (2− q)
1

2−q .
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Integrate the last equation from 0 to t, we obtain that
∫ t

0

u′(r)

(c1u + c2
p+1

up+1 + E(0))
1

2−q (r)
dr = (2− q)

1
2−q t,

∫ u(t)

u0

1

(c1r + c2
p+1

rp+1 + E(0))
1

2−q

dr = (2− q)
1

2−q t. (4.1)

Let

T1 = (2− q)
1

q−2

∫ ∞

u0

(c1r +
c2

p + 1
rp+1 + E(0))

1
q−2 dr.

We claim that T1 < ∞. By u0 ≥ (
−c1

c2

)
1
p and

c1r +
c2

p + 1
rp+1 + E(0) =

∫ r

u0

(c1 + c2s
p) ds +

u2−q
1

2− q
,

we obtain

c1r +
c2

p + 1
rp+1 + E(0) > 0 for r ≥ u0.

And c1r +
c2

p + 1
rp+1 + E(0) is continuous on [u0, a] for a ≥ u0. So the function

1

(c1r + c2
p+1

rp+1 + E(0))
1

2−q

is integrable and positive on [u0, a] for a ≥ u0. We cal-

culate the limit

lim
r→∞

1

r
p+1
2−q

1

(c1r+
c2

p+1
rp+1+E(0))

1
2−q

= lim
r→∞

(c1r
−p +

c2

p + 1
+ E(0)r−(p+1))

1
2−q

= (
c2

p + 1
)

1
2−q > 0.

By
p + 1

2− q
> 2, we gain

∫ ∞

u0

1

r
p+1
2−q

dr < ∞ and

∫ ∞

u0

(c1r +
c2

p + 1
rp+1 + E(0))

1
q−2 dr < ∞.

Thus T1 < ∞. Since that u ∈ C2[0, T ), T ≤ T1. ❑

Case2. Life-Span for q = 2

Theorem 4.3 For q = 2, if u ∈ C2[0, T ) is the classical positive solution of (2.1)

and if c2 > 0, u0, u1 > 0, up
0 ≥ −c1

c2

. Suppose that T is life-span and T ∗
1 is blow-up

time of u. Then T is bounded. We have the estimation

T ≤ T ∗
1 =

∫ ∞

u0

1

exp (c1r + c2
p+1

rp+1 + E1(0))
dr.
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Proof . For q = 2 by (3.4),

ln | u′(t) | = c1u(t) +
c2

p + 1
u(t)p+1 + E1(0).

By u′(t) > 0 and u′(t) = exp (c1u(t) +
c2

p + 1
u(t)p+1 + E1(0)), we have

u′(t)
exp (c1u(t) + c2

p+1
u(t)p+1 + E1(0))

= 1.

Integrate the above equation from 0 to t, we obtain

∫ t

0

u′(t)
exp (c1u(t) + c2

p+1
u(t)p+1 + E1(0))

dr = t

and then ∫ u(t)

u0

1

exp (c1r + c2
p+1

rp+1 + E1(0))
dr = t.

Let

T ∗
1 =

∫ ∞

u0

1

exp (c1r + c2
p+1

rp+1 + E1(0))
dr.

We claim that T ∗
1 < ∞. Let

f(r) = c1r +
c2

p + 1
rp+1 + E1(0).

Then f ′(r) ≥ 0 for rp ≥ −c1

c2

and f ′′(r) ≥ 0 for r ≥ 0. So there exists r0 > 0 and

rp
0 ≥

−c1

c2

such that f(r) > 0 for r ≥ r0.

We calculate

∫ ∞

u0

1

exp (c1r + c2
p+1

rp+1 + E1(0))
dr

=

∫ r0

u0

1

exp (c1r + c2
p+1

rp+1 + E1(0))
dr +

∫ ∞

r0

1

exp (c1r + c2
p+1

rp+1 + E1(0))
dr

Since that
1

exp (c1r + c2
p+1

rp+1 + E1(0))
is a continuous function on [u0, r0], the first

integrand is bounded. Since that

exp (c1r +
c2

p + 1
rp+1 + E1(0)) > c1r +

c2

p + 1
rp+1 + E1(0) > 0 for r ≥ r0,

we obtain

1

exp (c1r + c2
p+1

rp+1 + E1(0))
<

1

(c1r + c2
p+1

rp+1 + E1(0)
for r ≥ r0.
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By

∫ ∞

r0

1

(c1r + c2
p+1

rp+1 + E1(0)
dr < ∞, and the comparison test, the second inte-

grand is bounded. Therefore, T ∗
1 is bounded . Since that u ∈ C2(0, T ), therefore

T ≤ T ∗
1 . ❑
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