4 Estimations for the Life-Spans

To estimate the life-span of the solution of the equation (2.1), we separate this section into two parts, $1 \leq q<2$ and $q=2$. Here the life-span T of u means that u is the solution of problem (2.1) and the existence interval of u is contained only in $[0, T)$ so that the problem (2.1) has the solution $u \in C^{2}[0, T)$. We have the following results.

Lemma 4.1 Suppose that $u \in C^{2}[0, T)$ is a classical positive solution of problem (2.1) and that $c_{2}>0, u_{0} \geq 0, u_{1}>0, u_{0}^{p} \geq \frac{-c_{1}}{c_{2}}$. For $1 \leq q \leq 2, u(t)$ and $u^{\prime}(t)$ blow up simultaneously; further so does $u^{\prime \prime}$. For $q>2, u^{\prime}(t)$ and $u^{\prime \prime}$ blow up at the same time.

Proof.

(I) For $1 \leq q<2$, by (3.3) we have

$$
u^{\prime}(t)^{2-q}=(2-q)\left(c_{1} u(t)+\frac{c_{2}}{p+1} u(t)^{p+1}+E(0)\right)
$$

(1) At first, we claim that if u blows up in finite time, so does u^{\prime}. According to Theorem 3.7, u blows up at time $t=T_{11}$. Since $\lim _{t \rightarrow T_{11}^{-}} \frac{1}{u(t)}=0$, we have

$$
\begin{aligned}
\lim _{t \rightarrow T_{11}^{-}} \frac{1}{u^{\prime}(t)^{2-q}} & =\lim _{t \rightarrow T_{11}^{-}} \frac{1}{(2-q)\left(c_{1} u(t)+\frac{c_{2}}{p+1} u(t)^{p+1}+E(0)\right)} \\
& =\lim _{t \rightarrow T_{11}^{-}} \frac{\frac{1}{u(t)^{p+1}}}{(2-q)\left(\frac{c_{1}}{u(t)^{p}}+\frac{c_{2}}{p+1}+\frac{E(0)}{u(t)^{p+1}}\right)} \\
& =0 .
\end{aligned}
$$

Therefore,

$$
\lim _{t \rightarrow T_{11}^{-}} \frac{1}{u^{\prime}(t)}=0
$$

Thus, u^{\prime} blows up in finite time.
(2) We claim that if u^{\prime} blows up in finite time, then so does u. With the help
of Theorem 3.11, u^{\prime} blows up at time $t=T_{2}$. Assume that u doesn't blow up at time $t=T_{2}$. Let

$$
\lim _{t \rightarrow T_{2}^{-}} u(t)=M<\infty
$$

Then

$$
\begin{aligned}
\lim _{t \rightarrow T_{2}^{-}} u^{\prime}(t)^{2-q} & =\lim _{t \rightarrow T_{2}^{-}}(2-q)\left(c_{1} u(t)+\frac{c_{2}}{p+1} u(t)^{p+1}+E(0)\right) \\
& =(2-q)\left(c_{1} M+\frac{c_{2}}{p+1} M^{p+1}+E(0)\right) \\
& <\infty
\end{aligned}
$$

This result contradicts with the fact that $u^{\prime}(t)$ blows up at time $t=T_{2}$. It deduces that u blows up at time $t=T_{2}$. Associate (1) with (2), we conclude that u and u^{\prime} blow up simultaneously.
(II) For the case $q=2$, by (3.4) we have

$$
\ln \left|u^{\prime}(t)\right|=c_{1} u(t)+\frac{c_{2}}{p+1} u(t)^{p}+E_{1}(0) .
$$

(3) We claim that if u blows up in finite time, then so does u^{\prime}.

By Theorem 3.9 and Lemma 3.4, u blows up at time $t=T_{12}$ and $u(t), u^{\prime}(t)>0$. Since that $c_{2}>0$ and u blows up toward positive direction, $\ln \left|u^{\prime}\right|$ also blows up toward positive direction. Thus u^{\prime} blows up at time $t=T_{12}$.
(4) To prove that u^{\prime} blows up then so does u. Using Theorem 3.11 and Lemma 3.4, u^{\prime} blows up at time $t=T_{2}$ and $u(t), u^{\prime}(t)>0$. Assume that u doesn't blow up at time $t=T_{2}$. Let

$$
\lim _{t \rightarrow T_{2}^{-}} u(t)=M<\infty
$$

Then

$$
\begin{aligned}
\lim _{t \rightarrow T_{2}^{-}} \ln \left|u^{\prime}(t)\right| & =\lim _{t \rightarrow T_{2}^{-}}\left(c_{1} u(t)+\frac{c_{2}}{p+1} u(t)^{p+1}+E_{1}(0)\right) \\
& =(2-q)\left(c_{1} M+\frac{c_{2}}{p+1} M^{p+1}+E_{1}(0)\right) \\
& <\infty
\end{aligned}
$$

This result is contradictory to the fact that u^{\prime} blows up in finite time. It deduces that u blows up at time $t=T_{2}$. Together (3) and (4), we conclude
that u and u^{\prime} blow up simultaneously. From (2.1), we have

$$
u^{\prime \prime}(t)=u^{\prime}(t)^{q}\left(c_{1}+c_{2} u(t)^{P}\right)
$$

Since that u and u^{\prime} blow up toward positive direction at the same time and $c_{2}>0$. Thus $u^{\prime \prime}$ blows up toward positive direction.
(III) Under $q>2$, according to Theorem 3.11, u^{\prime} blows up at time $t=T_{2}$. By Theorem 3.10, we obtain that u is bounded in $\left[0, T_{2}\right)$ and by Lemma 3.4 we have $u^{\prime}(t)>0$ for $t \in\left[0, T_{2}\right)$. So the following limit exists,

$$
\lim _{t \rightarrow T_{2}^{-}} c_{1}+c_{2} u(t)^{p}
$$

Since that $u_{0} \geq \frac{-c_{1}}{c_{2}}$ and $u^{\prime}(t)>0$ for $t \in\left[0, T_{2}\right)$,

$$
\lim _{t \rightarrow T_{2}^{-}} c_{1}+c_{2} u(t)^{p}>0
$$

By $u^{\prime \prime}(t)=u^{\prime}(t)^{q}\left(c_{1}+c_{2} u(t)^{p}\right)$, it deduces that u^{\prime} and $u^{\prime \prime}$ blow up simultaneously.

Case1. Life-Span for $1 \leq q<2$

Theorem 4.2 Suppose that $u \in C^{2}[0, T)$ is the classical positive solution of (2.1) and T is life-span of u and that T_{1} is blow-up time of u. Under the same conditions in Theorem 3.7, T is bounded. We have the estimation

$$
T \leq T_{1}=(2-q)^{\frac{1}{q-2}} \int_{u_{0}}^{\infty}\left(c_{1} r+\frac{c_{2}}{p+1} r^{p+1}+E(0)\right)^{\frac{1}{q-2}} d r .
$$

Proof. Since that $1 \leq q<2$, by (3.3) we know that

$$
u^{\prime}(t)^{2-q}=(2-q)\left(c_{1} u(t)+\frac{c_{2}}{p+1} u(t)^{p+1}+E(0)\right) .
$$

Using the fact that $u^{\prime}(t)>0$ for $t \in\left[0, T_{1}\right)$ and $u^{\prime}(t)=\left[(2-q)\left(c_{1} u(t)+\frac{c_{2}}{p+1} u(t)^{p+1}+\right.\right.$ $E(0))]^{\frac{1}{2-q}}$, we have

$$
\frac{u^{\prime}(t)}{\left(c_{1} u(t)+\frac{c_{2}}{p+1} u(t)^{p+1}+E(0)\right)^{\frac{1}{2-q}}}=(2-q)^{\frac{1}{2-q}} .
$$

Integrate the last equation from 0 to t, we obtain that

$$
\begin{align*}
& \int_{0}^{t} \frac{u^{\prime}(r)}{\left(c_{1} u+\frac{c_{2}}{p+1} u^{p+1}+E(0)\right)^{\frac{1}{2-q}}(r)} d r=(2-q)^{\frac{1}{2-q}} t \\
& \int_{u_{0}}^{u(t)} \frac{1}{\left(c_{1} r+\frac{c_{2}}{p+1} r^{p+1}+E(0)\right)^{\frac{1}{2-q}}} d r=(2-q)^{\frac{1}{2-q}} t \tag{4.1}
\end{align*}
$$

Let

$$
T_{1}=(2-q)^{\frac{1}{q-2}} \int_{u_{0}}^{\infty}\left(c_{1} r+\frac{c_{2}}{p+1} r^{p+1}+E(0)\right)^{\frac{1}{q-2}} d r
$$

We claim that $T_{1}<\infty$. By $u_{0} \geq\left(\frac{-c_{1}}{c_{2}}\right)^{\frac{1}{p}}$ and

$$
c_{1} r+\frac{c_{2}}{p+1} r^{p+1}+E(0)=\int_{u_{0}}^{r}\left(c_{1}+c_{2} s^{p}\right) d s+\frac{u_{1}^{2-q}}{2-q}
$$

we obtain

$$
c_{1} r+\frac{c_{2}}{p+1} r^{p+1}+E(0)>0 \text { for } r \geq u_{0} .
$$

And $c_{1} r+\frac{c_{2}}{p+1} r^{p+1}+E(0)$ is continuous on $\left[u_{0}, a\right]$ for $a \geq u_{0}$. So the function $\frac{1}{\left(c_{1} r+\frac{c_{2}}{p+1} r^{p+1}+E(0)\right)^{\frac{1}{2-q}}}$ is integrable and positive on $\left[u_{0}, a\right]$ for $a \geq u_{0}$. We calculate the limit

$$
\begin{aligned}
\lim _{r \rightarrow \infty} \frac{\frac{1}{r^{p+1}}}{\frac{1}{\left(c_{1} r+\frac{c_{2}}{p+1} r^{p+1}+E(0)\right)^{\frac{1}{2-q}}}} & =\lim _{r \rightarrow \infty}\left(c_{1} r^{-p}+\frac{c_{2}}{p+1}+E(0) r^{-(p+1)}\right)^{\frac{1}{2-q}} \\
& =\left(\frac{c_{2}}{p+1}\right)^{\frac{1}{2-q}}>0 .
\end{aligned}
$$

By $\frac{p+1}{2-q}>2$, we gain $\int_{u_{0}}^{\infty} \frac{1}{r^{\frac{p+1}{2-q}}} d r<\infty$ and

$$
\int_{u_{0}}^{\infty}\left(c_{1} r+\frac{c_{2}}{p+1} r^{p+1}+E(0)\right)^{\frac{1}{q-2}} d r<\infty
$$

Thus $T_{1}<\infty$. Since that $u \in C^{2}[0, T), T \leq T_{1}$.

Case2. Life-Span for $q=2$

Theorem 4.3 For $q=2$, if $u \in C^{2}[0, T)$ is the classical positive solution of (2.1) and if $c_{2}>0, u_{0}, u_{1}>0, u_{0}^{p} \geq-\frac{c_{1}}{c_{2}}$. Suppose that T is life-span and T_{1}^{*} is blow-up time of u. Then T is bounded. We have the estimation

$$
T \leq T_{1}^{*}=\int_{u_{0}}^{\infty} \frac{1}{\exp \left(c_{1} r+\frac{c_{2}}{p+1} r^{p+1}+E_{1}(0)\right)} d r
$$

Proof. For $q=2$ by (3.4),

$$
\ln \left|u^{\prime}(t)\right|=c_{1} u(t)+\frac{c_{2}}{p+1} u(t)^{p+1}+E_{1}(0)
$$

By $u^{\prime}(t)>0$ and $u^{\prime}(t)=\exp \left(c_{1} u(t)+\frac{c_{2}}{p+1} u(t)^{p+1}+E_{1}(0)\right)$, we have

$$
\frac{u^{\prime}(t)}{\exp \left(c_{1} u(t)+\frac{c_{2}}{p+1} u(t)^{p+1}+E_{1}(0)\right)}=1
$$

Integrate the above equation from 0 to t, we obtain

$$
\int_{0}^{t} \frac{u^{\prime}(t)}{\exp \left(c_{1} u(t)+\frac{c_{2}}{p+1} u(t)^{p+1}+E_{1}(0)\right)} d r=t
$$

and then

$$
\int_{u_{0}}^{u(t)} \frac{1}{\exp \left(c_{1} r+\frac{c_{2}}{p+1} r^{p+1}+E_{1}(0)\right)} d r=t
$$

Let

$$
T_{1}^{*}=\int_{u_{0}}^{\infty} \frac{1}{\exp \left(c_{1} r+\frac{c_{2}}{p+1} r^{p+1}+E_{1}(0)\right)} d r
$$

We claim that $T_{1}^{*}<\infty$. Let

$$
f(r)=c_{1} r+\frac{c_{2}}{p+1} r^{p+1}+E_{1}(0)
$$

Then $f^{\prime}(r) \geq 0$ for $r^{p} \geq \frac{-c_{1}}{c_{2}}$ and $f^{\prime \prime}(r) \geq 0$ for $r \geq 0$. So there exists $r_{0}>0$ and $r_{0}^{p} \geq \frac{-c_{1}}{c_{2}}$ such that $f(r)>0$ for $r \geq r_{0}$.
We calculate

$$
\begin{aligned}
& \int_{u_{0}}^{\infty} \frac{1}{\exp \left(c_{1} r+\frac{c_{2}}{p+1} r^{p+1}+E_{1}(0)\right)} d r \\
= & \int_{u_{0}}^{r_{0}} \frac{1}{\exp \left(c_{1} r+\frac{c_{2}}{p+1} r^{p+1}+E_{1}(0)\right)} d r+\int_{r_{0}}^{\infty} \frac{1}{\exp \left(c_{1} r+\frac{c_{2}}{p+1} r^{p+1}+E_{1}(0)\right)} d r
\end{aligned}
$$

Since that $\frac{1}{\exp \left(c_{1} r+\frac{c_{2}}{p+1} r^{p+1}+E_{1}(0)\right)}$ is a continuous function on $\left[u_{0}, r_{0}\right]$, the first integrand is bounded. Since that

$$
\exp \left(c_{1} r+\frac{c_{2}}{p+1} r^{p+1}+E_{1}(0)\right)>c_{1} r+\frac{c_{2}}{p+1} r^{p+1}+E_{1}(0)>0 \text { for } r \geq r_{0}
$$

we obtain

$$
\frac{1}{\exp \left(c_{1} r+\frac{c_{2}}{p+1} r^{p+1}+E_{1}(0)\right)}<\frac{1}{\left(c_{1} r+\frac{c_{2}}{p+1} r^{p+1}+E_{1}(0)\right.} \text { for } r \geq r_{0}
$$

By $\int_{r_{0}}^{\infty} \frac{1}{\left(c_{1} r+\frac{c_{2}}{p+1} r^{p+1}+E_{1}(0)\right.} d r<\infty$, and the comparison test, the second integrand is bounded. Therefore, T_{1}^{*} is bounded. Since that $u \in C^{2}(0, T)$, therefore $T \leq T_{1}^{*}$.

