2 Solved By Recurrence Relation

2.1 Solution by Recurrence Relation for Question 1

If there are k different points in an 1-dimensional line, then what is the largest number of the different regions which are formed by these k different points?

We solve this question by recurrence relation as follows:

Let a_{k} be the largest number of the different regions which are formed by these k different lines.

Suppose we have drawn $k-1$ points in a line and these $k-1$ points have created the largest number of different regions. Then the $k^{\text {th }}$ point must separate one of them into two regions to create the largest number of regions. This makes one more region than the former one (see Figure 1).

Li ne

Figure 1: Translation of Recurrence Relation about Point and Line

Hence, we get a recurrence relation

$$
a_{k}=a_{k-1}+1
$$

Using iteration we have the following result

$$
a_{k}=a_{k-1}+1=\left(a_{k-2}+1\right)+1=\cdots=\left(a_{0}+1\right)+1+\cdots+1=1+k=C_{0}^{k}+C_{1}^{k}
$$

2.2 Solution by Recurrence Relation for Question 2

If there are k different 1-dimensional lines in an 2-dimensional plane, then what is the largest number of the different regions which are formed by these k different lines?

This question is solved by recurrence relation as follows:

Let b_{k} be the largest number of the different regions which are formed by these k different lines.

Suppose we have drawn $k-1$ lines in a plane and these $k-1$ lines have created the largest number of different regions. Then the $k^{\text {th }}$ line must intersects each former $k-1$ lines with a point and these $k-1$ points must be distinct in order to make the largest number of different regions.

Then we focus on the $k^{\text {th }}$ line and the $k-1$ points. The original regions formed by the $k-1$ lines do not eliminate after the $k^{\text {th }}$ line is drawn, and then each of the more regions created by the $k^{\text {th }}$ line will be connected to each region which is created by the $k^{\text {th }}$ line and the $k-1$ points (see Figure 2). That is the number of the more regions which could be viewed as a_{k-1} in Question 1.

Figure 2: Translation of Recurrence Relation about Line and Plane

Hence, we get a recurrence relation

$$
b_{k}=b_{k-1}+a_{k-1}
$$

And then, we put $a_{k-1}=C_{0}^{k-1}+C_{1}^{k-1}$ into the equation to get

$$
b_{k}=b_{k-1}+C_{0}^{k-1}+C_{1}^{k-1}
$$

So, we have

$$
\begin{aligned}
& b_{k}=b_{k-1}+C_{0}^{k-1} \\
& b_{k-1}=b_{k-2}+C_{0}^{k-2} \\
& b_{k-2}=b_{k-3}+C_{0}^{k-1} \\
& \vdots \vdots \\
&+ \\
& b_{3}^{k-2} \\
& b_{3}=b_{2}+C_{1}^{k-3} \\
& b_{2}=b_{1}+ \\
&+C_{0}^{2}+ \\
& b_{1}=b_{0} \\
& \hline b_{k}=b_{0}^{2} \\
& \hline+\sum_{i=0}^{k-1} C_{0}^{i}+\sum_{i=0}^{k-1} C_{1}^{i}
\end{aligned}
$$

Then we use the equality[5]

$$
\begin{equation*}
C_{r}^{r}+C_{r}^{r+1}+C_{r}^{r+2}+\cdots+C_{r}^{n}=C_{r+1}^{n+1} \tag{2.1}
\end{equation*}
$$

We have (2.2) by setting $r=0, n=k-1$ and (2.3) by setting $r=1, n=k-1$ in Equation 2.1 in the following:

$$
\begin{equation*}
C_{0}^{0}+C_{0}^{1}+C_{0}^{2}+\cdots+C_{0}^{k-1}=C_{1}^{k} \tag{2.2}
\end{equation*}
$$

and

$$
\begin{equation*}
C_{1}^{0}+C_{1}^{1}+C_{1}^{2}+\cdots+C_{1}^{k-1}=C_{2}^{k} \tag{2.3}
\end{equation*}
$$

At last, we have the result since $b_{0}=1=C_{0}^{k}$

$$
\begin{aligned}
b_{k} & =1+\sum_{i=0}^{k-1} C_{0}^{i}+\sum_{i=0}^{k-1} C_{0}^{i} \\
& =C_{0}^{k}+C_{1}^{k}+C_{2}^{k}
\end{aligned}
$$

2.3 Solution by Recurrence Relation for Question 3

If there are k different 2-dimensional planes in an 3-dimensional space, then what is the largest number of the different regions which are formed by these k different planes?

This question is also solved by recurrence relation in the following:

Let c_{k} be the largest number of the different regions which are formed by these k different planes.

Suppose we have drawn $k-1$ planes in a space and these $k-1$ planes have created the largest number of different regions. Then the $k^{t h}$ planes must intersects each former $k-1$ planes with a line and these $k-1$ line must be distinct as in Question 2 for making the largest number of different regions.

Then we focus on the $k^{t h}$ plane and the $k-1$ lines. The original regions formed by the $k-1$ planes do not eliminate after the $k^{\text {th }}$ plane is drawn, and then each of the more regions created by the $k^{\text {th }}$ plane will be connected to each region which is created by the $k^{\text {th }}$ plane and the $k-1$ lines (see Figure 3). That is the number of the more regions which could be viewed as b_{k-1} in Question 2.

Figure 3: Translation of Recurrence Relation about Plane and Space

Hence, we get a recurrence relation

$$
c_{k}=c_{k-1}+b_{k-1}
$$

And then, we put $b_{k-1}=C_{0}^{k-1}+C_{1}^{k-1}+C_{2}^{k-1}$ into the equation to get

$$
c_{k}=c_{k-1}+C_{0}^{k-1}+C_{1}^{k-1}+C_{2}^{k-1}
$$

So, we have

Again we use the Equation 2.1

$$
C_{r}^{r}+C_{r}^{r+1}+C_{r}^{r+2}+\cdots+C_{r}^{n}=C_{r+1}^{n+1}
$$

We have (2.4) by setting $r=0, n=k-1$ and (2.5) by setting $r=1, n=k-1$ and (2.6) by setting $r=2, n=k-1$ in Equation 2.1

$$
\begin{align*}
& C_{0}^{0}+C_{0}^{1}+C_{0}^{2}+\cdots+C_{0}^{k-1}=C_{1}^{k} \tag{2.4}\\
& C_{1}^{0}+C_{1}^{1}+C_{1}^{2}+\cdots+C_{1}^{k-1}=C_{2}^{k} \tag{2.5}
\end{align*}
$$

and

$$
\begin{equation*}
C_{2}^{0}+C_{2}^{1}+C_{2}^{2}+\cdots+C_{2}^{k-1}=C_{3}^{k} \tag{2.6}
\end{equation*}
$$

At last, we have the result since $c_{0}=1=C_{0}^{k}$

$$
\begin{aligned}
c_{k} & =1+\sum_{i=0}^{k-1} C_{0}^{i}+\sum_{i=0}^{k-1} C_{0}^{i}+\sum_{i=0}^{k-1} C_{2}^{i} \\
& =C_{0}^{k}+C_{1}^{k}+C_{2}^{k}+C_{3}^{k}
\end{aligned}
$$

